Health physics in the 21st century:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH-Verl.
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXIII, 562 S. |
ISBN: | 9783527408221 3527408223 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035114112 | ||
003 | DE-604 | ||
007 | t | ||
008 | 081022s2008 gw |||| 00||| eng d | ||
016 | 7 | |a 985836989 |2 DE-101 | |
020 | |a 9783527408221 |c Pp. : EUR 115.00 (freier Pr.), ca. sfr 182.00 (freier Pr.) |9 978-3-527-40822-1 | ||
020 | |a 3527408223 |c Pp. : EUR 115.00 (freier Pr.), ca. sfr 182.00 (freier Pr.) |9 3-527-40822-3 | ||
035 | |a (OCoLC)181069648 | ||
035 | |a (DE-599)BVBBV035114112 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-19 |a DE-M347 |a DE-11 | ||
050 | 0 | |a R895 | |
082 | 0 | |a 610.153 |2 22 | |
084 | |a XC 3800 |0 (DE-625)152513:12905 |2 rvk | ||
084 | |a 610 |2 sdnb | ||
100 | 1 | |a Bevelacqua, Joseph John |d 1949- |e Verfasser |0 (DE-588)134145585 |4 aut | |
245 | 1 | 0 | |a Health physics in the 21st century |c Joseph John Bevelacqua |
264 | 1 | |a Weinheim |b Wiley-VCH-Verl. |c 2008 | |
300 | |a XXIII, 562 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 4 | |a Health Physics | |
650 | 4 | |a Medical physics | |
650 | 4 | |a Medical physics |v Problems, exercises, etc | |
650 | 0 | 7 | |a Medizinische Physik |0 (DE-588)4130758-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Medizinische Physik |0 (DE-588)4130758-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3008356&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016781891&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016781891 |
Datensatz im Suchindex
_version_ | 1805091282588008448 |
---|---|
adam_text |
VII
Contents
Preface XIX
Acknowledgments XXI
A Note on Units XXIII
I Overview of Volume I 1
1 Introduction 3
References 5
II Fission and Fusion Energy 7
2 Fission Power Production 9
2.1 Overview 9
2.2 Basic Health Physics Considerations 9
2.3 Fission Reactor History 13
2.4 Generation II Power Reactors 13
2A.I Pressurized Water Reactors 14
2.4.1.1 Core 15
2.4.1.2 Reactor Vessel 25
2.4.1.3 Primary Coolant System 15
2.4.1.4 Steam System 16
2.4.1.5 Reactor Control and Protection Systems 16
2.4.1.6 Engineered Safety Features 17
2.4.2 Boiling Water Reactors 17
2.4.2.1 BWR Reactor Assembly 18
2.4.2.2 BWR Reactor Core 18
2.4.3 CANDU Reactors 18
2.4.3.1 General Description 18
2.4.3.2 Control Systems 19
2.4.3.3 Steam System 19
Health Physics in the 21st Century. Joseph John Bevelacqua
Copyright © 2008 W1LEY-VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 978-3-527-4O822-1
VIII Contents
2.4.3.4 Safety Systems 19
2.4.4 High-Temperature Gas-Cooled Reactors 19
2.4.5 Liquid Metal Fast Breeder Reactors 20
2.4.6 Generation II Summary 20
2.5 Generation III and IV Radiological Design Characteristics 21
2.6 Generation III 22
2.6.1 Safety Objectives and Standards 25
2.6.2 PWRs 26
2.6.3 BWRs 27
2.6.4 Advanced CANDU 27
2.6.5 HTGRs 28
2.6.6 Generation III Safety System Examples 28
2.6.6.1 Emergency Condenser System 29
2.6.6.2 Containment Cooling Condensers 29
2.6.6.3 Core Flooding System 29
2.6.6.4 Passive Pressure Pulse Transmitters 29
2.7 Generation IV 30
2.7.1 Gas-Cooled Fast Reactors 31
2.7.2 Lead-Bismuth-Cooled Fast Reactors 32
2.7.3 Molten Salt Epithermal Reactors 36
2.7.4 Sodium-Cooled Fast Reactors 37
2.7.5 Supercritical Water-Cooled Reactors 37
2.7.6 Very High Temperature Reactors (VHTR) 38
2.7.7 Radionudide Impacts 38
2.7.8 Hydrogen Production 39
2.7.9 Deployment of Generation IV Reactors 40
2.8 Generic Health Physics Hazards 40
2.9 Specific Health Physics Hazards 41
2.9.1 Buildup of Activity in Filters, Demineralizers, and Waste
Gas Tanks 41
2.9.2 Activation of Reactor Components 44
2.9.3 Fuel Damage 45
2.9A Reactor Coolant System Leakage 45
2.9.5 Hot Particle Dose 46
2.9.6 Effluent Releases 47
2.9.6.1 light Water and Heavy Water Reactor Effluents 47
2.9.6.2 Gas-Cooled Reactor Effluents 47
2.9.6.3 COrCooled Reactor Effluents 48
2.9.6.4 Helium-Cooled Reactor Effluents 48
2.10 Advanced Reactor ALARA Measures 49
2.11 Radiological Considerations During Reactor Accidents 49
2.12 Beyond Design Basis Events 53
2.13 Other Events 56
2.14 Probabilistic Risk Assessment 56
2.15 Semi-Infinite Cloud Model 57
Contents IX
2.16 Normal Operations 58
2.16.1 Health Physics 59
2.16.2 Maintenance 59
2.16.3 Operators 60
2.17 Outage Operations 60
2.18 Abnormal Operations 61
2.19 Emergency Operations 61
Problems 62
References 67
3 Fusion Power Production 71
3.1 Overview 71
3.2 Fusion Process Candidates 72
3.3 Physics of Plasmas 73
3.4 Plasma Properties and Characteristics 75
3.5 Plasma Confinement 79
3.6 Overview of an Initial Fusion Power Facility 81
3.7 ITER 83
3.8 ITER Safety Characteristics 84
3.9 General Radiological Characteristics 85
3.10 Accident Scenarios/Design Basis Events 87
3.10.1 Loss-of-Coolant Accidents 87
3.10.2 Loss-of-Flow Accidents 87
3.10.3 Loss-of-Vacuum Accidents 88
3.10.4 Plasma Transients 88
3.10.5 Magnet Fault Transients 89
3.10.6 Loss of Cryogen 89
3.10.7 Tritium Plant Events 89
3.10.8 Auxiliary System Accidents 90
3.11 Radioactive Source Term 90
3.12 Beyond Design Basis Events 90
3.13 Assumptions for Evaluating the Consequences of Postulated
ITER Events 90
3.14 Caveats Regarding the ITER Technical Basis 92
3.15 Overview of Fusion Energy Radiation Protection 94
3.16 D-T Systematics 95
3.17 Ionizing Radiation Sources 97
3.18 Nuclear Materials 100
3.19 External Ionizing Radiation Hazards 100
3.19.1 Alpha Particles 100
3.19.2 Beta Particles 102
3.19.3 Photons 101
3.19.4 Neutrons 102
3.19.4.1 Vanadium Activation - Vacuum Vessel liner 103
3.19.4.2 Activation of Stainless Steel - Vacuum Vessel Structural Material 104
X Contents
3.19.5 Heavy Ions 106
3.20 Uncertainties in Health Physics Assessments Associated
with External Ionizing Radiation 106
3.21 Internal Ionizing Radiation Hazards 108
3.21.1 Tritium 108
3.21.2 Particulates 109
3.22 Measurement of Ionizing Radiation 109
3.22.1 Measurement of External Radiation 110
3.22.2 Tritium Measurement 112
3.22.2.1 Ion Chamber Tritium-in-Air Monitors 112
3.22.2.2 Tritium Bubbler 112
3.22.2.3 Composition Measurements 113
3.22.2.4 Thermal Methods 113
3.23 Maintenance 113
3.23.1 Vacuum Vessel Maintenance 114
3.23.2 Vacuum Vessel-Cooling Water System Maintenance 334
3.23.3 Routine Maintenance 114
3.24 Accident Scenarios 117
3.25 Regulatory Requirements 337
3.25.1 ALARA-Confinement Methods and Fusion Process Types 118
3.25.2 ALARA - Design Features 120
3.26 Other Radiological Considerations 320
3.27 Other Hazards 323
3.28 Other Applications 121
3.28.1 Cold Fusion 122
3.28.2 Sonoluminescence 122
3.29 Conclusions 123
Problems 324
References 328
III Accelerators 131
4 Colliders and Charged Particle Accelerators 133
4.1 Introduction 133
4.2 Candidate Twenty-First Century Accelerator Facilities 133
4.2.1 Radiation Characteristics of Low-Energy Accelerators 134
4.3 Types of Twenty-First Century Accelerators 137
4.3.1 Spallation Neutron Source 138
4.3.1.1 Machine Overview 138
4.3.1.2 Ion Source 138
4.3.1.3 LINAC 138
4.3.1.4 Accumulator Ring 339
4.3.1.5 Hg Target 139
4.3.1.6 Applications 139
Contents XI
4.3.1.7 SNS Design Decisions 139
4.3.1.8 Radiation Protection Regulations 139
4.3.1.9 Health Physics Considerations 140
4.3.2 Electron-Positron Colliders - Existing Machines 140
4.3.2.1 Overview 140
4.3.2.2 Electromagnetic Cascade Showers 143
4.3.2.3 External Bremsstrahlung 145
4.3.2.4 Photoneutron Production 146
4.3.2.5 Muons 146
4.3.2.6 Synchrotron Radiation 147
4.3.2.7 Radiation Levels at the Large Electron-Positron Collider 149
4.3.2.8 LEP Radiation Levels Outside the Shielding 149
4.3.2.9 Radiation Levels Inside the LEP Machine Tunnel 149
4.3.3 Hadron Colliders 150
4.3.3.1 Large Hadron Collider 150
4.3.3.1.1 CMS 151
4.3.3.1.2 ATLAS 151
4.3.3.1.3 LHCb 151
4.3.3.1.4 TOTEM 152
4.3.3.1.5 ALICE 152
4.3.3.1.6 Antiprotons 152
4.3.3.1.7 Proton Reactions 154
4.3.3.1.8 Neutrons 154
4.3.3.1.9 Muons 154
4.3.3.1.10 Hadronic (Nuclear) Cascade 154
4.3.3.1.11 Heavy Ions 156
4.3.3.1.12 Synchrotron Radiation 156
4.3.3.1.13 High-Power Beam Loss Events 157
4.3.4 Heavy-Ion Colliders 157
4.3.4.1 Examples of RHIC Radiological Hazards 159
4.3.4.2 Radiation Protection Philosophy 159
4.3.4.3 Personnel Safety Envelope 159
4.3.4.4 Collider Safety Envelope Parameters 159
4.3.4.5 Beam Loss Control 160
4.3.4.6 Particle Accelerator Safety System 160
4.4 Planned Accelerator Facilities 160
4.4.1 International Linear Collider 161
4.4.1.1 Electron Source/LINAC 161
4.4.1.2 Positron Source/LINAC 161
4.4.1.3 Electron-Damping Ring 162
4.4.1.4 Positron-Damping Ring 162
4.4.1.5 Main LINACs 162
4.4.1.6 Interaction Area 162
4A.I.7 Evolving ILC Design 162
4.4.1.8 ILC Health Physics 163
XII Contents
4.4.2 Muon Colliders 163
4.4.2.1 Neutrino Characteristics 164
4.4.2.2 Neutrino Beam Characteristics at a Muon Collider 165
4.4.2.3 Neutrino Interaction Model 167
4.4.2.4 Neutrino Effective Dose 167
4.4.2.5 Bounding Neutrino Effective Dose - Linear Muon Collider 168
4.4.2.6 Bounding Neutrino Effective Dose - Circular Muon Collider 171
4.4.2.7 ALARA Impacts of Muon Colliders 177
4.4.2.8 Other Radiation Protection Issues 178
4.4.3 Very Large Hadron Collider 181
4.5 Common Health Physics Issues in Twenty-First Century
Accelerators 181
4.5.1 Sources of Radiation 182
4.5.2 Activation 184
4.5.3 Radiation Shielding 184
4.5.4 Radiation Measurements 184
4.5.5 Environment 187
4.5.6 Operational Radiation Safety 189
4.5.7 Safety Systems 189
4.6 Other Applications 190
Problems 190
References 195
5 Light Sources 199
5.1 Overview 199
5.2 Physical Basis 200
5.2.1 Bremsstrahlung 200
5.2.2 Synchrotron Radiation 201
5.3 Overview of Photon light Sources - Insertion Devices 201
5.4 X-Ray Tubes 202
5.5 Overview of Synchrotron Radiation Sources and Their Evolution 203
5.6 X-Ray Radiation from Storage Rings 204
5.6.1 Bending Magnets 204
5.6.2 Insertion Devices 205
5.6.3 Wigglers 205
5.6.4 Undulators 205
5.7 Brightness Trends 206
5.8 Physics of Photon light Sources 206
5.8.1 Brightness of a Synchrotron Radiation Source 206
5.9 Motion of Accelerated Electrons 209
5.10 Insertion Device Radiation Properties 211
5.10.1 Power and Power Density 213
5.11 FEL Overview 215
5.12 Physical Model of a FEL 216
5.12.1 FEL Physics 218
Contents XIII
5.13 FEL Characteristics 220
5.14 Optical Gain 220
5.14.1 Cavity Design 221
5.14.2 Optical Klystron 223
5.15 Accessible FEL Output 224
5.16 X-Ray Free-Electron Lasers 224
5.17 Threshold X-Ray Free Electron 225
5.18 Near-Term X-Ray FELs 226
5.19 Gamma-Ray Free-Electron Lasers (GRFEL) 226
5.20 Other Photon-Generating Approaches 227
5.20.1 Compton Backscattering 228
5.20.2 Laser Accelerators 229
5.20.2.1 Basic Theory 229
5.20.3 Laser Wake-Field Acceleration (LWFA) 229
5.20.4 Laser Ion Acceleration (LIA) 230
5.20.5 Future Possibilities 230
5.21 X-Ray Induced Isomeric Transitions 231
5.22 Gamma-Ray Laser/Fission-Based Photon Sources 232
5.23 Photon Source Health Physics and Other Hazards 234
5.23.1 Ionizing Radiation 234
5.23.2 Nonlonizing Radiation 235
5.23.3 Activation of Accelerator Components 236
5.23.4 Shielding Design and Safety Analysis 236
5.24 Evaluation of Radiation Dose 237
5.25 General Safety Requirements 238
5.26 Radioactive and Toxic Gases 238
5.27 Laser Safety Calculations 239
5.27.1 Limiting Aperture 239
5.27.2 Exposure Time/Maximum Permissible Exposure 239
Problems 240
References 245
IV Space 249
6 Manned Planetary Missions 251
6.1 Overview 251
6.2 Introduction 253
6.3 Terminology 252
6.4 Basic Physics Overview 253
6.5 Radiation Protection Limitations 255
6.6 Overview of the Space Radiation Environment 255
6.6.1 General Characterization 257
6.6.2 Trapped or van Allen Belt Radiation 258
6.6.3 Galactic Cosmic Ray Radiation 259
XIV Contents
6.6.4 Solar Flare Radiation or Solar Particle Events 259
6.7 Calculation of Absorbed and Effective Doses 260
6.8 Historical Space Missions 260
6.8.1 Low-Earth Orbit Radiation Environment 260
6.8.2 The Space Radiation Environment Outside Earth's
Magnetic Field 261
6.8.3 Radiation Data from Historical Missions 263
6.8.4 Gemini 263
6.8.5 Skylab 265
6.8.6 Space Transport Shuttle 265
6.8.7 Mir Space Station 266
6.8.8 International Space Station 266
6.8.9 Apollo Lunar Missions 266
6.8.10 Validation of LEO and Lunar Mission Absorbed Dose Rates 267
6.9 LEO and Lunar Colonization 268
6.10 GCR and SPE Contributions to Manned Planetary Missions 269
6.10.1 GCR Doses 269
6.10.2 SPE Doses 270
6.10.3 Planetary Mission to Mars 275
6.10.4 Mars Orbital Dynamics 275
6.10.5 Overview of Mars Mission Doses 278
6.10.6 Oak Ridge National Laboratory (ORNL) Mars Mission 278
6.10.7 Trapped Radiation Contribution 278
6.10.8 GCR Contribution 278
6.10.9 SPE Contribution 279
6.10.10 Mars Mission Doses 279
6.11 Other Planetary Missions 280
6.11.1 Planetary Atmospheric Attenuation 285
6.12 Mars and Outer Planet Mission Shielding 286
6.13 Electromagnetic Deflection 288
6.13.1 EM Field Deflector Physics 289
6.13.2 Case I - Deflection Using a Static Magnetic Field 291
6.13.3 Case II - Deflection Using a Static Electric Field 291
6.13.4 Engineering Considerations for EM Field Generation 295
6.14 Space Radiation Biology 295
6.15 Final Thoughts 296
Problems 296
References 300
7 Deep Space Missions 303
7.1 Introduction 303
7.2 Stellar Radiation 303
7.2.1 Origin of Stars 304
7.2.2 Low Mass Stars 304
7.2.3 High Mass Stars 305
Contents XV
7.2.4 Star Types 307
7.2.5 MS Star Health Physics Considerations 309
7.2.6 Supernovas 309
7.2.7 White Dwarfs, Pulsars, and Black Holes 311
7.2.8 Dark Matter/Dark Energy 311
7.2.9 Gamma-Ray Bursts 312
7.3 Galaxies 314
7.3.1 Distance Scales 314
7.3.2 Characteristics of Galaxies 315
7.4 Deep Space Radiation Characteristics 317
7.5 Overview of Deep Space Missions 319
7.6 Trajectories 319
7.6.1 Spacetime and Geodesies 320
7.7 Candidate Missions 321
7.8 Propulsion Requirements for Deep Space Missions 322
7.9 Candidate Propulsion Systems Based on Existing Science and
Technology 323
7.9.1 Antimatter Propulsion 323
7.9.2 Fission Driven Electric Propulsion 323
7.9.3 Fusion Propulsion 324
7.9.4 Interstellar Ramjet 324
7.9.5 Unique Nuclear Reactions 325
7.10 Technology Growth Potential 325
7.10.1 Dyson Spheres 326
7.11 Sources of Radiation in Deep Space 327
7.12 Mission Doses 327
7.12.1 Trapped Radiation 328
7.12.2 Galactic Cosmic Radiation 329
7.12.3 SPE Radiation 330
7.12.4 Radiation from a Fusion Reactor Propulsion System 330
7.12.4.1 Distance 331
7.12.4.2 Shielding 331
7.13 Time to Reach Alpha Centauri 333
7.14 Countermeasures for Mitigating Radiation and Other
Concerns During Deep Space Missions 334
7.15 Theoretical Propulsion Options 335
7.15.1 Modifying (Warping) Spacetime 336
7.15.2 Wormholes 338
7.15.3 Folding Spacetime 338
7.15.4 Mapping Spacetime 338
7.16 Spatial Anomalies 339
7.17 Special Considerations 339
7.18 Point Source Relationship 340
Problems 344
References 348
XVI Contents
V Answers and Solutions 351
Solutions 353
Solutions for Chapter 2 353
Solutions for Chapter 3 368
Solutions for Chapter 4 384
Solutions for Chapter 5 403
Solutions for Chapter 6 421
Solutions for Chapter 7 435
VI Appendixes 453
A Significant Events and Important Dates in Physics
and Health Physics 455
References 463
B Production Equations in Health Physics 465
B.I Introduction 465
B.2 Theory 465
B.3 Examples 468
B.3.1 Activation 468
B.3.2 Demineralizer Activity 469
B.3.3 Surface Deposition 469
B.3.4 Release of Radioactive Material into a Room 470
B.4 Conclusions 471
References 471
C Key Health Physics Relationships 473
References 482
D Internal Dosimetry 483
D.I Introduction 483
D.2 Overview of Internal Dosimetry Models 483
D.3 MIRD Methodology 485
D.4 ICRP Methodology 487
D.5 Biological Effects 487
D.6 ICRP 26/30 and ICRP 60/66 Terminology 490
D.7 ICRP 26 and ICRP 60 Recommendations 490
D.8 Calculation of Internal Dose Equivalents Using ICRP 26/30 491
D.9 Calculation of Equivalent and Effective Doses
Using ICRP 60/66 493
D.10 Model Dependence 495
D.ll Conclusions 495
References 495
Contents XVII
E The Standard Model of Particle Physics 497
E.I Overview 497
E.2 Particle Properties and Supporting Terminology 497
E.2.1 Terminology 497
E.3 Basic Physics 498
E.3.1 Basic Particle Properties 498
E.3.2 Fundamental Interactions 501
E.4 Fundamental Interactions and Their Health Physics Impacts 503
E.4.1 Conservation Laws 504
E.4.2 Consequences of the Conservation Laws and
the Standard Model 506
E.5 Cross-Section Relationships for Specific Processes 508
References 508
F Special Theory of Relativity 509
F.I Length, Mass, and Time 509
F.I.I Cosmic Ray Muons and Pions 510
F.2 Energy and Momentum 512
References 513
C Muon Characteristics 515
G.I Overview 515
G.2 Stopping Power and Range 515
References 518
H Luminosity 519
H.I Overview 519
H.2 Accelerator Physics 519
References 521
I Dose Factors for Typical Radiation Types 523
1.1 Overview 523
1.2 Dose Factors 523
1.3 Dose Terminology 524
References 524
J Health Physics Related Computer Codes 525
J.I Code Overview 525
J.I.I EGS Code System 525
J.1.2 ENDF 525
J.I.3 FLUKA 526
J.1.4 JENDL 526
J.I.5 MARS 526
J.1.6 MCNP 526
J.I.7 MCNPX 526
XVIII Contents
J.1.8 MicroShield" 527
J.1.9 MicroSkyshine" 527
J.1.10 SCALE 5 527
J.I.11 SKYSHINE-KSU 528
J.1.12 SPAR 528
J.2 Code Utilization 528
References 529
K Systematic^ of Heavy Ion Interactions with Matter 531
K.1 Introduction 531
K.2 Overview of External Radiation Sources 531
K.3 Physical Basis for Heavy Ion Interactions with Matter 532
K.4 Range Calculations 535
K.5 Tissue Absorbed Dose from a Heavy Ion Beam 536
K.6 Determination of Total Reaction Cross Section 537
References 537
L Curvature Systematics in General Relativity 539
L.1 Introduction 539
L.2 Basic Curvature Quantities 539
L.3 Tensors and Connection Coefficients 541
L.3.1 Flat Spacerime Geometry 542
L.3.2 Schwarzschild Geometry 543
L.3.3 MT Wormhole Geometry 545
L.3.4 Generalized Schwarzchild Geometry 547
L.3.5 Friedman-Robertson-Walker (FRW) Geometry 549
L4 Conclusions 552
References 552
Index 553 |
adam_txt |
VII
Contents
Preface XIX
Acknowledgments XXI
A Note on Units XXIII
I Overview of Volume I 1
1 Introduction 3
References 5
II Fission and Fusion Energy 7
2 Fission Power Production 9
2.1 Overview 9
2.2 Basic Health Physics Considerations 9
2.3 Fission Reactor History 13
2.4 Generation II Power Reactors 13
2A.I Pressurized Water Reactors 14
2.4.1.1 Core 15
2.4.1.2 Reactor Vessel 25
2.4.1.3 Primary Coolant System 15
2.4.1.4 Steam System 16
2.4.1.5 Reactor Control and Protection Systems 16
2.4.1.6 Engineered Safety Features 17
2.4.2 Boiling Water Reactors 17
2.4.2.1 BWR Reactor Assembly 18
2.4.2.2 BWR Reactor Core 18
2.4.3 CANDU Reactors 18
2.4.3.1 General Description 18
2.4.3.2 Control Systems 19
2.4.3.3 Steam System 19
Health Physics in the 21st Century. Joseph John Bevelacqua
Copyright © 2008 W1LEY-VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 978-3-527-4O822-1
VIII Contents
2.4.3.4 Safety Systems 19
2.4.4 High-Temperature Gas-Cooled Reactors 19
2.4.5 Liquid Metal Fast Breeder Reactors 20
2.4.6 Generation II Summary 20
2.5 Generation III and IV Radiological Design Characteristics 21
2.6 Generation III 22
2.6.1 Safety Objectives and Standards 25
2.6.2 PWRs 26
2.6.3 BWRs 27
2.6.4 Advanced CANDU 27
2.6.5 HTGRs 28
2.6.6 Generation III Safety System Examples 28
2.6.6.1 Emergency Condenser System 29
2.6.6.2 Containment Cooling Condensers 29
2.6.6.3 Core Flooding System 29
2.6.6.4 Passive Pressure Pulse Transmitters 29
2.7 Generation IV 30
2.7.1 Gas-Cooled Fast Reactors 31
2.7.2 Lead-Bismuth-Cooled Fast Reactors 32
2.7.3 Molten Salt Epithermal Reactors 36
2.7.4 Sodium-Cooled Fast Reactors 37
2.7.5 Supercritical Water-Cooled Reactors 37
2.7.6 Very High Temperature Reactors (VHTR) 38
2.7.7 Radionudide Impacts 38
2.7.8 Hydrogen Production 39
2.7.9 Deployment of Generation IV Reactors 40
2.8 Generic Health Physics Hazards 40
2.9 Specific Health Physics Hazards 41
2.9.1 Buildup of Activity in Filters, Demineralizers, and Waste
Gas Tanks 41
2.9.2 Activation of Reactor Components 44
2.9.3 Fuel Damage 45
2.9A Reactor Coolant System Leakage 45
2.9.5 Hot Particle Dose 46
2.9.6 Effluent Releases 47
2.9.6.1 light Water and Heavy Water Reactor Effluents 47
2.9.6.2 Gas-Cooled Reactor Effluents 47
2.9.6.3 COrCooled Reactor Effluents 48
2.9.6.4 Helium-Cooled Reactor Effluents 48
2.10 Advanced Reactor ALARA Measures 49
2.11 Radiological Considerations During Reactor Accidents 49
2.12 Beyond Design Basis Events 53
2.13 Other Events 56
2.14 Probabilistic Risk Assessment 56
2.15 Semi-Infinite Cloud Model 57
Contents IX
2.16 Normal Operations 58
2.16.1 Health Physics 59
2.16.2 Maintenance 59
2.16.3 Operators 60
2.17 Outage Operations 60
2.18 Abnormal Operations 61
2.19 Emergency Operations 61
Problems 62
References 67
3 Fusion Power Production 71
3.1 Overview 71
3.2 Fusion Process Candidates 72
3.3 Physics of Plasmas 73
3.4 Plasma Properties and Characteristics 75
3.5 Plasma Confinement 79
3.6 Overview of an Initial Fusion Power Facility 81
3.7 ITER 83
3.8 ITER Safety Characteristics 84
3.9 General Radiological Characteristics 85
3.10 Accident Scenarios/Design Basis Events 87
3.10.1 Loss-of-Coolant Accidents 87
3.10.2 Loss-of-Flow Accidents 87
3.10.3 Loss-of-Vacuum Accidents 88
3.10.4 Plasma Transients 88
3.10.5 Magnet Fault Transients 89
3.10.6 Loss of Cryogen 89
3.10.7 Tritium Plant Events 89
3.10.8 Auxiliary System Accidents 90
3.11 Radioactive Source Term 90
3.12 Beyond Design Basis Events 90
3.13 Assumptions for Evaluating the Consequences of Postulated
ITER Events 90
3.14 Caveats Regarding the ITER Technical Basis 92
3.15 Overview of Fusion Energy Radiation Protection 94
3.16 D-T Systematics 95
3.17 Ionizing Radiation Sources 97
3.18 Nuclear Materials 100
3.19 External Ionizing Radiation Hazards 100
3.19.1 Alpha Particles 100
3.19.2 Beta Particles 102
3.19.3 Photons 101
3.19.4 Neutrons 102
3.19.4.1 Vanadium Activation - Vacuum Vessel liner 103
3.19.4.2 Activation of Stainless Steel - Vacuum Vessel Structural Material 104
X Contents
3.19.5 Heavy Ions 106
3.20 Uncertainties in Health Physics Assessments Associated
with External Ionizing Radiation 106
3.21 Internal Ionizing Radiation Hazards 108
3.21.1 Tritium 108
3.21.2 Particulates 109
3.22 Measurement of Ionizing Radiation 109
3.22.1 Measurement of External Radiation 110
3.22.2 Tritium Measurement 112
3.22.2.1 Ion Chamber Tritium-in-Air Monitors 112
3.22.2.2 Tritium Bubbler 112
3.22.2.3 Composition Measurements 113
3.22.2.4 Thermal Methods 113
3.23 Maintenance 113
3.23.1 Vacuum Vessel Maintenance 114
3.23.2 Vacuum Vessel-Cooling Water System Maintenance 334
3.23.3 Routine Maintenance 114
3.24 Accident Scenarios 117
3.25 Regulatory Requirements 337
3.25.1 ALARA-Confinement Methods and Fusion Process Types 118
3.25.2 ALARA - Design Features 120
3.26 Other Radiological Considerations 320
3.27 Other Hazards 323
3.28 Other Applications 121
3.28.1 Cold Fusion 122
3.28.2 Sonoluminescence 122
3.29 Conclusions 123
Problems 324
References 328
III Accelerators 131
4 Colliders and Charged Particle Accelerators 133
4.1 Introduction 133
4.2 Candidate Twenty-First Century Accelerator Facilities 133
4.2.1 Radiation Characteristics of Low-Energy Accelerators 134
4.3 Types of Twenty-First Century Accelerators 137
4.3.1 Spallation Neutron Source 138
4.3.1.1 Machine Overview 138
4.3.1.2 Ion Source 138
4.3.1.3 LINAC 138
4.3.1.4 Accumulator Ring 339
4.3.1.5 Hg Target 139
4.3.1.6 Applications 139
Contents XI
4.3.1.7 SNS Design Decisions 139
4.3.1.8 Radiation Protection Regulations 139
4.3.1.9 Health Physics Considerations 140
4.3.2 Electron-Positron Colliders - Existing Machines 140
4.3.2.1 Overview 140
4.3.2.2 Electromagnetic Cascade Showers 143
4.3.2.3 External Bremsstrahlung 145
4.3.2.4 Photoneutron Production 146
4.3.2.5 Muons 146
4.3.2.6 Synchrotron Radiation 147
4.3.2.7 Radiation Levels at the Large Electron-Positron Collider 149
4.3.2.8 LEP Radiation Levels Outside the Shielding 149
4.3.2.9 Radiation Levels Inside the LEP Machine Tunnel 149
4.3.3 Hadron Colliders 150
4.3.3.1 Large Hadron Collider 150
4.3.3.1.1 CMS 151
4.3.3.1.2 ATLAS 151
4.3.3.1.3 LHCb 151
4.3.3.1.4 TOTEM 152
4.3.3.1.5 ALICE 152
4.3.3.1.6 Antiprotons 152
4.3.3.1.7 Proton Reactions 154
4.3.3.1.8 Neutrons 154
4.3.3.1.9 Muons 154
4.3.3.1.10 Hadronic (Nuclear) Cascade 154
4.3.3.1.11 Heavy Ions 156
4.3.3.1.12 Synchrotron Radiation 156
4.3.3.1.13 High-Power Beam Loss Events 157
4.3.4 Heavy-Ion Colliders 157
4.3.4.1 Examples of RHIC Radiological Hazards 159
4.3.4.2 Radiation Protection Philosophy 159
4.3.4.3 Personnel Safety Envelope 159
4.3.4.4 Collider Safety Envelope Parameters 159
4.3.4.5 Beam Loss Control 160
4.3.4.6 Particle Accelerator Safety System 160
4.4 Planned Accelerator Facilities 160
4.4.1 International Linear Collider 161
4.4.1.1 Electron Source/LINAC 161
4.4.1.2 Positron Source/LINAC 161
4.4.1.3 Electron-Damping Ring 162
4.4.1.4 Positron-Damping Ring 162
4.4.1.5 Main LINACs 162
4.4.1.6 Interaction Area 162
4A.I.7 Evolving ILC Design 162
4.4.1.8 ILC Health Physics 163
XII Contents
4.4.2 Muon Colliders 163
4.4.2.1 Neutrino Characteristics 164
4.4.2.2 Neutrino Beam Characteristics at a Muon Collider 165
4.4.2.3 Neutrino Interaction Model 167
4.4.2.4 Neutrino Effective Dose 167
4.4.2.5 Bounding Neutrino Effective Dose - Linear Muon Collider 168
4.4.2.6 Bounding Neutrino Effective Dose - Circular Muon Collider 171
4.4.2.7 ALARA Impacts of Muon Colliders 177
4.4.2.8 Other Radiation Protection Issues 178
4.4.3 Very Large Hadron Collider 181
4.5 Common Health Physics Issues in Twenty-First Century
Accelerators 181
4.5.1 Sources of Radiation 182
4.5.2 Activation 184
4.5.3 Radiation Shielding 184
4.5.4 Radiation Measurements 184
4.5.5 Environment 187
4.5.6 Operational Radiation Safety 189
4.5.7 Safety Systems 189
4.6 Other Applications 190
Problems 190
References 195
5 Light Sources 199
5.1 Overview 199
5.2 Physical Basis 200
5.2.1 Bremsstrahlung 200
5.2.2 Synchrotron Radiation 201
5.3 Overview of Photon light Sources - Insertion Devices 201
5.4 X-Ray Tubes 202
5.5 Overview of Synchrotron Radiation Sources and Their Evolution 203
5.6 X-Ray Radiation from Storage Rings 204
5.6.1 Bending Magnets 204
5.6.2 Insertion Devices 205
5.6.3 Wigglers 205
5.6.4 Undulators 205
5.7 Brightness Trends 206
5.8 Physics of Photon light Sources 206
5.8.1 Brightness of a Synchrotron Radiation Source 206
5.9 Motion of Accelerated Electrons 209
5.10 Insertion Device Radiation Properties 211
5.10.1 Power and Power Density 213
5.11 FEL Overview 215
5.12 Physical Model of a FEL 216
5.12.1 FEL Physics 218
Contents XIII
5.13 FEL Characteristics 220
5.14 Optical Gain 220
5.14.1 Cavity Design 221
5.14.2 Optical Klystron 223
5.15 Accessible FEL Output 224
5.16 X-Ray Free-Electron Lasers 224
5.17 Threshold X-Ray Free Electron 225
5.18 Near-Term X-Ray FELs 226
5.19 Gamma-Ray Free-Electron Lasers (GRFEL) 226
5.20 Other Photon-Generating Approaches 227
5.20.1 Compton Backscattering 228
5.20.2 Laser Accelerators 229
5.20.2.1 Basic Theory 229
5.20.3 Laser Wake-Field Acceleration (LWFA) 229
5.20.4 Laser Ion Acceleration (LIA) 230
5.20.5 Future Possibilities 230
5.21 X-Ray Induced Isomeric Transitions 231
5.22 Gamma-Ray Laser/Fission-Based Photon Sources 232
5.23 Photon Source Health Physics and Other Hazards 234
5.23.1 Ionizing Radiation 234
5.23.2 Nonlonizing Radiation 235
5.23.3 Activation of Accelerator Components 236
5.23.4 Shielding Design and Safety Analysis 236
5.24 Evaluation of Radiation Dose 237
5.25 General Safety Requirements 238
5.26 Radioactive and Toxic Gases 238
5.27 Laser Safety Calculations 239
5.27.1 Limiting Aperture 239
5.27.2 Exposure Time/Maximum Permissible Exposure 239
Problems 240
References 245
IV Space 249
6 Manned Planetary Missions 251
6.1 Overview 251
6.2 Introduction 253
6.3 Terminology 252
6.4 Basic Physics Overview 253
6.5 Radiation Protection Limitations 255
6.6 Overview of the Space Radiation Environment 255
6.6.1 General Characterization 257
6.6.2 Trapped or van Allen Belt Radiation 258
6.6.3 Galactic Cosmic Ray Radiation 259
XIV Contents
6.6.4 Solar Flare Radiation or Solar Particle Events 259
6.7 Calculation of Absorbed and Effective Doses 260
6.8 Historical Space Missions 260
6.8.1 Low-Earth Orbit Radiation Environment 260
6.8.2 The Space Radiation Environment Outside Earth's
Magnetic Field 261
6.8.3 Radiation Data from Historical Missions 263
6.8.4 Gemini 263
6.8.5 Skylab 265
6.8.6 Space Transport Shuttle 265
6.8.7 Mir Space Station 266
6.8.8 International Space Station 266
6.8.9 Apollo Lunar Missions 266
6.8.10 Validation of LEO and Lunar Mission Absorbed Dose Rates 267
6.9 LEO and Lunar Colonization 268
6.10 GCR and SPE Contributions to Manned Planetary Missions 269
6.10.1 GCR Doses 269
6.10.2 SPE Doses 270
6.10.3 Planetary Mission to Mars 275
6.10.4 Mars Orbital Dynamics 275
6.10.5 Overview of Mars Mission Doses 278
6.10.6 Oak Ridge National Laboratory (ORNL) Mars Mission 278
6.10.7 Trapped Radiation Contribution 278
6.10.8 GCR Contribution 278
6.10.9 SPE Contribution 279
6.10.10 Mars Mission Doses 279
6.11 Other Planetary Missions 280
6.11.1 Planetary Atmospheric Attenuation 285
6.12 Mars and Outer Planet Mission Shielding 286
6.13 Electromagnetic Deflection 288
6.13.1 EM Field Deflector Physics 289
6.13.2 Case I - Deflection Using a Static Magnetic Field 291
6.13.3 Case II - Deflection Using a Static Electric Field 291
6.13.4 Engineering Considerations for EM Field Generation 295
6.14 Space Radiation Biology 295
6.15 Final Thoughts 296
Problems 296
References 300
7 Deep Space Missions 303
7.1 Introduction 303
7.2 Stellar Radiation 303
7.2.1 Origin of Stars 304
7.2.2 Low Mass Stars 304
7.2.3 High Mass Stars 305
Contents XV
7.2.4 Star Types 307
7.2.5 MS Star Health Physics Considerations 309
7.2.6 Supernovas 309
7.2.7 White Dwarfs, Pulsars, and Black Holes 311
7.2.8 Dark Matter/Dark Energy 311
7.2.9 Gamma-Ray Bursts 312
7.3 Galaxies 314
7.3.1 Distance Scales 314
7.3.2 Characteristics of Galaxies 315
7.4 Deep Space Radiation Characteristics 317
7.5 Overview of Deep Space Missions 319
7.6 Trajectories 319
7.6.1 Spacetime and Geodesies 320
7.7 Candidate Missions 321
7.8 Propulsion Requirements for Deep Space Missions 322
7.9 Candidate Propulsion Systems Based on Existing Science and
Technology 323
7.9.1 Antimatter Propulsion 323
7.9.2 Fission Driven Electric Propulsion 323
7.9.3 Fusion Propulsion 324
7.9.4 Interstellar Ramjet 324
7.9.5 Unique Nuclear Reactions 325
7.10 Technology Growth Potential 325
7.10.1 Dyson Spheres 326
7.11 Sources of Radiation in Deep Space 327
7.12 Mission Doses 327
7.12.1 Trapped Radiation 328
7.12.2 Galactic Cosmic Radiation 329
7.12.3 SPE Radiation 330
7.12.4 Radiation from a Fusion Reactor Propulsion System 330
7.12.4.1 Distance 331
7.12.4.2 Shielding 331
7.13 Time to Reach Alpha Centauri 333
7.14 Countermeasures for Mitigating Radiation and Other
Concerns During Deep Space Missions 334
7.15 Theoretical Propulsion Options 335
7.15.1 Modifying (Warping) Spacetime 336
7.15.2 Wormholes 338
7.15.3 Folding Spacetime 338
7.15.4 Mapping Spacetime 338
7.16 Spatial Anomalies 339
7.17 Special Considerations 339
7.18 Point Source Relationship 340
Problems 344
References 348
XVI Contents
V Answers and Solutions 351
Solutions 353
Solutions for Chapter 2 353
Solutions for Chapter 3 368
Solutions for Chapter 4 384
Solutions for Chapter 5 403
Solutions for Chapter 6 421
Solutions for Chapter 7 435
VI Appendixes 453
A Significant Events and Important Dates in Physics
and Health Physics 455
References 463
B Production Equations in Health Physics 465
B.I Introduction 465
B.2 Theory 465
B.3 Examples 468
B.3.1 Activation 468
B.3.2 Demineralizer Activity 469
B.3.3 Surface Deposition 469
B.3.4 Release of Radioactive Material into a Room 470
B.4 Conclusions 471
References 471
C Key Health Physics Relationships 473
References 482
D Internal Dosimetry 483
D.I Introduction 483
D.2 Overview of Internal Dosimetry Models 483
D.3 MIRD Methodology 485
D.4 ICRP Methodology 487
D.5 Biological Effects 487
D.6 ICRP 26/30 and ICRP 60/66 Terminology 490
D.7 ICRP 26 and ICRP 60 Recommendations 490
D.8 Calculation of Internal Dose Equivalents Using ICRP 26/30 491
D.9 Calculation of Equivalent and Effective Doses
Using ICRP 60/66 493
D.10 Model Dependence 495
D.ll Conclusions 495
References 495
Contents XVII
E The Standard Model of Particle Physics 497
E.I Overview 497
E.2 Particle Properties and Supporting Terminology 497
E.2.1 Terminology 497
E.3 Basic Physics 498
E.3.1 Basic Particle Properties 498
E.3.2 Fundamental Interactions 501
E.4 Fundamental Interactions and Their Health Physics Impacts 503
E.4.1 Conservation Laws 504
E.4.2 Consequences of the Conservation Laws and
the Standard Model 506
E.5 Cross-Section Relationships for Specific Processes 508
References 508
F Special Theory of Relativity 509
F.I Length, Mass, and Time 509
F.I.I Cosmic Ray Muons and Pions 510
F.2 Energy and Momentum 512
References 513
C Muon Characteristics 515
G.I Overview 515
G.2 Stopping Power and Range 515
References 518
H Luminosity 519
H.I Overview 519
H.2 Accelerator Physics 519
References 521
I Dose Factors for Typical Radiation Types 523
1.1 Overview 523
1.2 Dose Factors 523
1.3 Dose Terminology 524
References 524
J Health Physics Related Computer Codes 525
J.I Code Overview 525
J.I.I EGS Code System 525
J.1.2 ENDF 525
J.I.3 FLUKA 526
J.1.4 JENDL 526
J.I.5 MARS 526
J.1.6 MCNP 526
J.I.7 MCNPX 526
XVIII Contents
J.1.8 MicroShield" 527
J.1.9 MicroSkyshine" 527
J.1.10 SCALE 5 527
J.I.11 SKYSHINE-KSU 528
J.1.12 SPAR 528
J.2 Code Utilization 528
References 529
K Systematic^ of Heavy Ion Interactions with Matter 531
K.1 Introduction 531
K.2 Overview of External Radiation Sources 531
K.3 Physical Basis for Heavy Ion Interactions with Matter 532
K.4 Range Calculations 535
K.5 Tissue Absorbed Dose from a Heavy Ion Beam 536
K.6 Determination of Total Reaction Cross Section 537
References 537
L Curvature Systematics in General Relativity 539
L.1 Introduction 539
L.2 Basic Curvature Quantities 539
L.3 Tensors and Connection Coefficients 541
L.3.1 Flat Spacerime Geometry 542
L.3.2 Schwarzschild Geometry 543
L.3.3 MT Wormhole Geometry 545
L.3.4 Generalized Schwarzchild Geometry 547
L.3.5 Friedman-Robertson-Walker (FRW) Geometry 549
L4 Conclusions 552
References 552
Index 553 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bevelacqua, Joseph John 1949- |
author_GND | (DE-588)134145585 |
author_facet | Bevelacqua, Joseph John 1949- |
author_role | aut |
author_sort | Bevelacqua, Joseph John 1949- |
author_variant | j j b jj jjb |
building | Verbundindex |
bvnumber | BV035114112 |
callnumber-first | R - Medicine |
callnumber-label | R895 |
callnumber-raw | R895 |
callnumber-search | R895 |
callnumber-sort | R 3895 |
callnumber-subject | R - General Medicine |
classification_rvk | XC 3800 |
ctrlnum | (OCoLC)181069648 (DE-599)BVBBV035114112 |
dewey-full | 610.153 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610.153 |
dewey-search | 610.153 |
dewey-sort | 3610.153 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
discipline_str_mv | Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV035114112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081022s2008 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985836989</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527408221</subfield><subfield code="c">Pp. : EUR 115.00 (freier Pr.), ca. sfr 182.00 (freier Pr.)</subfield><subfield code="9">978-3-527-40822-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527408223</subfield><subfield code="c">Pp. : EUR 115.00 (freier Pr.), ca. sfr 182.00 (freier Pr.)</subfield><subfield code="9">3-527-40822-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181069648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035114112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R895</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">610.153</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XC 3800</subfield><subfield code="0">(DE-625)152513:12905</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">610</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bevelacqua, Joseph John</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134145585</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Health physics in the 21st century</subfield><subfield code="c">Joseph John Bevelacqua</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH-Verl.</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 562 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical physics</subfield><subfield code="v">Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Medizinische Physik</subfield><subfield code="0">(DE-588)4130758-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Medizinische Physik</subfield><subfield code="0">(DE-588)4130758-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3008356&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016781891&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016781891</subfield></datafield></record></collection> |
id | DE-604.BV035114112 |
illustrated | Not Illustrated |
index_date | 2024-07-02T22:18:50Z |
indexdate | 2024-07-20T09:53:14Z |
institution | BVB |
isbn | 9783527408221 3527408223 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016781891 |
oclc_num | 181069648 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-M347 DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-M347 DE-11 |
physical | XXIII, 562 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley-VCH-Verl. |
record_format | marc |
spelling | Bevelacqua, Joseph John 1949- Verfasser (DE-588)134145585 aut Health physics in the 21st century Joseph John Bevelacqua Weinheim Wiley-VCH-Verl. 2008 XXIII, 562 S. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Health Physics Medical physics Medical physics Problems, exercises, etc Medizinische Physik (DE-588)4130758-6 gnd rswk-swf Medizinische Physik (DE-588)4130758-6 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3008356&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016781891&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bevelacqua, Joseph John 1949- Health physics in the 21st century Health Physics Medical physics Medical physics Problems, exercises, etc Medizinische Physik (DE-588)4130758-6 gnd |
subject_GND | (DE-588)4130758-6 |
title | Health physics in the 21st century |
title_auth | Health physics in the 21st century |
title_exact_search | Health physics in the 21st century |
title_exact_search_txtP | Health physics in the 21st century |
title_full | Health physics in the 21st century Joseph John Bevelacqua |
title_fullStr | Health physics in the 21st century Joseph John Bevelacqua |
title_full_unstemmed | Health physics in the 21st century Joseph John Bevelacqua |
title_short | Health physics in the 21st century |
title_sort | health physics in the 21st century |
topic | Health Physics Medical physics Medical physics Problems, exercises, etc Medizinische Physik (DE-588)4130758-6 gnd |
topic_facet | Health Physics Medical physics Medical physics Problems, exercises, etc Medizinische Physik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3008356&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016781891&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bevelacquajosephjohn healthphysicsinthe21stcentury |