Parameter estimation for scientists and engineers:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley-Interscience
2007
|
Schlagworte: | |
Online-Zugang: | Table of contents only Publisher description Contributor biographical information Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (p. 269-270) and index |
Beschreibung: | XIV, 273 S. graph. Darst. |
ISBN: | 0470147814 9780470147818 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035115863 | ||
003 | DE-604 | ||
005 | 20090217 | ||
007 | t | ||
008 | 081023s2007 xxud||| |||| 00||| eng d | ||
010 | |a 2007019912 | ||
015 | |a GBA718578 |2 dnb | ||
020 | |a 0470147814 |9 0-470-14781-4 | ||
020 | |a 9780470147818 |c (hbk.) |9 978-0-470-14781-8 | ||
035 | |a (OCoLC)85829252 | ||
035 | |a (DE-599)BVBBV035115863 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-29T |a DE-634 | ||
050 | 0 | |a TA340 | |
082 | 0 | |a 620.001/ 519544 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Bos, Adriaan van den |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parameter estimation for scientists and engineers |c Adriaan van den Bos |
264 | 1 | |a Hoboken, NJ |b Wiley-Interscience |c 2007 | |
300 | |a XIV, 273 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 269-270) and index | ||
650 | 4 | |a Estimation d'un paramètre | |
650 | 4 | |a Estimation, Théorie de l' | |
650 | 4 | |a Ingénierie - Méthodes statistiques | |
650 | 4 | |a Statistique mathématique | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Engineering |x Statistical methods | |
650 | 4 | |a Parameter estimation | |
650 | 0 | 7 | |a Parameteridentifikation |0 (DE-588)4210689-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parameter |g Mathematik |0 (DE-588)4293830-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Parameter |g Mathematik |0 (DE-588)4293830-2 |D s |
689 | 0 | 1 | |a Parameteridentifikation |0 (DE-588)4210689-8 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip0718/2007019912.html |3 Table of contents only | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0739/2007019912-d.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0739/2007019912-b.html |3 Contributor biographical information | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016783603&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016783603 |
Datensatz im Suchindex
_version_ | 1804138091025268736 |
---|---|
adam_text | PARAMETER ESTIMATION FOR SCIENTISTS AND ENGINEERS ADRIAAN VAN DEN BOS
IICENTENNIAL B1CENTENNIAL WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC.,
PUBLICATION CONTENTS PREFACE XIII 1 INTRODUCTION 1 2 PARAMETRIC MODEIS
OF OBSERVATIONS 7 2.1 INTRODUCTION 7 2.2 PURPOSES OF MODEL PARAMETER
ESTIMATION 8 2.3 TRADITIONAL DETERMINISTIC PARAMETER ESTIMATION METHODS
9 2.4 STATISTICAL PARAMETRIC MODEIS OF OBSERVATIONS 12 2.4.1 THE
EXPECTATION MODEL 12 2.4.2 ADVANTAGES OF STATISTICAL PARAMETRIC MODEIS
OF OBSERVATIONS 16 2.5 CONCLUSIONS 20 2.6 COMMENTS AND REFERENCES 20 3
DISTRIBUTIONS OF OBSERVATIONS 21 3.1 INTRODUCTION 21 3.2 EXPECTATION,
COVARIANCE, AND FISHER SCORE 21 3.3 THE JOINT REAL NORMAL DISTRIBUTION
24 3.3.1 THE JOINT REAL NORMAL PROBABILITY DENSITY FUNCTION 24 3.3.2 THE
FISHER SCORE OF NORMAL OBSERVATIONS 25 VII VIII CONTENTS 3.4 THE POISSON
DISTRIBUTION 25 3.4.1 THE POISSON PROBABILITY FUNCTION 25 3.4.2 THE
FISHER SCORE OF POISSON OBSERVATIONS 26 3.5 THE MULTINOMIAL DISTRIBUTION
27 3.5.1 THE MULTINOMIAL PROBABILITY FUNCTION 27 3.5.2 THE FISHER SCORE
OF MULTINOMIAL OBSERVATIONS 29 3.6 EXPONENTIAL FAMILIES OF DISTRIBUTIONS
30 3.6.1 DEFINITION AND EXAMPLES 30 3.6.2 PROPERTIES OF EXPONENTIAL
FAMILIES OF DISTRIBUTIONS 32 3.7 STATISTICAL PROPERTIES OF FISHER SCORES
35 3.8 COMPLEX STOCHASTIC VARIABLES 37 3.8.1 SCALAR COMPLEX STOCHASTIC
VARIABLES 37 3.8.2 VECTORS OF COMPLEX STOCHASTIC VARIABLES 38 3.8.3
VECTORS OF REAL AND COMPLEX STOCHASTIC VARIABLES 39 3.9 THE JOINT
REAL-COMPLEX NORMAL DISTRIBUTION 40 3.10 COMMENTS AND REFERENCES 41 3.11
PROBLEMS 42 PRECISION AND ACCURACY 45 4.1 INTRODUCTION 45 4.2 PROPERTIES
OF ESTIMATORS 46 4.3 PROPERTIES OF COVARIANCE MATRICES 48 4.3.1 REAL
COVARIANCE MATRICES 48 4.3.2 COMPLEX COVARIANCE MATRICES 50 4.4 FISHER
INFORMATION 51 4.4.1 DEFINITION OF THE FISHER INFORMATION MATRIX 51
4.4.2 THE FISHER INFORMATION MATRIX FOR EXPONENTIAL FAMILIES OF
DISTRIBUTIONS 55 4.4.3 INFLOW OF FISHER INFORMATION 56 4.5 LIMITS TO
PRECISION: THE CRAMER-RAO LOWER BOUND 60 4.5.1 THE CRAMER-RAO LOWER
BOUND FOR SCALAR FUNCTIONS OF SCALAR PARAMETERS 60 4.5.2 THE CRAMER-RAO
LOWER BOUND FOR VECTOR FUNCTIONS OF VECTOR PARAMETERS 63 4.6 PROPERTIES
OF THE CRAMER-RAO LOWER BOUND 66 4.6.1 INTERPRETATION OF THE EXPRESSION
FOR THE CRAMER-RAO LOWER BOUND 66 4.6.2 THE CRAMER-RAO LOWER BOUND AS A
MEASURE OF EFFICIENCY OF ESTIMATION 67 4.6.3 MONOTONICITY WITH THE
NUMBER OF OBSERVATIONS 70 4.6.4 PROPAGATION OF STANDARD DEVIATION 70
4.6.5 INFLUENCE OF ESTIMATION OF ADDITIONAL PARAMETERS 71 4.6.6 THE
CRAMER-RAO LOWER BOUND FOR BIASED ESTIMATORS 72 CONTENTS IX 4.7 THE
CRAMER-RAO LOWER BOUND FOR COMPLEX PARAMETERS OR FUNCTIONS OF PARAMETERS
74 4.7.1 INTRODUCTION 74 4.7.2 THE CRAMER-RAO LOWER BOUND FOR VECTORS OF
REAL AND COMPLEX FUNCTIONS OF REAL PARAMETERS 75 4.7.3 THE CRAMER-RAO
LOWER BOUND FOR VECTORS OF REAL AND COMPLEX FUNCTIONS OF REAL AND
COMPLEX PARAMETERS 76 4.8 THE CRAMER-RAO LOWER BOUND FOR EXPONENTIAL
FAMILIES OF DISTRIBUTIONS 78 4.9 THE CRAMER-RAO LOWER BOUND AND
IDENTINABILITY 79 4.10 THE CRAMER-RAO LOWER BOUND AND EXPERIMENTAL
DESIGN 81 4.10.1 INTRODUCTION 81 4.10.2 EXPERIMENTAL DESIGN FOR
NONLINEAR VECTOR PARAMETERS 84 4.11 COMMENTS AND REFERENCES 91 4.12
PROBLEMS 91 5 PRECISE AND ACCURATE ESTIMATION 99 5.1 INTRODUCTION 99 5.2
MAXIMUM LIKELIHOOD ESTIMATION 100 5.3 PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS 105 5.3.1 THE INVARIANCE PROPERTY OF MAXIMUM LIKELIHOOD
ESTIMATORS 105 5.3.2 CONNECTION OF EFFICIENT UNBIASED ESTIMATORS AND
MAXIMUM LIKELIHOOD ESTIMATORS 106 5.3.3 CONSISTENCY OF MAXIMUM
LIKELIHOOD ESTIMATORS 106 5.3.4 ASYMPTOTIC NORMALITY OF MAXIMUM
LIKELIHOOD ESTIMATORS 110 5.3.5 ASYMPTOTIC EFFICIENCY OF MAXIMUM
LIKELIHOOD ESTIMATORS 112 5.4 MAXIMUM LIKELIHOOD FOR NORMALLY
DISTRIBUTED OBSERVATIONS 113 5.4.1 THE LIKELIHOOD FUNCTION FOR NORMALLY
DISTRIBUTED OBSERVATIONS 113 5.4.2 PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS FOR NORMALLY DISTRIBUTED OBSERVATIONS 115 5.4.3 MAXIMUM
LIKELIHOOD ESTIMATION OF THE PARAMETERS OF LINEAR MODEIS FROM NORMALLY
DISTRIBUTED OBSERVATIONS 121 5.5 MAXIMUM LIKELIHOOD FOR POISSON
DISTRIBUTED OBSERVATIONS 123 5.6 MAXIMUM LIKELIHOOD FOR MULTINOMIALLY
DISTRIBUTED OBSERVATIONS 124 5.7 MAXIMUM LIKELIHOOD FOR EXPONENTIAL
FAMILY DISTRIBUTED OBSERVATIONS 125 5.8 TESTING THE EXPECTATION MODEL:
THE LIKELIHOOD RATIO TEST 126 5.8.1 MODEL TESTING FOR ARBITRARY
DISTRIBUTIONS 126 5.8.2 MODEL TESTING FOR EXPONENTIAL FAMILIES OF
DISTRIBUTIONS 132 5.9 LEAST SQUARES ESTIMATION 134 5.10 NONLINEAR LEAST
SQUARES ESTIMATION 136 5.11 LINEAR LEAST SQUARES ESTIMATION 139 5.12
WEIGHTED LINEAR LEAST SQUARES ESTIMATION 140 5.13 PROPERTIES OF THE
LINEAR LEAST SQUARES ESTIMATOR 144 X CONTENTS 5.14 THE BEST LINEAR
UNBIASED ESTIMATOR 145 5.15 SPECIAL CASES OF THE BEST LINEAR UNBIASED
ESTIMATOR AND A RELATED RESULT 147 5.15.1 THE GAUSS-MARKOV THEOREM 147
5.15.2 NORMALLY DISTRIBUTED OBSERVATIONS 148 5.15.3 EXPONENTIAL FAMILY
DISTRIBUTED OBSERVATIONS 148 5.16 COMPLEX LINEAR LEAST SQUARES
ESTIMATION 149 5.17 SUMMARY OF PROPERTIES OF LINEAR LEAST SQUARES
ESTIMATORS 151 5.18 RECURSIVE LINEAR LEAST SQUARES ESTIMATION 152 5.19
RECURSIVE LINEAR LEAST SQUARES ESTIMATION WITH FORGETTING 155 5.20
COMMENTS AND REFERENCES 157 5.21 PROBLEMS 158 NUMERICAL METHODS FOR
PARAMETER ESTIMATION 163 6.1 INTRODUCTION 163 6.2 NUMERICAL OPTIMIZATION
164 6.2.1 KEY NOTIONS IN NUMERICAL OPTIMIZATION 164 6.2.2 REFERENCE
LOG-LIKELIHOOD FUNCTIONS AND LEAST SQUARES CRITERIA 166 6.3 THE STEEPEST
DESCENT METHOD 168 6.3.1 DEFINITION OF THE STEEPEST DESCENT STEP 168
6.3.2 PROPERTIES OF THE STEEPEST DESCENT STEP 171 6.4 THE NEWTON METHOD
174 6.4.1 DEFINITION OF THE NEWTON STEP 174 6.4.2 PROPERTIES OF THE
NEWTON STEP 175 6.4.3 THE NEWTON STEP FOR MAXIMIZING LOG-LIKELIHOOD
FUNCTIONS 182 6.5 THE FISHER SCORING METHOD 183 6.5.1 DEFINITION OF THE
FISHER SCORING STEP 183 6.5.2 PROPERTIES OF THE FISHER SCORING STEP 183
6.5.3 FISHER SCORING STEP FOR EXPONENTIAL FAMILIES 185 6.6 THE NEWTON
METHOD FOR NORMAL MAXIMUM LIKELIHOOD AND FOR NONLINEAR LEAST SQUARES 185
6.6.1 THE NEWTON STEP FOR NORMAL MAXIMUM LIKELIHOOD 185 6.6.2 THE NEWTON
STEP FOR NONLINEAR LEAST SQUARES 187 6.7 THE GAUSS-NEWTON METHOD 188
6.7.1 DEFINITION OF THE GAUSS-NEWTON STEP 188 6.7.2 PROPERTIES OF THE
GAUSS-NEWTON STEP 188 6.8 THE NEWTON METHOD FOR POISSON MAXIMUM
LIKELIHOOD 191 6.9 THE NEWTON METHOD FOR MULTINOMIAL MAXIMUM LIKELIHOOD
192 6.10 THE NEWTON METHOD FOR EXPONENTIAL FAMILY MAXIMUM LIKELIHOOD 193
6.11 THE GENERALIZED GAUSS-NEWTON METHOD FOR EXPONENTIAL FAMILY MAXIMUM
LIKELIHOOD 194 6.11.1 DEFINITION OF THE GENERALIZED GAUSS-NEWTON STEP
194 6.11.2 PROPERTIES OF THE GENERALIZED GAUSS-NEWTON METHOD 195
CONTENTS XI 6.12 THE ITERATIVELY REWEIGHTED LEAST SQUARES METHOD 197
6.13 THE LEVENBERG-MARQUARDT METHOD 197 6.13.1 DEFINITION OF THE
LEVENBERG-MARQUARDT STEP 197 6.13.2 PROPERTIES OF THE
LEVENBERG-MARQUARDT STEP 199 6.14 SUMMARY OF THE DESCRIBED NUMERICAL
OPTIMIZATION METHODS 200 6.14.1 INTRODUCTION 200 6.14.2 THE STEEPEST
ASCENT (DESCENT) METHOD 200 6.14.3 THE NEWTON METHOD 200 6.14.4 THE
FISHER SCORING METHOD 201 6.14.5 THE GAUSS-NEWTON METHOD 201 6.14.6 THE
GENERALIZED GAUSS-NEWTON METHOD 202 6.14.7 THE ITERATIVELY REWEIGHTED
LEAST SQUARES METHOD 202 6.14.8 THE LEVENBERG-MARQUARDT METHOD 202
6.14.9 CONCLUSIONS 202 6.15 PARAMETER ESTIMATION METHODOLOGY 203 6.15.1
INTRODUCTION 203 6.15.2 INVESTIGATING THE FEASIBILITY OF THE
OBSERVATIONS 203 6.15.3 PRELIMINARY SIMULATION EXPERIMENTS 204 6.16
COMMENTS AND REFERENCES 206 6.17 PROBLEMS 206 7 SOLUTIONS OR PARTIAL
SOLUTIONS TO PROBLEMS 211 APPENDIX A: STATISTICAL RESULTS 247 A. 1
STATISTICAL PROPERTIES OF LINEAR COMBINATIONS OF STOCHASTIC VARIABLES
247 A.2 THE CAUCHY-SCHWARZ INEQUALITY FOR EXPECTATIONS 249 APPENDIX B:
VECTORS AND MATRICES 251 B.L VECTORS 251 B.2 MATRICES 252 APPENDIX C:
POSITIVE SEMIDEFINITE AND POSITIVE DEFINITE MATRICES 259 C.L REAL
POSITIVE SEMIDEFINITE AND POSITIVE DEFINITE MATRICES 259 C.2 COMPLEX
POSITIVE SEMIDEFINITE AND POSITIVE DEFINITE MATRICES 263 APPENDIX D:
VECTOR AND MATRIX DIFFERENTIATION 265 REFERENCES 269 TOPIC INDEX 271
|
adam_txt |
PARAMETER ESTIMATION FOR SCIENTISTS AND ENGINEERS ADRIAAN VAN DEN BOS
IICENTENNIAL B1CENTENNIAL WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC.,
PUBLICATION CONTENTS PREFACE XIII 1 INTRODUCTION 1 2 PARAMETRIC MODEIS
OF OBSERVATIONS 7 2.1 INTRODUCTION 7 2.2 PURPOSES OF MODEL PARAMETER
ESTIMATION 8 2.3 TRADITIONAL DETERMINISTIC PARAMETER ESTIMATION METHODS
9 2.4 STATISTICAL PARAMETRIC MODEIS OF OBSERVATIONS 12 2.4.1 THE
EXPECTATION MODEL 12 2.4.2 ADVANTAGES OF STATISTICAL PARAMETRIC MODEIS
OF OBSERVATIONS 16 2.5 CONCLUSIONS 20 2.6 COMMENTS AND REFERENCES 20 3
DISTRIBUTIONS OF OBSERVATIONS 21 3.1 INTRODUCTION 21 3.2 EXPECTATION,
COVARIANCE, AND FISHER SCORE 21 3.3 THE JOINT REAL NORMAL DISTRIBUTION
24 3.3.1 THE JOINT REAL NORMAL PROBABILITY DENSITY FUNCTION 24 3.3.2 THE
FISHER SCORE OF NORMAL OBSERVATIONS 25 VII VIII CONTENTS 3.4 THE POISSON
DISTRIBUTION 25 3.4.1 THE POISSON PROBABILITY FUNCTION 25 3.4.2 THE
FISHER SCORE OF POISSON OBSERVATIONS 26 3.5 THE MULTINOMIAL DISTRIBUTION
27 3.5.1 THE MULTINOMIAL PROBABILITY FUNCTION 27 3.5.2 THE FISHER SCORE
OF MULTINOMIAL OBSERVATIONS 29 3.6 EXPONENTIAL FAMILIES OF DISTRIBUTIONS
30 3.6.1 DEFINITION AND EXAMPLES 30 3.6.2 PROPERTIES OF EXPONENTIAL
FAMILIES OF DISTRIBUTIONS 32 3.7 STATISTICAL PROPERTIES OF FISHER SCORES
35 3.8 COMPLEX STOCHASTIC VARIABLES 37 3.8.1 SCALAR COMPLEX STOCHASTIC
VARIABLES 37 3.8.2 VECTORS OF COMPLEX STOCHASTIC VARIABLES 38 3.8.3
VECTORS OF REAL AND COMPLEX STOCHASTIC VARIABLES 39 3.9 THE JOINT
REAL-COMPLEX NORMAL DISTRIBUTION 40 3.10 COMMENTS AND REFERENCES 41 3.11
PROBLEMS 42 PRECISION AND ACCURACY 45 4.1 INTRODUCTION 45 4.2 PROPERTIES
OF ESTIMATORS 46 4.3 PROPERTIES OF COVARIANCE MATRICES 48 4.3.1 REAL
COVARIANCE MATRICES 48 4.3.2 COMPLEX COVARIANCE MATRICES 50 4.4 FISHER
INFORMATION 51 4.4.1 DEFINITION OF THE FISHER INFORMATION MATRIX 51
4.4.2 THE FISHER INFORMATION MATRIX FOR EXPONENTIAL FAMILIES OF
DISTRIBUTIONS 55 4.4.3 INFLOW OF FISHER INFORMATION 56 4.5 LIMITS TO
PRECISION: THE CRAMER-RAO LOWER BOUND 60 4.5.1 THE CRAMER-RAO LOWER
BOUND FOR SCALAR FUNCTIONS OF SCALAR PARAMETERS 60 4.5.2 THE CRAMER-RAO
LOWER BOUND FOR VECTOR FUNCTIONS OF VECTOR PARAMETERS 63 4.6 PROPERTIES
OF THE CRAMER-RAO LOWER BOUND 66 4.6.1 INTERPRETATION OF THE EXPRESSION
FOR THE CRAMER-RAO LOWER BOUND 66 4.6.2 THE CRAMER-RAO LOWER BOUND AS A
MEASURE OF EFFICIENCY OF ESTIMATION 67 4.6.3 MONOTONICITY WITH THE
NUMBER OF OBSERVATIONS 70 4.6.4 PROPAGATION OF STANDARD DEVIATION 70
4.6.5 INFLUENCE OF ESTIMATION OF ADDITIONAL PARAMETERS 71 4.6.6 THE
CRAMER-RAO LOWER BOUND FOR BIASED ESTIMATORS 72 CONTENTS IX 4.7 THE
CRAMER-RAO LOWER BOUND FOR COMPLEX PARAMETERS OR FUNCTIONS OF PARAMETERS
74 4.7.1 INTRODUCTION 74 4.7.2 THE CRAMER-RAO LOWER BOUND FOR VECTORS OF
REAL AND COMPLEX FUNCTIONS OF REAL PARAMETERS 75 4.7.3 THE CRAMER-RAO
LOWER BOUND FOR VECTORS OF REAL AND COMPLEX FUNCTIONS OF REAL AND
COMPLEX PARAMETERS 76 4.8 THE CRAMER-RAO LOWER BOUND FOR EXPONENTIAL
FAMILIES OF DISTRIBUTIONS 78 4.9 THE CRAMER-RAO LOWER BOUND AND
IDENTINABILITY 79 4.10 THE CRAMER-RAO LOWER BOUND AND EXPERIMENTAL
DESIGN 81 4.10.1 INTRODUCTION 81 4.10.2 EXPERIMENTAL DESIGN FOR
NONLINEAR VECTOR PARAMETERS 84 4.11 COMMENTS AND REFERENCES 91 4.12
PROBLEMS 91 5 PRECISE AND ACCURATE ESTIMATION 99 5.1 INTRODUCTION 99 5.2
MAXIMUM LIKELIHOOD ESTIMATION 100 5.3 PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS 105 5.3.1 THE INVARIANCE PROPERTY OF MAXIMUM LIKELIHOOD
ESTIMATORS 105 5.3.2 CONNECTION OF EFFICIENT UNBIASED ESTIMATORS AND
MAXIMUM LIKELIHOOD ESTIMATORS 106 5.3.3 CONSISTENCY OF MAXIMUM
LIKELIHOOD ESTIMATORS 106 5.3.4 ASYMPTOTIC NORMALITY OF MAXIMUM
LIKELIHOOD ESTIMATORS 110 5.3.5 ASYMPTOTIC EFFICIENCY OF MAXIMUM
LIKELIHOOD ESTIMATORS 112 5.4 MAXIMUM LIKELIHOOD FOR NORMALLY
DISTRIBUTED OBSERVATIONS 113 5.4.1 THE LIKELIHOOD FUNCTION FOR NORMALLY
DISTRIBUTED OBSERVATIONS 113 5.4.2 PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS FOR NORMALLY DISTRIBUTED OBSERVATIONS 115 5.4.3 MAXIMUM
LIKELIHOOD ESTIMATION OF THE PARAMETERS OF LINEAR MODEIS FROM NORMALLY
DISTRIBUTED OBSERVATIONS 121 5.5 MAXIMUM LIKELIHOOD FOR POISSON
DISTRIBUTED OBSERVATIONS 123 5.6 MAXIMUM LIKELIHOOD FOR MULTINOMIALLY
DISTRIBUTED OBSERVATIONS 124 5.7 MAXIMUM LIKELIHOOD FOR EXPONENTIAL
FAMILY DISTRIBUTED OBSERVATIONS 125 5.8 TESTING THE EXPECTATION MODEL:
THE LIKELIHOOD RATIO TEST 126 5.8.1 MODEL TESTING FOR ARBITRARY
DISTRIBUTIONS 126 5.8.2 MODEL TESTING FOR EXPONENTIAL FAMILIES OF
DISTRIBUTIONS 132 5.9 LEAST SQUARES ESTIMATION 134 5.10 NONLINEAR LEAST
SQUARES ESTIMATION 136 5.11 LINEAR LEAST SQUARES ESTIMATION 139 5.12
WEIGHTED LINEAR LEAST SQUARES ESTIMATION 140 5.13 PROPERTIES OF THE
LINEAR LEAST SQUARES ESTIMATOR 144 X CONTENTS 5.14 THE BEST LINEAR
UNBIASED ESTIMATOR 145 5.15 SPECIAL CASES OF THE BEST LINEAR UNBIASED
ESTIMATOR AND A RELATED RESULT 147 5.15.1 THE GAUSS-MARKOV THEOREM 147
5.15.2 NORMALLY DISTRIBUTED OBSERVATIONS 148 5.15.3 EXPONENTIAL FAMILY
DISTRIBUTED OBSERVATIONS 148 5.16 COMPLEX LINEAR LEAST SQUARES
ESTIMATION 149 5.17 SUMMARY OF PROPERTIES OF LINEAR LEAST SQUARES
ESTIMATORS 151 5.18 RECURSIVE LINEAR LEAST SQUARES ESTIMATION 152 5.19
RECURSIVE LINEAR LEAST SQUARES ESTIMATION WITH FORGETTING 155 5.20
COMMENTS AND REFERENCES 157 5.21 PROBLEMS 158 NUMERICAL METHODS FOR
PARAMETER ESTIMATION 163 6.1 INTRODUCTION 163 6.2 NUMERICAL OPTIMIZATION
164 6.2.1 KEY NOTIONS IN NUMERICAL OPTIMIZATION 164 6.2.2 REFERENCE
LOG-LIKELIHOOD FUNCTIONS AND LEAST SQUARES CRITERIA 166 6.3 THE STEEPEST
DESCENT METHOD 168 6.3.1 DEFINITION OF THE STEEPEST DESCENT STEP 168
6.3.2 PROPERTIES OF THE STEEPEST DESCENT STEP 171 6.4 THE NEWTON METHOD
174 6.4.1 DEFINITION OF THE NEWTON STEP 174 6.4.2 PROPERTIES OF THE
NEWTON STEP 175 6.4.3 THE NEWTON STEP FOR MAXIMIZING LOG-LIKELIHOOD
FUNCTIONS 182 6.5 THE FISHER SCORING METHOD 183 6.5.1 DEFINITION OF THE
FISHER SCORING STEP 183 6.5.2 PROPERTIES OF THE FISHER SCORING STEP 183
6.5.3 FISHER SCORING STEP FOR EXPONENTIAL FAMILIES 185 6.6 THE NEWTON
METHOD FOR NORMAL MAXIMUM LIKELIHOOD AND FOR NONLINEAR LEAST SQUARES 185
6.6.1 THE NEWTON STEP FOR NORMAL MAXIMUM LIKELIHOOD 185 6.6.2 THE NEWTON
STEP FOR NONLINEAR LEAST SQUARES 187 6.7 THE GAUSS-NEWTON METHOD 188
6.7.1 DEFINITION OF THE GAUSS-NEWTON STEP 188 6.7.2 PROPERTIES OF THE
GAUSS-NEWTON STEP 188 6.8 THE NEWTON METHOD FOR POISSON MAXIMUM
LIKELIHOOD 191 6.9 THE NEWTON METHOD FOR MULTINOMIAL MAXIMUM LIKELIHOOD
192 6.10 THE NEWTON METHOD FOR EXPONENTIAL FAMILY MAXIMUM LIKELIHOOD 193
6.11 THE GENERALIZED GAUSS-NEWTON METHOD FOR EXPONENTIAL FAMILY MAXIMUM
LIKELIHOOD 194 6.11.1 DEFINITION OF THE GENERALIZED GAUSS-NEWTON STEP
194 6.11.2 PROPERTIES OF THE GENERALIZED GAUSS-NEWTON METHOD 195
CONTENTS XI 6.12 THE ITERATIVELY REWEIGHTED LEAST SQUARES METHOD 197
6.13 THE LEVENBERG-MARQUARDT METHOD 197 6.13.1 DEFINITION OF THE
LEVENBERG-MARQUARDT STEP 197 6.13.2 PROPERTIES OF THE
LEVENBERG-MARQUARDT STEP 199 6.14 SUMMARY OF THE DESCRIBED NUMERICAL
OPTIMIZATION METHODS 200 6.14.1 INTRODUCTION 200 6.14.2 THE STEEPEST
ASCENT (DESCENT) METHOD 200 6.14.3 THE NEWTON METHOD 200 6.14.4 THE
FISHER SCORING METHOD 201 6.14.5 THE GAUSS-NEWTON METHOD 201 6.14.6 THE
GENERALIZED GAUSS-NEWTON METHOD 202 6.14.7 THE ITERATIVELY REWEIGHTED
LEAST SQUARES METHOD 202 6.14.8 THE LEVENBERG-MARQUARDT METHOD 202
6.14.9 CONCLUSIONS 202 6.15 PARAMETER ESTIMATION METHODOLOGY 203 6.15.1
INTRODUCTION 203 6.15.2 INVESTIGATING THE FEASIBILITY OF THE
OBSERVATIONS 203 6.15.3 PRELIMINARY SIMULATION EXPERIMENTS 204 6.16
COMMENTS AND REFERENCES 206 6.17 PROBLEMS 206 7 SOLUTIONS OR PARTIAL
SOLUTIONS TO PROBLEMS 211 APPENDIX A: STATISTICAL RESULTS 247 A. 1
STATISTICAL PROPERTIES OF LINEAR COMBINATIONS OF STOCHASTIC VARIABLES
247 A.2 THE CAUCHY-SCHWARZ INEQUALITY FOR EXPECTATIONS 249 APPENDIX B:
VECTORS AND MATRICES 251 B.L VECTORS 251 B.2 MATRICES 252 APPENDIX C:
POSITIVE SEMIDEFINITE AND POSITIVE DEFINITE MATRICES 259 C.L REAL
POSITIVE SEMIDEFINITE AND POSITIVE DEFINITE MATRICES 259 C.2 COMPLEX
POSITIVE SEMIDEFINITE AND POSITIVE DEFINITE MATRICES 263 APPENDIX D:
VECTOR AND MATRIX DIFFERENTIATION 265 REFERENCES 269 TOPIC INDEX 271 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bos, Adriaan van den |
author_facet | Bos, Adriaan van den |
author_role | aut |
author_sort | Bos, Adriaan van den |
author_variant | a v d b avd avdb |
building | Verbundindex |
bvnumber | BV035115863 |
callnumber-first | T - Technology |
callnumber-label | TA340 |
callnumber-raw | TA340 |
callnumber-search | TA340 |
callnumber-sort | TA 3340 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | SK 830 |
ctrlnum | (OCoLC)85829252 (DE-599)BVBBV035115863 |
dewey-full | 620.001/519544 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.001/ 519544 |
dewey-search | 620.001/ 519544 |
dewey-sort | 3620.001 6519544 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02356nam a2200565zc 4500</leader><controlfield tag="001">BV035115863</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081023s2007 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007019912</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA718578</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470147814</subfield><subfield code="9">0-470-14781-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470147818</subfield><subfield code="c">(hbk.)</subfield><subfield code="9">978-0-470-14781-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)85829252</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035115863</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA340</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.001/ 519544</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bos, Adriaan van den</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parameter estimation for scientists and engineers</subfield><subfield code="c">Adriaan van den Bos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley-Interscience</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 273 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 269-270) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation d'un paramètre</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation, Théorie de l'</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingénierie - Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistique mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter estimation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parameteridentifikation</subfield><subfield code="0">(DE-588)4210689-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parameter</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4293830-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Parameter</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4293830-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Parameteridentifikation</subfield><subfield code="0">(DE-588)4210689-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip0718/2007019912.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0739/2007019912-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0739/2007019912-b.html</subfield><subfield code="3">Contributor biographical information</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016783603&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016783603</subfield></datafield></record></collection> |
id | DE-604.BV035115863 |
illustrated | Illustrated |
index_date | 2024-07-02T22:19:34Z |
indexdate | 2024-07-09T21:22:40Z |
institution | BVB |
isbn | 0470147814 9780470147818 |
language | English |
lccn | 2007019912 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016783603 |
oclc_num | 85829252 |
open_access_boolean | |
owner | DE-703 DE-29T DE-634 |
owner_facet | DE-703 DE-29T DE-634 |
physical | XIV, 273 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley-Interscience |
record_format | marc |
spelling | Bos, Adriaan van den Verfasser aut Parameter estimation for scientists and engineers Adriaan van den Bos Hoboken, NJ Wiley-Interscience 2007 XIV, 273 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references (p. 269-270) and index Estimation d'un paramètre Estimation, Théorie de l' Ingénierie - Méthodes statistiques Statistique mathématique Ingenieurwissenschaften Engineering Statistical methods Parameter estimation Parameteridentifikation (DE-588)4210689-8 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Parameter Mathematik (DE-588)4293830-2 gnd rswk-swf Parameter Mathematik (DE-588)4293830-2 s Parameteridentifikation (DE-588)4210689-8 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 http://www.loc.gov/catdir/toc/ecip0718/2007019912.html Table of contents only http://www.loc.gov/catdir/enhancements/fy0739/2007019912-d.html Publisher description http://www.loc.gov/catdir/enhancements/fy0739/2007019912-b.html Contributor biographical information GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016783603&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bos, Adriaan van den Parameter estimation for scientists and engineers Estimation d'un paramètre Estimation, Théorie de l' Ingénierie - Méthodes statistiques Statistique mathématique Ingenieurwissenschaften Engineering Statistical methods Parameter estimation Parameteridentifikation (DE-588)4210689-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Parameter Mathematik (DE-588)4293830-2 gnd |
subject_GND | (DE-588)4210689-8 (DE-588)4128130-5 (DE-588)4293830-2 |
title | Parameter estimation for scientists and engineers |
title_auth | Parameter estimation for scientists and engineers |
title_exact_search | Parameter estimation for scientists and engineers |
title_exact_search_txtP | Parameter estimation for scientists and engineers |
title_full | Parameter estimation for scientists and engineers Adriaan van den Bos |
title_fullStr | Parameter estimation for scientists and engineers Adriaan van den Bos |
title_full_unstemmed | Parameter estimation for scientists and engineers Adriaan van den Bos |
title_short | Parameter estimation for scientists and engineers |
title_sort | parameter estimation for scientists and engineers |
topic | Estimation d'un paramètre Estimation, Théorie de l' Ingénierie - Méthodes statistiques Statistique mathématique Ingenieurwissenschaften Engineering Statistical methods Parameter estimation Parameteridentifikation (DE-588)4210689-8 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Parameter Mathematik (DE-588)4293830-2 gnd |
topic_facet | Estimation d'un paramètre Estimation, Théorie de l' Ingénierie - Méthodes statistiques Statistique mathématique Ingenieurwissenschaften Engineering Statistical methods Parameter estimation Parameteridentifikation Numerisches Verfahren Parameter Mathematik |
url | http://www.loc.gov/catdir/toc/ecip0718/2007019912.html http://www.loc.gov/catdir/enhancements/fy0739/2007019912-d.html http://www.loc.gov/catdir/enhancements/fy0739/2007019912-b.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016783603&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bosadriaanvanden parameterestimationforscientistsandengineers |