Pattern recognition:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2009
|
Ausgabe: | 4. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 961 S. graph. Darst. |
ISBN: | 9781597492720 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035114669 | ||
003 | DE-604 | ||
005 | 20100128 | ||
007 | t | ||
008 | 081022s2009 ne d||| |||| 00||| eng d | ||
020 | |a 9781597492720 |9 978-1-59749-272-0 | ||
035 | |a (OCoLC)550588366 | ||
035 | |a (DE-599)BVBBV035114669 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a ne |c NL | ||
049 | |a DE-91 |a DE-29T |a DE-19 |a DE-11 |a DE-703 |a DE-522 |a DE-523 |a DE-91G |a DE-863 |a DE-1047 | ||
082 | 0 | |a 006.4 | |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a ZN 6050 |0 (DE-625)157498: |2 rvk | ||
084 | |a DAT 770f |2 stub | ||
100 | 1 | |a Theodoridis, Sergios |d 1951- |e Verfasser |0 (DE-588)12164135X |4 aut | |
245 | 1 | 0 | |a Pattern recognition |c Sergios Theodoridis ; Konstantinos Koutroumbas |
250 | |a 4. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2009 | |
300 | |a XVII, 961 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Koutroumbas, Konstantinos |d 1967- |e Verfasser |0 (DE-588)136997937 |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016782436&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016782436 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-863_location | 1000 1340 |
---|---|
DE-BY-FWS_call_number | 1000/ST 330 T388(4) 1340/ST 330 T388(4) |
DE-BY-FWS_katkey | 496594 |
DE-BY-FWS_media_number | 083101017944 083101311963 |
_version_ | 1824553902767341568 |
adam_text | PATTERN RECOGNITION FOURTH EDITION SERGIOS THEODORIDIS KONSTANTINOS
KOUTROUMBAS AMSTERDAM * BOSTON * HEIDELBERG * LONDON NEWYORK * OXFORD *
PARIS * SAN DIEGO SAN FRANCISCO * SINGAPORE * SYDNEY TOKYO ACADEMIC
PRESS IS AN IMPRINT OF ELSEVIER CONTENTS PREFACE XV CHAPTER 1
INTRODUCTION I 1.1 IS PATTERN RECOGNITION IMPORTANT? 1 1.2 FEATURES,
FEATURE VECTORS, AND CLASSIFIERS 4 1.3 SUPERVISED, UNSUPERVISED, AND
SEMI-SUPERVISED LEARNING... 7 1.4 MATLAB PROGRAMS 9 1.5 OUTLINE OF THE
BOOK 10 CHAPTER 2 CLASSIFIERS BASED ON BAYES DECISION THEORY 13 2.1
INTRODUCTION 13 2.2 BAYES DECISION THEORY 13 2.3 DISCRIMINANT FUNCTIONS
AND DECISION SURFACES 19 2.4 BAYESIAN CLASSIFICATION FOR NORMAL
DISTRIBUTIONS 20 2.4.1 THE GAUSSIAN PROBABILITY DENSITY FUNCTION 20
2.4.2 THE BAYESIAN CLASSIFIER FOR NORMALLY DISTRIBUTED CLASSES 24 2.5
ESTIMATION OF UNKNOWN PROBABILITY DENSITY FUNCTIONS 34 2.5.1 MAXIMUM
LIKELIHOOD PARAMETER ESTIMATION 34 2.5.2 MAXIMUM A POSTERIORI
PROBABILITY ESTIMATION 38 2.5.3 BAYESIAN INFERENCE 39 2.5.4 MAXIMUM
ENTROPY ESTIMATION 43 2.5.5 MIXTURE MODELS 44 2.5.6 NONPARAMETRIC
ESTIMATION 49 2.5.7 THE NAIVE-BAYES CLASSIFIER 59 2.6 THE NEAREST
NEIGHBOR RULE 61 2.7 BAYESIAN NETWORKS 64 2.8 PROBLEMS 71 REFERENCES 86
CHAPTER 3 LINEAR CLASSIFIERS 91 3.1 INTRODUCTION 91 3.2 LINEAR
DISCRIMINANT FUNCTIONS AND DECISION HYPERPLANES 91 3.3 THE PERCEPTRON
ALGORITHM 93 3.4 LEAST SQUARES METHODS 103 3.4.1 MEAN SQUARE ERROR
ESTIMATION 103 V VI WUIILCIILOE 3.4.2 STOCHASTIC APPROXIMATION AND THE
LMS ALGORITHM .. 105 3-4.3 SUM OF ERROR SQUARES ESTIMATION 108 3.5 MEAN
SQUARE ESTIMATION REVISITED 110 35.1 MEAN SQUARE ERROR REGRESSION 110 3
5.2 MSE ESTIMATES POSTERIOR CLASS PROBABILITIES 112 3.5.3 THE
BIAS-VARIANCE DILEMMA 114 3.6 LOGISTIC DISCRIMINATION 117 3.7 SUPPORT
VECTOR MACHINES 119 3.7.1 SEPARABLE CLASSES 119 3.7.2 NONSEPARABLE
CLASSES 124 3.7.3 THE MULTICLASS CASE 127 3.7.4 V-SVM 133 3.7.5 SUPPORT
VECTOR MACHINES: A GEOMETRIC VIEWPOINT 136 3.7.6 REDUCED CONVEX HULLS
138 3.8 PROBLEMS 142 REFERENCES 147 CHAPTER 4 NONLINEAR CLASSIFIERS 151
4.1 INTRODUCTION 151 4.2 THE XOR PROBLEM 151 4.3 THE TWO-LAYER
PERCEPTRON 153 4.3-1 CLASSIFICATION CAPABILITIES OF THE TWO-LAYER
PERCEPTRON 156 4.4 THREE-LAYER PERCEPTRONS 158 4.5 ALGORITHMS BASED ON
EXACT CLASSIFICATION OF THE TRAINING SET 160 4.6 THE BACKPROPAGATION
ALGORITHM 162 4.7 VARIATIONS ON THE BACKPROPAGATION THEME 169 4.8 THE
COST FUNCTION CHOICE 172 4.9 CHOICE OF THE NETWORK SIZE 176 4.10 A
SIMULATION EXAMPLE 181 4.11 NETWORKS WITH WEIGHT SHARING 183 4.12
GENERALIZED LINEAR CLASSIFIERS 185 4.13 CAPACITY OF THE /-DIMENSIONAL
SPACE IN LINEAR DICHOTOMIES 187 4.14 POLYNOMIAL CLASSIFIERS 189 4.15
RADIAL BASIS FUNCTION NETWORKS 190 4.16 UNIVERSAL APPROXIMATORS 194 4.17
PROBABILISTIC NEURAL NETWORKS 196 4.18 SUPPORT VECTOR MACHINES: THE
NONLINEAR CASE 198 CONTENTS VII 4.1 9 BEYOND THE SVM PARADIGM 203 4.19.1
EXPANSION IN KERNEL FUNCTIONS AND MODEL SPARSIFICATION 205 4.19.2 ROBUST
STATISTICS REGRESSION 211 4.20 DECISION TREES 215 4.20.1 SET OF
QUESTIONS 218 4.20.2 SPLITTING CRITERION 218 4.20.3 STOP-SPLITTING RULE
219 4.20.4 CLASS ASSIGNMENT RULE 219 4.21 COMBINING CLASSIFIERS 222
4.21.1 GEOMETRIC AVERAGE RULE 223 4.21.2 ARITHMETIC AVERAGE RULE 224
4.21.3 MAJORITY VOTING RULE 225 4.21.4 A BAYESIANVIEWPOINT 227 4.22 THE
BOOSTING APPROACH TO COMBINE CLASSIFIERS 230 4.23 THE CLASS IMBALANCE
PROBLEM 237 4.24 DISCUSSIO N 239 4.25 PROBLEMS 240 REFERENCES 249
CHAPTER 5 FEATURE SELECTION 261 5.1 INTRODUCTION 26I 5.2 PREPROCESSING
262 5.2.1 OUTLIER REMOVAL 262 5.2.2 DATA NORMALIZATION 263 5.2.3 MISSING
DATA 263 5.3 THE PEAKING PHENOMENON 265 5.4 FEATURE SELECTION BASED ON
STATISTICAL HYPOTHESIS TESTING 268 5.4.1 HYPOTHESIS TESTING BASICS 268
5.4.2 APPLICATION OF THE F-TEST IN FEATURE SELECTION 273 5.5 THE
RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE 275 5.6 CLASS
SEPARABILITY MEASURES 276 5.6.1 DIVERGENCE 276 5.6.2 CHERNOFF BOUND AND
BHATTACHARYYA DISTANCE 278 5.6.3 SCATTER MATRICES 280 5.7 FEATURE SUBSET
SELECTION 283 5.7.1 SCALAR FEATURE SELECTION 283 5.7.2 FEATURE VECTOR
SELECTION 284 5.8 OPTIMAL FEATURE GENERATION 288 5.9 NEURAL NETWORKS AND
FEATURE GENERATION/SELECTION 298 5.10 A HINT ON GENERALIZATION THEORY
299 VIII CONTENTS 5.11 THE BAYESIAN INFORMATION CRITERION 309 5.1 2
PROBLEMS 311 REFERENCES 318 CHAPTER 6 FEATURE GENERATION I: DATA
TRANSFORMATION AND DIMENSIONALITY REDUCTION 323 6.1 INTRODUCTION 323 6.2
BASIS VECTORS AND IMAGES 324 6.3 THE KARHUNEN-LOEVE TRANSFORM 326 6.4
THE SINGULAR VALUE DECOMPOSITION 335 6.5 INDEPENDENT COMPONENT ANALYSIS
342 6.5.1 ICA BASED ON SECOND- AND FOURTH-ORDER CUMULANTS 344 6.52 ICA
BASED ON MUTUAL INFORMATION 345 6.5-3 AN ICA SIMULATION EXAMPLE 348 6.6
NONNEGATIVE MATRIX FACTORIZATION 349 6.7 NONLINEAR DIMENSIONALITY
REDUCTION 350 6.7.1 KERNEL PCA 351 6.7.2 GRAPH-BASED METHODS 353 6.8 THE
DISCRETE FOURIER TRANSFORM (DFT) 363 6.8.1 ONE-DIMENSIONAL DFT 364 6.8.2
TWO-DIMENSIONAL DFT 366 6.9 THE DISCRETE COSINE AND SINE TRANSFORMS 366
6.10 THE HADAMARDTRANSFORM 368 6.1 1 THE HAAR TRANSFORM 369 6.1 2 THE
HAAR EXPANSION REVISITED 371 6.13 DISCRETE TIME WAVELET TRANSFORM (DTWT)
375 6.14 THE MULTIRESOLUTION INTERPRETATION 384 6.1 5 WAVELET PACKETS
387 6.16 A LOOK AT TWO-DIMENSIONAL GENERALIZATIONS 388 6.17 APPLICATIONS
390 6.18 PROBLEMS 396 REFERENCES 402 CHAPTER 7 FEATURE GENERATION II 4II
7.1 INTRODUCTION 411 7.2 REGIONAL FEATURES 412 7.2.1 FEATURES FOR
TEXTURE CHARACTERIZATION 412 7.2.2 LOCAL LINEAR TRANSFORMS FOR TEXTURE
FEATURE EXTRACTION 421 7.2.3 MOMENTS 423 7.2.4 PARAMETRIC MODELS 427
CONTENTS IX 7.3 FEATURES FOR SHAPE AND SIZE CHARACTERIZATION 435 7.3.1
FOURIER FEATURES 436 7.3.2 CHAIN CODES 439 7.3.3 MOMENT-BASED FEATURES
441 7.3.4 GEOMETRIC FEATURES 442 7.4 A GLIMPSE AT FRACTALS 444 7.4.1
SELF-SIMILARITY AND FRACTAL DIMENSION 444 7.4.2 FRACTIONAL BROWNIAN
MOTION 446 7.5 TYPICAL FEATURES FOR SPEECH ANDAUDIO CLASSIFICATION 451
7.5.1 SHORT TIME PROCESSING OF SIGNALS 452 7.5.2 CEPSTRUM 455 7.5.3 THE
MEL-CEPSTRUM 457 7.5.4 SPECTRAL FEATURES 460 7.5.5 TIME DOMAIN FEATURES
462 7.5.6 AN EXAMPLE 463 7.6 PROBLEMS 466 REFERENCES 473 CHAPTER 8
TEMPLATE MATCHING 48I 8.1 INTRODUCTION 481 8.2 MEASURES BASED ON OPTIMAL
PATH SEARCHING TECHNIQUES 482 8.2.1 BELLMAN S OPTIMALITY PRINCIPLE AND
DYNAMIC PROGRAMMING 484 8.2.2 THE EDIT DISTANCE 487 8.2.3 DYNAMIC TIME
WARPING IN SPEECH RECOGNITION 491 8.3 MEASURES BASED ON CORRELATIONS 498
8.4 DEFORMABLE TEMPLATE MODELS 504 8.5 CONTENT-BASED INFORMATION
RETRIEVAL: RELEVANCE FEEDBACK 508 8.6 PROBLEMS 513 REFERENCES 517
CHAPTER 9 CONTEXT-DEPENDENT CLASSIFICATION 521 9.1 INTRODUCTION 521 9.2
THE BAYES CLASSIFIER 521 9.3 MARKOV CHAIN MODELS 522 9.4 THE VITERBI
ALGORITHM 523 9.5 CHANNEL EQUALIZATION 527 9.6 HIDDEN MARKOV MODELS 532
9.7 HMM WITH STATE DURATION MODELING 545 9.8 TRAINING MARKOV MODELS VIA
NEURAL NETWORKS 552 9.9 A DISCUSSION OF MARKOV RANDOM FIELDS 554 X
CONTENTS 9.10 PROBLEMS 556 REFERENCES 560 CHAPTER 10 SUPERVISED
LEARNING: THE EPILOGUE 567 10.1 INTRODUCTION 567 1 0.2 ERROR-COUNTING
APPROACH 568 10.3 EXPLOITING THE FINITE SIZE OF THE DATA SET 569 1 0.4 A
CASE STUDY FROM MEDICAL IMAGING 573 10.5 SEMI-SUPERVISED LEARNING 577
10.5.1 GENERATIVE MODELS 579 10.5.2 GRAPH-BASED METHODS 582 10.5.3
TRANSDUCTIVE SUPPORT VECTOR MACHINES 586 10.6 PROBLEMS 590 REFERENCES
591 CHAPTER 11 CLUSTERING: BASIC CONCEPTS 595 11.1 INTRODUCTION 595
11.1.1 APPLICATIONS OF CLUSTER ANALYSIS 598 11.1.2 TYPES OF FEATURES 599
11.1.3 DEFINITIONS OF CLUSTERING 600 11.2 PROXIMITY MEASURES 602 11.2.1
DEFINITIONS 602 11.2.2 PROXIMITY MEASURES BETWEEN TWO POINTS 604 11.2.3
PROXIMITY FUNCTIONS BETWEEN A POINT AND A SET 616 11.2.4 PROXIMITY
FUNCTIONS BETWEEN TWO SETS 620 11.3 PROBLEMS 622 REFERENCES 624 CHAPTER
12 CLUSTERING ALGORITHMS I: SEQUENTIAL ALGORITHMS 627 12.1 INTRODUCTION
627 12.1.1 NUMBER OF POSSIBLE CLUSTERINGS 627 1 2.2 CATEGORIES OF
CLUSTERING ALGORITHMS 629 12.3 SEQUENTIAL CLUSTERING ALGORITHMS 633
12.3.1 ESTIMATION OF THE NUMBER OF CLUSTERS 635 12.4 A MODIFICATION OF
BSAS 637 12.5 A TWO-THRESHOLD SEQUENTIAL SCHEME 638 1 2.6 REFINEMENT
STAGES 641 12.7 NEURAL NETWORK IMPLEMENTATION 643 12.7.1 DESCRIPTION OF
THE ARCHITECTURE 643 12.7.2 IMPLEMENTATION OF THE BSAS ALGORITHM 644
CONTENTS XI 12.8 PROBLEMS 646 REFERENCES 650 CHAPTER 13 CLUSTERING
ALGORITHMS II: HIERARCHICAL ALGORITHMS 653 1 3.1 INTRODUCTION 653 13.2
AGGLOMERATIVE ALGORITHMS 654 I3.2.I DEFINITION OF SOME USEFUL QUANTITIES
655 132.2 AGGLOMERATIVEALGORITHMS BASED ON MATRIX THEORY . 658 13.2.*
MONOTONICITY AND CROSSOVER 664 132.4 IMPLEMENTATIONALISSUES 667 13-2.5
AGGLOMERATIVE ALGORITHMS BASED ON GRAPH THEORY.. 667 132.6 TIES IN THE
PROXIMITY MATRIX 676 13.3 THE COPHENETIC MATRIX 679 1 3.4 DIVISIVE
ALGORITHMS 680 13.5 HIERARCHICAL ALGORITHMS FOR LARGE DATA SETS 682 13.6
CHOICE OF THE BEST NUMBER OF CLUSTERS 690 13.7 PROBLEMS 693 REFERENCES
697 CHAPTER 14 CLUSTERING ALGORITHMS III: SCHEMES BASED ON FUNCTION
OPTIMIZATION 701 14.1 INTRODUCTION 701 1 4.2 MIXTURE DECOMPOSITION
SCHEMES 703 14.2.1 COMPACT AND HYPERELLIPSOIDAL CLUSTERS 705 14.2.2 A
GEOMETRICAL INTERPRETATION 709 14.3 FUZZY CLUSTERING ALGORITHMS 712
14.3.1 POINT REPRESENTATIVES 716 14.3.2 QUADRIC SURFACES AS
REPRESENTATIVES 718 14.3.3 HYPERPLANE REPRESENTATIVES 728 14.3-4
COMBINING QUADRIC AND HYPERPLANE REPRESENTATIVES 731 14.3-5 A
GEOMETRICAL INTERPRETATION 732 14.3-6 CONVERGENCE ASPECTS OF THE FUZZY
CLUSTERING ALGORITHMS 732 14.3.7 ALTERNATING CLUSTER ESTIMATION 733 1
4.4 POSSIBILISTIC CLUSTERING 733 14.4.1 THE MODE-SEEKING PROPERTY 737
14.4.2 AN ALTERNATIVE POSSIBILISTIC SCHEME 739 1 4.5 HARD CLUSTERING
ALGORITHMS 739 14.51 THE ISODATA OR K-MEANS OR C-MEANS ALGORITHM 741
14.5.2 SS-MEDOIDSALGORITHMS 745 1 4.6 VECTOR QUANTIZATION 749 XII
CONTENTS 14.7 PROBLEMS 752 REFERENCES 758 CHAPTER 15 CLUSTERING
ALGORITHMS IV 765 15.1 INTRODUCTION 765 1 5.2 CLUSTERING ALGORITHMS
BASED ON GRAPH THEORY 765 15.2.1 MINIMUM SPANNING TREE ALGORITHMS 766
15.2.2 ALGORITHMS BASED ON REGIONS OF INFLUENCE 768 15.2.3 ALGORITHMS
BASED ON DIRECTED TREES 770 15.2.4 SPECTRAL CLUSTERING 772 15.3
COMPETITIVE LEARNING ALGORITHMS 780 15.3-1 BASIC COMPETITIVE LEARNING
ALGORITHM 782 15.3-2 LEAKY LEARNING ALGORITHM 783 15.3-3 CONSCIENTIOUS
COMPETITIVE LEARNING ALGORITHMS 784 15.3-4 COMPETITIVE LEARNING-LIKE
ALGORITHMS ASSOCIATED WITH COST FUNCTIONS 785 15.3-5 SELF-ORGANIZING
MAPS 786 15-3-6 SUPERVISED LEARNING VECTOR QUANTIZATION 788 1 5.4 BINARY
MORPHOLOGY CLUSTERING ALGORITHMS (BMCAS) 789 15.4.1 DISCRETIZATION 790
15.4.2 MORPHOLOGICAL OPERATIONS 791 15.4.3 DETERMINATION OF THE CLUSTERS
IN A DISCRETE BINARY SET 794 15.4.4 ASSIGNMENT OF FEATURE VECTORS TO
CLUSTERS 795 15.4.5 THE ALGORITHMIC SCHEME 796 1 5.5 BOUNDARY DETECTION
ALGORITHMS 798 15.6 VALLEY-SEEKING CLUSTERING ALGORITHMS 801 1 5.7
CLUSTERING VIA COST OPTIMIZATION (REVISITED) 803 15.7.1 BRANCH AND BOUND
CLUSTERING ALGORITHMS 803 15.7.2 SIMULATED ANNEALING 807 15.7.3
DETERMINISTIC ANNEALING 808 15.7.4 CLUSTERING USING GENETIC ALGORITHMS
810 15.8 KERNEL CLUSTERING METHODS 811 15.9 DENSITY-BASED ALGORITHMS FOR
LARGE DATA SETS 815 15.9.1 THE DBSCAN ALGORITHM 815 15.9.2 THE DBCLASD
ALGORITHM 818 15.9.3 THE DENCLUEALGORITHM 819 15.10 CLUSTERING
ALGORITHMS FOR HIGH-DIMENSIONAL DATA SETS 821 15.10.1 DIMENSIONALITY
REDUCTION CLUSTERING APPROACH 822 15.10.2 SUBSPACE CLUSTERING APPROACH
824 1 5.1 1 OTHER CLUSTERING ALGORITHMS 837 15.12 COMBINATION OF
CLUSTERINGS 839 CONTENTS XIII 15.13 PROBLEMS 846 REFERENCES 852 CHAPTER
16 CLUSTER VALIDITY 863 16.1 INTRODUCTION 863 16.2 HYPOTHESIS TESTING
REVISITED 864 1 6.3 HYPOTHESIS TESTING IN CLUSTER VALIDITY 866 16.3.1
EXTERNAL CRITERIA 868 16.3.2 INTERNAL CRITERIA 873 16.4 RELATIVE
CRITERIA 877 16.4.1 HARD CLUSTERING 880 16.4.2 FUZ2Y CLUSTERING 887 16.5
VALIDITY OF INDIVIDUAL CLUSTERS 893 16.5.1 EXTERNAL CRITERIA 894 16.5.2
INTERNAL CRITERIA 894 1 6.6 CLUSTERING TENDENCY 896 16.6.1 TESTS FOR
SPATIAL RANDOMNESS 900 16.7 PROBLEMS 905 REFERENCES 909 APPENDIX A HINTS
FROM PROBABILITY AND STATISTICS 915 APPENDIX * LINEAR ALGEBRA BASICS 927
APPENDIX * COST FUNCTION OPTIMIZATION 930 APPENDIX D BASIC DEFINITIONS
FROM LINEAR SYSTEMS THEORY 946 INDEX 949
|
adam_txt |
PATTERN RECOGNITION FOURTH EDITION SERGIOS THEODORIDIS KONSTANTINOS
KOUTROUMBAS AMSTERDAM * BOSTON * HEIDELBERG * LONDON NEWYORK * OXFORD *
PARIS * SAN DIEGO SAN FRANCISCO * SINGAPORE * SYDNEY TOKYO ACADEMIC
PRESS IS AN IMPRINT OF ELSEVIER CONTENTS PREFACE XV CHAPTER 1
INTRODUCTION I 1.1 IS PATTERN RECOGNITION IMPORTANT? 1 1.2 FEATURES,
FEATURE VECTORS, AND CLASSIFIERS 4 1.3 SUPERVISED, UNSUPERVISED, AND
SEMI-SUPERVISED LEARNING. 7 1.4 MATLAB PROGRAMS 9 1.5 OUTLINE OF THE
BOOK 10 CHAPTER 2 CLASSIFIERS BASED ON BAYES DECISION THEORY 13 2.1
INTRODUCTION 13 2.2 BAYES DECISION THEORY 13 2.3 DISCRIMINANT FUNCTIONS
AND DECISION SURFACES 19 2.4 BAYESIAN CLASSIFICATION FOR NORMAL
DISTRIBUTIONS 20 2.4.1 THE GAUSSIAN PROBABILITY DENSITY FUNCTION 20
2.4.2 THE BAYESIAN CLASSIFIER FOR NORMALLY DISTRIBUTED CLASSES 24 2.5
ESTIMATION OF UNKNOWN PROBABILITY DENSITY FUNCTIONS 34 2.5.1 MAXIMUM
LIKELIHOOD PARAMETER ESTIMATION 34 2.5.2 MAXIMUM A POSTERIORI
PROBABILITY ESTIMATION 38 2.5.3 BAYESIAN INFERENCE 39 2.5.4 MAXIMUM
ENTROPY ESTIMATION 43 2.5.5 MIXTURE MODELS 44 2.5.6 NONPARAMETRIC
ESTIMATION 49 2.5.7 THE NAIVE-BAYES CLASSIFIER 59 2.6 THE NEAREST
NEIGHBOR RULE 61 2.7 BAYESIAN NETWORKS 64 2.8 PROBLEMS 71 REFERENCES 86
CHAPTER 3 LINEAR CLASSIFIERS 91 3.1 INTRODUCTION 91 3.2 LINEAR
DISCRIMINANT FUNCTIONS AND DECISION HYPERPLANES 91 3.3 THE PERCEPTRON
ALGORITHM 93 3.4 LEAST SQUARES METHODS 103 3.4.1 MEAN SQUARE ERROR
ESTIMATION 103 V VI WUIILCIILOE 3.4.2 STOCHASTIC APPROXIMATION AND THE
LMS ALGORITHM . 105 3-4.3 SUM OF ERROR SQUARES ESTIMATION 108 3.5 MEAN
SQUARE ESTIMATION REVISITED 110 35.1 MEAN SQUARE ERROR REGRESSION 110 3
5.2 MSE ESTIMATES POSTERIOR CLASS PROBABILITIES 112 3.5.3 THE
BIAS-VARIANCE DILEMMA 114 3.6 LOGISTIC DISCRIMINATION 117 3.7 SUPPORT
VECTOR MACHINES 119 3.7.1 SEPARABLE CLASSES 119 3.7.2 NONSEPARABLE
CLASSES 124 3.7.3 THE MULTICLASS CASE 127 3.7.4 V-SVM 133 3.7.5 SUPPORT
VECTOR MACHINES: A GEOMETRIC VIEWPOINT 136 3.7.6 REDUCED CONVEX HULLS
138 3.8 PROBLEMS 142 REFERENCES 147 CHAPTER 4 NONLINEAR CLASSIFIERS 151
4.1 INTRODUCTION 151 4.2 THE XOR PROBLEM 151 4.3 THE TWO-LAYER
PERCEPTRON 153 4.3-1 CLASSIFICATION CAPABILITIES OF THE TWO-LAYER
PERCEPTRON 156 4.4 THREE-LAYER PERCEPTRONS 158 4.5 ALGORITHMS BASED ON
EXACT CLASSIFICATION OF THE TRAINING SET 160 4.6 THE BACKPROPAGATION
ALGORITHM 162 4.7 VARIATIONS ON THE BACKPROPAGATION THEME 169 4.8 THE
COST FUNCTION CHOICE 172 4.9 CHOICE OF THE NETWORK SIZE 176 4.10 A
SIMULATION EXAMPLE 181 4.11 NETWORKS WITH WEIGHT SHARING 183 4.12
GENERALIZED LINEAR CLASSIFIERS 185 4.13 CAPACITY OF THE /-DIMENSIONAL
SPACE IN LINEAR DICHOTOMIES 187 4.14 POLYNOMIAL CLASSIFIERS 189 4.15
RADIAL BASIS FUNCTION NETWORKS 190 4.16 UNIVERSAL APPROXIMATORS 194 4.17
PROBABILISTIC NEURAL NETWORKS 196 4.18 SUPPORT VECTOR MACHINES: THE
NONLINEAR CASE 198 CONTENTS VII 4.1 9 BEYOND THE SVM PARADIGM 203 4.19.1
EXPANSION IN KERNEL FUNCTIONS AND MODEL SPARSIFICATION 205 4.19.2 ROBUST
STATISTICS REGRESSION 211 4.20 DECISION TREES 215 4.20.1 SET OF
QUESTIONS 218 4.20.2 SPLITTING CRITERION 218 4.20.3 STOP-SPLITTING RULE
219 4.20.4 CLASS ASSIGNMENT RULE 219 4.21 COMBINING CLASSIFIERS 222
4.21.1 GEOMETRIC AVERAGE RULE 223 4.21.2 ARITHMETIC AVERAGE RULE 224
4.21.3 MAJORITY VOTING RULE 225 4.21.4 A BAYESIANVIEWPOINT 227 4.22 THE
BOOSTING APPROACH TO COMBINE CLASSIFIERS 230 4.23 THE CLASS IMBALANCE
PROBLEM 237 4.24 DISCUSSIO N 239 4.25 PROBLEMS 240 REFERENCES 249
CHAPTER 5 FEATURE SELECTION 261 5.1 INTRODUCTION 26I 5.2 PREPROCESSING
262 5.2.1 OUTLIER REMOVAL 262 5.2.2 DATA NORMALIZATION 263 5.2.3 MISSING
DATA 263 5.3 THE PEAKING PHENOMENON 265 5.4 FEATURE SELECTION BASED ON
STATISTICAL HYPOTHESIS TESTING 268 5.4.1 HYPOTHESIS TESTING BASICS 268
5.4.2 APPLICATION OF THE F-TEST IN FEATURE SELECTION 273 5.5 THE
RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE 275 5.6 CLASS
SEPARABILITY MEASURES 276 5.6.1 DIVERGENCE 276 5.6.2 CHERNOFF BOUND AND
BHATTACHARYYA DISTANCE 278 5.6.3 SCATTER MATRICES 280 5.7 FEATURE SUBSET
SELECTION 283 5.7.1 SCALAR FEATURE SELECTION 283 5.7.2 FEATURE VECTOR
SELECTION 284 5.8 OPTIMAL FEATURE GENERATION 288 5.9 NEURAL NETWORKS AND
FEATURE GENERATION/SELECTION 298 5.10 A HINT ON GENERALIZATION THEORY
299 VIII CONTENTS 5.11 THE BAYESIAN INFORMATION CRITERION 309 5.1 2
PROBLEMS 311 REFERENCES 318 CHAPTER 6 FEATURE GENERATION I: DATA
TRANSFORMATION AND DIMENSIONALITY REDUCTION 323 6.1 INTRODUCTION 323 6.2
BASIS VECTORS AND IMAGES 324 6.3 THE KARHUNEN-LOEVE TRANSFORM 326 6.4
THE SINGULAR VALUE DECOMPOSITION 335 6.5 INDEPENDENT COMPONENT ANALYSIS
342 6.5.1 ICA BASED ON SECOND- AND FOURTH-ORDER CUMULANTS 344 6.52 ICA
BASED ON MUTUAL INFORMATION 345 6.5-3 AN ICA SIMULATION EXAMPLE 348 6.6
NONNEGATIVE MATRIX FACTORIZATION 349 6.7 NONLINEAR DIMENSIONALITY
REDUCTION 350 6.7.1 KERNEL PCA 351 6.7.2 GRAPH-BASED METHODS 353 6.8 THE
DISCRETE FOURIER TRANSFORM (DFT) 363 6.8.1 ONE-DIMENSIONAL DFT 364 6.8.2
TWO-DIMENSIONAL DFT 366 6.9 THE DISCRETE COSINE AND SINE TRANSFORMS 366
6.10 THE HADAMARDTRANSFORM 368 6.1 1 THE HAAR TRANSFORM 369 6.1 2 THE
HAAR EXPANSION REVISITED 371 6.13 DISCRETE TIME WAVELET TRANSFORM (DTWT)
375 6.14 THE MULTIRESOLUTION INTERPRETATION 384 6.1 5 WAVELET PACKETS
387 6.16 A LOOK AT TWO-DIMENSIONAL GENERALIZATIONS 388 6.17 APPLICATIONS
390 6.18 PROBLEMS 396 REFERENCES 402 CHAPTER 7 FEATURE GENERATION II 4II
7.1 INTRODUCTION 411 7.2 REGIONAL FEATURES 412 7.2.1 FEATURES FOR
TEXTURE CHARACTERIZATION 412 7.2.2 LOCAL LINEAR TRANSFORMS FOR TEXTURE
FEATURE EXTRACTION 421 7.2.3 MOMENTS 423 7.2.4 PARAMETRIC MODELS 427
CONTENTS IX 7.3 FEATURES FOR SHAPE AND SIZE CHARACTERIZATION 435 7.3.1
FOURIER FEATURES 436 7.3.2 CHAIN CODES 439 7.3.3 MOMENT-BASED FEATURES
441 7.3.4 GEOMETRIC FEATURES 442 7.4 A GLIMPSE AT FRACTALS 444 7.4.1
SELF-SIMILARITY AND FRACTAL DIMENSION 444 7.4.2 FRACTIONAL BROWNIAN
MOTION 446 7.5 TYPICAL FEATURES FOR SPEECH ANDAUDIO CLASSIFICATION 451
7.5.1 SHORT TIME PROCESSING OF SIGNALS 452 7.5.2 CEPSTRUM 455 7.5.3 THE
MEL-CEPSTRUM 457 7.5.4 SPECTRAL FEATURES 460 7.5.5 TIME DOMAIN FEATURES
462 7.5.6 AN EXAMPLE 463 7.6 PROBLEMS 466 REFERENCES 473 CHAPTER 8
TEMPLATE MATCHING 48I 8.1 INTRODUCTION 481 8.2 MEASURES BASED ON OPTIMAL
PATH SEARCHING TECHNIQUES 482 8.2.1 BELLMAN'S OPTIMALITY PRINCIPLE AND
DYNAMIC PROGRAMMING 484 8.2.2 THE EDIT DISTANCE 487 8.2.3 DYNAMIC TIME
WARPING IN SPEECH RECOGNITION 491 8.3 MEASURES BASED ON CORRELATIONS 498
8.4 DEFORMABLE TEMPLATE MODELS 504 8.5 CONTENT-BASED INFORMATION
RETRIEVAL: RELEVANCE FEEDBACK 508 8.6 PROBLEMS 513 REFERENCES 517
CHAPTER 9 CONTEXT-DEPENDENT CLASSIFICATION 521 9.1 INTRODUCTION 521 9.2
THE BAYES CLASSIFIER 521 9.3 MARKOV CHAIN MODELS 522 9.4 THE VITERBI
ALGORITHM 523 9.5 CHANNEL EQUALIZATION 527 9.6 HIDDEN MARKOV MODELS 532
9.7 HMM WITH STATE DURATION MODELING 545 9.8 TRAINING MARKOV MODELS VIA
NEURAL NETWORKS 552 9.9 A DISCUSSION OF MARKOV RANDOM FIELDS 554 X
CONTENTS 9.10 PROBLEMS 556 REFERENCES 560 CHAPTER 10 SUPERVISED
LEARNING: THE EPILOGUE 567 10.1 INTRODUCTION 567 1 0.2 ERROR-COUNTING
APPROACH 568 10.3 EXPLOITING THE FINITE SIZE OF THE DATA SET 569 1 0.4 A
CASE STUDY FROM MEDICAL IMAGING 573 10.5 SEMI-SUPERVISED LEARNING 577
10.5.1 GENERATIVE MODELS 579 10.5.2 GRAPH-BASED METHODS 582 10.5.3
TRANSDUCTIVE SUPPORT VECTOR MACHINES 586 10.6 PROBLEMS 590 REFERENCES
591 CHAPTER 11 CLUSTERING: BASIC CONCEPTS 595 11.1 INTRODUCTION 595
11.1.1 APPLICATIONS OF CLUSTER ANALYSIS 598 11.1.2 TYPES OF FEATURES 599
11.1.3 DEFINITIONS OF CLUSTERING 600 11.2 PROXIMITY MEASURES 602 11.2.1
DEFINITIONS 602 11.2.2 PROXIMITY MEASURES BETWEEN TWO POINTS 604 11.2.3
PROXIMITY FUNCTIONS BETWEEN A POINT AND A SET 616 11.2.4 PROXIMITY
FUNCTIONS BETWEEN TWO SETS 620 11.3 PROBLEMS 622 REFERENCES 624 CHAPTER
12 CLUSTERING ALGORITHMS I: SEQUENTIAL ALGORITHMS 627 12.1 INTRODUCTION
627 12.1.1 NUMBER OF POSSIBLE CLUSTERINGS 627 1 2.2 CATEGORIES OF
CLUSTERING ALGORITHMS 629 12.3 SEQUENTIAL CLUSTERING ALGORITHMS 633
12.3.1 ESTIMATION OF THE NUMBER OF CLUSTERS 635 12.4 A MODIFICATION OF
BSAS 637 12.5 A TWO-THRESHOLD SEQUENTIAL SCHEME 638 1 2.6 REFINEMENT
STAGES 641 12.7 NEURAL NETWORK IMPLEMENTATION 643 12.7.1 DESCRIPTION OF
THE ARCHITECTURE 643 12.7.2 IMPLEMENTATION OF THE BSAS ALGORITHM 644
CONTENTS XI 12.8 PROBLEMS 646 REFERENCES 650 CHAPTER 13 CLUSTERING
ALGORITHMS II: HIERARCHICAL ALGORITHMS 653 1 3.1 INTRODUCTION 653 13.2
AGGLOMERATIVE ALGORITHMS 654 I3.2.I DEFINITION OF SOME USEFUL QUANTITIES
655 132.2 AGGLOMERATIVEALGORITHMS BASED ON MATRIX THEORY . 658 13.2.*
MONOTONICITY AND CROSSOVER 664 132.4 IMPLEMENTATIONALISSUES 667 13-2.5
AGGLOMERATIVE ALGORITHMS BASED ON GRAPH THEORY. 667 132.6 TIES IN THE
PROXIMITY MATRIX 676 13.3 THE COPHENETIC MATRIX 679 1 3.4 DIVISIVE
ALGORITHMS 680 13.5 HIERARCHICAL ALGORITHMS FOR LARGE DATA SETS 682 13.6
CHOICE OF THE BEST NUMBER OF CLUSTERS 690 13.7 PROBLEMS 693 REFERENCES
697 CHAPTER 14 CLUSTERING ALGORITHMS III: SCHEMES BASED ON FUNCTION
OPTIMIZATION 701 14.1 INTRODUCTION 701 1 4.2 MIXTURE DECOMPOSITION
SCHEMES 703 14.2.1 COMPACT AND HYPERELLIPSOIDAL CLUSTERS 705 14.2.2 A
GEOMETRICAL INTERPRETATION 709 14.3 FUZZY CLUSTERING ALGORITHMS 712
14.3.1 POINT REPRESENTATIVES 716 14.3.2 QUADRIC SURFACES AS
REPRESENTATIVES 718 14.3.3 HYPERPLANE REPRESENTATIVES 728 14.3-4
COMBINING QUADRIC AND HYPERPLANE REPRESENTATIVES 731 14.3-5 A
GEOMETRICAL INTERPRETATION 732 14.3-6 CONVERGENCE ASPECTS OF THE FUZZY
CLUSTERING ALGORITHMS 732 14.3.7 ALTERNATING CLUSTER ESTIMATION 733 1
4.4 POSSIBILISTIC CLUSTERING 733 14.4.1 THE MODE-SEEKING PROPERTY 737
14.4.2 AN ALTERNATIVE POSSIBILISTIC SCHEME 739 1 4.5 HARD CLUSTERING
ALGORITHMS 739 14.51 THE ISODATA OR K-MEANS OR C-MEANS ALGORITHM 741
14.5.2 SS-MEDOIDSALGORITHMS 745 1 4.6 VECTOR QUANTIZATION 749 XII
CONTENTS 14.7 PROBLEMS 752 REFERENCES 758 CHAPTER 15 CLUSTERING
ALGORITHMS IV 765 15.1 INTRODUCTION 765 1 5.2 CLUSTERING ALGORITHMS
BASED ON GRAPH THEORY 765 15.2.1 MINIMUM SPANNING TREE ALGORITHMS 766
15.2.2 ALGORITHMS BASED ON REGIONS OF INFLUENCE 768 15.2.3 ALGORITHMS
BASED ON DIRECTED TREES 770 15.2.4 SPECTRAL CLUSTERING 772 15.3
COMPETITIVE LEARNING ALGORITHMS 780 15.3-1 BASIC COMPETITIVE LEARNING
ALGORITHM 782 15.3-2 LEAKY LEARNING ALGORITHM 783 15.3-3 CONSCIENTIOUS
COMPETITIVE LEARNING ALGORITHMS 784 15.3-4 COMPETITIVE LEARNING-LIKE
ALGORITHMS ASSOCIATED WITH COST FUNCTIONS 785 15.3-5 SELF-ORGANIZING
MAPS 786 15-3-6 SUPERVISED LEARNING VECTOR QUANTIZATION 788 1 5.4 BINARY
MORPHOLOGY CLUSTERING ALGORITHMS (BMCAS) 789 15.4.1 DISCRETIZATION 790
15.4.2 MORPHOLOGICAL OPERATIONS 791 15.4.3 DETERMINATION OF THE CLUSTERS
IN A DISCRETE BINARY SET 794 15.4.4 ASSIGNMENT OF FEATURE VECTORS TO
CLUSTERS 795 15.4.5 THE ALGORITHMIC SCHEME 796 1 5.5 BOUNDARY DETECTION
ALGORITHMS 798 15.6 VALLEY-SEEKING CLUSTERING ALGORITHMS 801 1 5.7
CLUSTERING VIA COST OPTIMIZATION (REVISITED) 803 15.7.1 BRANCH AND BOUND
CLUSTERING ALGORITHMS 803 15.7.2 SIMULATED ANNEALING 807 15.7.3
DETERMINISTIC ANNEALING 808 15.7.4 CLUSTERING USING GENETIC ALGORITHMS
810 15.8 KERNEL CLUSTERING METHODS 811 15.9 DENSITY-BASED ALGORITHMS FOR
LARGE DATA SETS 815 15.9.1 THE DBSCAN ALGORITHM 815 15.9.2 THE DBCLASD
ALGORITHM 818 15.9.3 THE DENCLUEALGORITHM 819 15.10 CLUSTERING
ALGORITHMS FOR HIGH-DIMENSIONAL DATA SETS 821 15.10.1 DIMENSIONALITY
REDUCTION CLUSTERING APPROACH 822 15.10.2 SUBSPACE CLUSTERING APPROACH
824 1 5.1 1 OTHER CLUSTERING ALGORITHMS 837 15.12 COMBINATION OF
CLUSTERINGS 839 CONTENTS XIII 15.13 PROBLEMS 846 REFERENCES 852 CHAPTER
16 CLUSTER VALIDITY 863 16.1 INTRODUCTION 863 16.2 HYPOTHESIS TESTING
REVISITED 864 1 6.3 HYPOTHESIS TESTING IN CLUSTER VALIDITY 866 16.3.1
EXTERNAL CRITERIA 868 16.3.2 INTERNAL CRITERIA 873 16.4 RELATIVE
CRITERIA 877 16.4.1 HARD CLUSTERING 880 16.4.2 FUZ2Y CLUSTERING 887 16.5
VALIDITY OF INDIVIDUAL CLUSTERS 893 16.5.1 EXTERNAL CRITERIA 894 16.5.2
INTERNAL CRITERIA 894 1 6.6 CLUSTERING TENDENCY 896 16.6.1 TESTS FOR
SPATIAL RANDOMNESS 900 16.7 PROBLEMS 905 REFERENCES 909 APPENDIX A HINTS
FROM PROBABILITY AND STATISTICS 915 APPENDIX * LINEAR ALGEBRA BASICS 927
APPENDIX * COST FUNCTION OPTIMIZATION 930 APPENDIX D BASIC DEFINITIONS
FROM LINEAR SYSTEMS THEORY 946 INDEX 949 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Theodoridis, Sergios 1951- Koutroumbas, Konstantinos 1967- |
author_GND | (DE-588)12164135X (DE-588)136997937 |
author_facet | Theodoridis, Sergios 1951- Koutroumbas, Konstantinos 1967- |
author_role | aut aut |
author_sort | Theodoridis, Sergios 1951- |
author_variant | s t st k k kk |
building | Verbundindex |
bvnumber | BV035114669 |
classification_rvk | ST 330 ZN 6050 |
classification_tum | DAT 770f |
ctrlnum | (OCoLC)550588366 (DE-599)BVBBV035114669 |
dewey-full | 006.4 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.4 |
dewey-search | 006.4 |
dewey-sort | 16.4 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 4. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01688nam a2200421zc 4500</leader><controlfield tag="001">BV035114669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100128 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081022s2009 ne d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781597492720</subfield><subfield code="9">978-1-59749-272-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)550588366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035114669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6050</subfield><subfield code="0">(DE-625)157498:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 770f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Theodoridis, Sergios</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12164135X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern recognition</subfield><subfield code="c">Sergios Theodoridis ; Konstantinos Koutroumbas</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 961 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koutroumbas, Konstantinos</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136997937</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016782436&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016782436</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV035114669 |
illustrated | Illustrated |
index_date | 2024-07-02T22:19:04Z |
indexdate | 2025-02-20T06:43:15Z |
institution | BVB |
isbn | 9781597492720 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016782436 |
oclc_num | 550588366 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29T DE-19 DE-BY-UBM DE-11 DE-703 DE-522 DE-523 DE-91G DE-BY-TUM DE-863 DE-BY-FWS DE-1047 |
owner_facet | DE-91 DE-BY-TUM DE-29T DE-19 DE-BY-UBM DE-11 DE-703 DE-522 DE-523 DE-91G DE-BY-TUM DE-863 DE-BY-FWS DE-1047 |
physical | XVII, 961 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Elsevier |
record_format | marc |
spellingShingle | Theodoridis, Sergios 1951- Koutroumbas, Konstantinos 1967- Pattern recognition Mustererkennung (DE-588)4040936-3 gnd MATLAB (DE-588)4329066-8 gnd |
subject_GND | (DE-588)4040936-3 (DE-588)4329066-8 |
title | Pattern recognition |
title_auth | Pattern recognition |
title_exact_search | Pattern recognition |
title_exact_search_txtP | Pattern recognition |
title_full | Pattern recognition Sergios Theodoridis ; Konstantinos Koutroumbas |
title_fullStr | Pattern recognition Sergios Theodoridis ; Konstantinos Koutroumbas |
title_full_unstemmed | Pattern recognition Sergios Theodoridis ; Konstantinos Koutroumbas |
title_short | Pattern recognition |
title_sort | pattern recognition |
topic | Mustererkennung (DE-588)4040936-3 gnd MATLAB (DE-588)4329066-8 gnd |
topic_facet | Mustererkennung MATLAB |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016782436&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT theodoridissergios patternrecognition AT koutroumbaskonstantinos patternrecognition |
Inhaltsverzeichnis
THWS Würzburg Zentralbibliothek Lesesaal
Signatur: |
1000 ST 330 T388(4) |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |
THWS Würzburg Teilbibliothek SHL, Raum I.2.11
Signatur: |
1340 ST 330 T388(4) |
---|---|
Exemplar 1 | nicht ausleihbar Verfügbar Bestellen |