Factorization method in quantum mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer
2007
|
Schriftenreihe: | Fundamental theories of physics
150 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XIX, 297 S. graph. Darst. |
ISBN: | 1402057954 9781402057953 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035110483 | ||
003 | DE-604 | ||
005 | 20090202 | ||
007 | t | ||
008 | 081021s2007 gw d||| |||| 00||| eng d | ||
015 | |a 07,N02,0665 |2 dnb | ||
016 | 7 | |a 982277598 |2 DE-101 | |
020 | |a 1402057954 |c Gb. : ca. EUR 128.35 (freier Pr.), ca. sfr 203.00 (freier Pr.) |9 1-402-05795-4 | ||
020 | |a 9781402057953 |c Gb. : ca. EUR 128.35 (freier Pr.), ca. sfr 203.00 (freier Pr.) |9 978-1-402-05795-3 | ||
024 | 3 | |a 9781402057953 | |
028 | 5 | 2 | |a 11553823 |
035 | |a (OCoLC)124038194 | ||
035 | |a (DE-599)BSZ277321824 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 | ||
050 | 0 | |a QC174.17.F3 | |
082 | 0 | |a 530.12 |2 22 | |
084 | |a UK 3000 |0 (DE-625)145799: |2 rvk | ||
084 | |a UK 4000 |0 (DE-625)145801: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Dong, Shi-Hai |d 1969- |e Verfasser |0 (DE-588)1018145125 |4 aut | |
245 | 1 | 0 | |a Factorization method in quantum mechanics |c by Shi-Hai Dong |
264 | 1 | |a Dordrecht |b Springer |c 2007 | |
300 | |a XIX, 297 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Fundamental theories of physics |v 150 | |
650 | 4 | |a Factorisation | |
650 | 4 | |a Théorie quantique | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Factorization (Mathematics) | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Faktorisierung |0 (DE-588)4128927-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 1 | |a Faktorisierung |0 (DE-588)4128927-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-402-05796-0 |
830 | 0 | |a Fundamental theories of physics |v 150 |w (DE-604)BV000012461 |9 150 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2887497&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016778314&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016778314 |
Datensatz im Suchindex
_version_ | 1805091268005462016 |
---|---|
adam_text |
Contents
Dedication
v
List of Figures
xiii
List of Tables
xv
Preface
xvii
Acknowledgments
xix
Part I Introduction
1.
INTRODUCTION
3
1
Basic review
3
2
Motivations and aims
11
Part II Method
2.
THEORY
15
1
Introduction
15
2
Formalism
15
3.
LIE ALGEBRAS SU(2) AND SU(
1,1) 17
1
Introduction
17
2
Abstract groups
19
3
Matrix representation
21
4
Properties of groups SU(2) and SO(3)
22
5
Properties of non-compact groups SO(2,
1)
and SU(1,
1) 23
6
Generators of Lie groups SU(2) and SU(
1, 1 ) 23
7
Irreducible representations
25
viii
FACTORIZATION METHOD IN QUANTUM MECHANICS
8
Irreducible unitary representations
28
9
Concluding remarks
30
Part III Applications in Non-relativistic Quantum Mechanics
4.
HARMONIC OSCILLATOR
35
1
Introduction
35
2
Exact solutions
36
3
Ladder operators
37
4
Bargmann-Segal transform
42
5
Single mode realization of dynamic group SU(1,
1) 42
6
Matrix elements
44
7
Coherent states
45
8
Franck-Condon factors
49
9
Concluding remarks
55
5.
INHNITELY DEEP SQUARE-WELL POTENTIAL
57
1
Introduction
57
2
Ladder operators for infinitely deep square-well potential
58
3
Realization of dynamic group SU(1,
1)
and matrix elements
60
4
Ladder operators for infinitely deep symmetric well potential
61
5
SUSYQM approach to infinitely deep square well potential
62
6
Perelomov coherent states
63
7
Barut-Girardello coherent states
67
8
Concluding remarks
70
6.
MORSE POTENTIAL
73
1
Introduction
73
2
Exact solutions
78
3
Ladder operators for the Morse potential
79
4
Realization of dynamic group SU(2)
82
5
Matrix elements
84
6
Harmonic limit
84
7
Franck-Condon factors
86
8
Transition probability
89
9
Realization of dynamic group SU(1,
1) 90
Contents ix
10
Concluding remarks
93
7. PÖSCHL-TELLER
POTENTIAL
95
1
Introduction
95
2
Exact solutions
97
3
Ladder operators
101
4
Realization of dynamic group SU(2)
103
5
Alternative approach to derive ladder operators
105
6
Harmonic limit
107
7
Expansions of the coordinate
χ
and momentum
ρ
from the
SU(2) generators
109
8
Concluding remarks
110
8.
PSEUDOHARMONIC OSCILLATOR 111
1
Introduction 111
2
Exact solutions in one dimension
112
3
Ladder operators
114
4
Barut-Girardello coherent states
117
5
Thermodynamic properties
118
6
Pseudoharmonic oscillator in arbitrary dimensions
122
7
Recurrence relations among matrix elements
129
8
Concluding remarks
135
9.
ALGEBRAIC APPROACH TO AN ELECTRON IN A UNIFORM
MAGNETIC FIELD
137
1
Introduction
137
2
Exact solutions
137
3
Ladder operators
139
4
Concluding remarks
142
10.
RING-SHAPED NON-SPHERICAL OSCILLATOR
143
1
Introduction
143
2
Exact solutions
143
3
Ladder operators
146
4
Realization of dynamic group
147
5
Concluding remarks
149
χ
FACTORIZATION METHOD IN QUANTUM MECHANICS
11.
GENERALIZED LAGUERRE FUNCTIONS
151
1
Introduction
151
2
Generalized Laguerre functions
151
3
Ladder operators and realization of dynamic group SU(
1,1) 153
4
Concluding remarks
155
12.
NEW
NONCENTRAL
RING-SHAPED POTENTIAL
157
1
Introduction
157
2
Bound states
158
3
Ladder operators
161
4
Mean values
162
5
Continuum states
165
6
Concluding remarks
168
13.
PÖSCHL-TELLER
LIKE POTENTIAL
169
1
Introduction
169
2
Exact solutions
169
3
Ladder operators
171
4
Realization of dynamic group and matrix elements
173
5
Infinitely square well and harmonic limits
174
6
Concluding remarks
176
14.
POSITION-DEPENDENT MASS
SCHRÖDINGER
EQUATION
FOR A SINGULAR OSCILLATOR
177
1
Introduction
177
2
Position-dependent effective mass
Schrödinger
equation for
harmonic oscillator
178
3
Singular oscillator with a position-dependent effective mass
179
4
Complete solutions
181
5
Another position-dependent effective mass
183
6
Concluding remarks
184
Contents xi
Part IV
Applications in Relativistic Quantum
Mechanics
15.
SUS YQM AND S WKB
APPROACH TO THE DIRAC EQUATION
WITH A COULOMB POTENTIAL IN
2+1
DIMENSIONS
187
1
Introduction
187
2
Dirac equation in
2 +1
dimensions
188
3
Exact solutions
189
4
SUSYQM and SWKB approaches to Coulomb problem
193
5
Alternative method to derive exact eigenfunctions
195
6
Concluding remarks
198
16.
REALIZATION OF DYNAMIC GROUP FOR
THE DIRAC HYDROGEN-LIKE ATOM IN
2+1
DIMENSIONS
201
1
Introduction
201
2
Realization of dynamic group SU(1,
1) 201
3
Concluding remarks
206
17.
ALGEBRAIC APPROACH TO KLEIN-GORDON
EQUATION WITH THE HYDROGEN-LIKE
ATOM IN
2+1
DIMENSIONS
207
1
Introduction
207
2
Exact solutions
207
3
Realization of dynamic group SU(1,
1) 209
4
Concluding remarks
211
18.
SUSYQM AND SWKB APPROACHES TO RELATIVISTIC
DIRAC AND KLEIN-GORDON EQUATIONS WITH HYPERBOLIC
POTENTIAL
213
1
Introduction
213
2
Relativistic Klein-Gordon and Dirac equations with hyperbolic
potential Vo tanh2
{r/ď)
214
3
SUSYQM and SWKB approaches to obtain eigenvalues
216
4
Complete solutions by traditional method
217
5
Harmonic limit
221
6
Concluding remarks
222
xii
FACTORIZATION METHOD IN QUANTUM MECHANICS
Part V Quantum Control
19.
CONTROLLABILITY OF QUANTUM SYSTEMS FOR THE
MORSE AND PT POTENTIALS WITH DYNAMIC GROUP SU(2)
225
1
Introduction
225
2
Preliminaries on control theory
226
3
Analysis of the controllability
227
4
Concluding remarks
228
20.
CONTROLLABILITY OF QUANTUM SYSTEM FOR THE
PT-LIKE POTENTIAL WITH DYNAMIC GROUP SU(
1, 1 ) 229
1
Introduction
229
2
Preliminaries on the control theory
230
3
Analysis of controllability
233
4
Concluding remarks
234
Part VI Conclusions and Outlooks
21.
CONCLUSIONS AND OUTLOOKS
237
1
Conclusions
237
2
Outlooks
238
Appendices
239
A Integral formulas of the confluent hypergeometric functions
239
В
Mean values rk for hydrogen-like atom
243
С
Commutator identities
247
D
Angular momentum operators in spherical coordinates
249
E
Confluent hypergeometric function
251
References
255
Index
295 |
adam_txt |
Contents
Dedication
v
List of Figures
xiii
List of Tables
xv
Preface
xvii
Acknowledgments
xix
Part I Introduction
1.
INTRODUCTION
3
1
Basic review
3
2
Motivations and aims
11
Part II Method
2.
THEORY
15
1
Introduction
15
2
Formalism
15
3.
LIE ALGEBRAS SU(2) AND SU(
1,1) 17
1
Introduction
17
2
Abstract groups
19
3
Matrix representation
21
4
Properties of groups SU(2) and SO(3)
22
5
Properties of non-compact groups SO(2,
1)
and SU(1,
1) 23
6
Generators of Lie groups SU(2) and SU(
1, 1 ) 23
7
Irreducible representations
25
viii
FACTORIZATION METHOD IN QUANTUM MECHANICS
8
Irreducible unitary representations
28
9
Concluding remarks
30
Part III Applications in Non-relativistic Quantum Mechanics
4.
HARMONIC OSCILLATOR
35
1
Introduction
35
2
Exact solutions
36
3
Ladder operators
37
4
Bargmann-Segal transform
42
5
Single mode realization of dynamic group SU(1,
1) 42
6
Matrix elements
44
7
Coherent states
45
8
Franck-Condon factors
49
9
Concluding remarks
55
5.
INHNITELY DEEP SQUARE-WELL POTENTIAL
57
1
Introduction
57
2
Ladder operators for infinitely deep square-well potential
58
3
Realization of dynamic group SU(1,
1)
and matrix elements
60
4
Ladder operators for infinitely deep symmetric well potential
61
5
SUSYQM approach to infinitely deep square well potential
62
6
Perelomov coherent states
63
7
Barut-Girardello coherent states
67
8
Concluding remarks
70
6.
MORSE POTENTIAL
73
1
Introduction
73
2
Exact solutions
78
3
Ladder operators for the Morse potential
79
4
Realization of dynamic group SU(2)
82
5
Matrix elements
84
6
Harmonic limit
84
7
Franck-Condon factors
86
8
Transition probability
89
9
Realization of dynamic group SU(1,
1) 90
Contents ix
10
Concluding remarks
93
7. PÖSCHL-TELLER
POTENTIAL
95
1
Introduction
95
2
Exact solutions
97
3
Ladder operators
101
4
Realization of dynamic group SU(2)
103
5
Alternative approach to derive ladder operators
105
6
Harmonic limit
107
7
Expansions of the coordinate
χ
and momentum
ρ
from the
SU(2) generators
109
8
Concluding remarks
110
8.
PSEUDOHARMONIC OSCILLATOR 111
1
Introduction 111
2
Exact solutions in one dimension
112
3
Ladder operators
114
4
Barut-Girardello coherent states
117
5
Thermodynamic properties
118
6
Pseudoharmonic oscillator in arbitrary dimensions
122
7
Recurrence relations among matrix elements
129
8
Concluding remarks
135
9.
ALGEBRAIC APPROACH TO AN ELECTRON IN A UNIFORM
MAGNETIC FIELD
137
1
Introduction
137
2
Exact solutions
137
3
Ladder operators
139
4
Concluding remarks
142
10.
RING-SHAPED NON-SPHERICAL OSCILLATOR
143
1
Introduction
143
2
Exact solutions
143
3
Ladder operators
146
4
Realization of dynamic group
147
5
Concluding remarks
149
χ
FACTORIZATION METHOD IN QUANTUM MECHANICS
11.
GENERALIZED LAGUERRE FUNCTIONS
151
1
Introduction
151
2
Generalized Laguerre functions
151
3
Ladder operators and realization of dynamic group SU(
1,1) 153
4
Concluding remarks
155
12.
NEW
NONCENTRAL
RING-SHAPED POTENTIAL
157
1
Introduction
157
2
Bound states
158
3
Ladder operators
161
4
Mean values
162
5
Continuum states
165
6
Concluding remarks
168
13.
PÖSCHL-TELLER
LIKE POTENTIAL
169
1
Introduction
169
2
Exact solutions
169
3
Ladder operators
171
4
Realization of dynamic group and matrix elements
173
5
Infinitely square well and harmonic limits
174
6
Concluding remarks
176
14.
POSITION-DEPENDENT MASS
SCHRÖDINGER
EQUATION
FOR A SINGULAR OSCILLATOR
177
1
Introduction
177
2
Position-dependent effective mass
Schrödinger
equation for
harmonic oscillator
178
3
Singular oscillator with a position-dependent effective mass
179
4
Complete solutions
181
5
Another position-dependent effective mass
183
6
Concluding remarks
184
Contents xi
Part IV
Applications in Relativistic Quantum
Mechanics
15.
SUS YQM AND S WKB
APPROACH TO THE DIRAC EQUATION
WITH A COULOMB POTENTIAL IN
2+1
DIMENSIONS
187
1
Introduction
187
2
Dirac equation in
2 +1
dimensions
188
3
Exact solutions
189
4
SUSYQM and SWKB approaches to Coulomb problem
193
5
Alternative method to derive exact eigenfunctions
195
6
Concluding remarks
198
16.
REALIZATION OF DYNAMIC GROUP FOR
THE DIRAC HYDROGEN-LIKE ATOM IN
2+1
DIMENSIONS
201
1
Introduction
201
2
Realization of dynamic group SU(1,
1) 201
3
Concluding remarks
206
17.
ALGEBRAIC APPROACH TO KLEIN-GORDON
EQUATION WITH THE HYDROGEN-LIKE
ATOM IN
2+1
DIMENSIONS
207
1
Introduction
207
2
Exact solutions
207
3
Realization of dynamic group SU(1,
1) 209
4
Concluding remarks
211
18.
SUSYQM AND SWKB APPROACHES TO RELATIVISTIC
DIRAC AND KLEIN-GORDON EQUATIONS WITH HYPERBOLIC
POTENTIAL
213
1
Introduction
213
2
Relativistic Klein-Gordon and Dirac equations with hyperbolic
potential Vo tanh2
{r/ď)
214
3
SUSYQM and SWKB approaches to obtain eigenvalues
216
4
Complete solutions by traditional method
217
5
Harmonic limit
221
6
Concluding remarks
222
xii
FACTORIZATION METHOD IN QUANTUM MECHANICS
Part V Quantum Control
19.
CONTROLLABILITY OF QUANTUM SYSTEMS FOR THE
MORSE AND PT POTENTIALS WITH DYNAMIC GROUP SU(2)
225
1
Introduction
225
2
Preliminaries on control theory
226
3
Analysis of the controllability
227
4
Concluding remarks
228
20.
CONTROLLABILITY OF QUANTUM SYSTEM FOR THE
PT-LIKE POTENTIAL WITH DYNAMIC GROUP SU(
1, 1 ) 229
1
Introduction
229
2
Preliminaries on the control theory
230
3
Analysis of controllability
233
4
Concluding remarks
234
Part VI Conclusions and Outlooks
21.
CONCLUSIONS AND OUTLOOKS
237
1
Conclusions
237
2
Outlooks
238
Appendices
239
A Integral formulas of the confluent hypergeometric functions
239
В
Mean values rk for hydrogen-like atom
243
С
Commutator identities
247
D
Angular momentum operators in spherical coordinates
249
E
Confluent hypergeometric function
251
References
255
Index
295 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dong, Shi-Hai 1969- |
author_GND | (DE-588)1018145125 |
author_facet | Dong, Shi-Hai 1969- |
author_role | aut |
author_sort | Dong, Shi-Hai 1969- |
author_variant | s h d shd |
building | Verbundindex |
bvnumber | BV035110483 |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.17.F3 |
callnumber-search | QC174.17.F3 |
callnumber-sort | QC 3174.17 F3 |
callnumber-subject | QC - Physics |
classification_rvk | UK 3000 UK 4000 |
ctrlnum | (OCoLC)124038194 (DE-599)BSZ277321824 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV035110483</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090202</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081021s2007 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N02,0665</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">982277598</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402057954</subfield><subfield code="c">Gb. : ca. EUR 128.35 (freier Pr.), ca. sfr 203.00 (freier Pr.)</subfield><subfield code="9">1-402-05795-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402057953</subfield><subfield code="c">Gb. : ca. EUR 128.35 (freier Pr.), ca. sfr 203.00 (freier Pr.)</subfield><subfield code="9">978-1-402-05795-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781402057953</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11553823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)124038194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ277321824</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.17.F3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 3000</subfield><subfield code="0">(DE-625)145799:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 4000</subfield><subfield code="0">(DE-625)145801:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dong, Shi-Hai</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018145125</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factorization method in quantum mechanics</subfield><subfield code="c">by Shi-Hai Dong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 297 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fundamental theories of physics</subfield><subfield code="v">150</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factorisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie quantique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factorization (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faktorisierung</subfield><subfield code="0">(DE-588)4128927-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Faktorisierung</subfield><subfield code="0">(DE-588)4128927-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-402-05796-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fundamental theories of physics</subfield><subfield code="v">150</subfield><subfield code="w">(DE-604)BV000012461</subfield><subfield code="9">150</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2887497&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016778314&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016778314</subfield></datafield></record></collection> |
id | DE-604.BV035110483 |
illustrated | Illustrated |
index_date | 2024-07-02T22:17:16Z |
indexdate | 2024-07-20T09:53:00Z |
institution | BVB |
isbn | 1402057954 9781402057953 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016778314 |
oclc_num | 124038194 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | XIX, 297 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series | Fundamental theories of physics |
series2 | Fundamental theories of physics |
spelling | Dong, Shi-Hai 1969- Verfasser (DE-588)1018145125 aut Factorization method in quantum mechanics by Shi-Hai Dong Dordrecht Springer 2007 XIX, 297 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Fundamental theories of physics 150 Factorisation Théorie quantique Quantentheorie Factorization (Mathematics) Quantum theory Faktorisierung (DE-588)4128927-4 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 s Faktorisierung (DE-588)4128927-4 s DE-604 Erscheint auch als Online-Ausgabe 978-1-402-05796-0 Fundamental theories of physics 150 (DE-604)BV000012461 150 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2887497&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016778314&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dong, Shi-Hai 1969- Factorization method in quantum mechanics Fundamental theories of physics Factorisation Théorie quantique Quantentheorie Factorization (Mathematics) Quantum theory Faktorisierung (DE-588)4128927-4 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4128927-4 (DE-588)4047989-4 |
title | Factorization method in quantum mechanics |
title_auth | Factorization method in quantum mechanics |
title_exact_search | Factorization method in quantum mechanics |
title_exact_search_txtP | Factorization method in quantum mechanics |
title_full | Factorization method in quantum mechanics by Shi-Hai Dong |
title_fullStr | Factorization method in quantum mechanics by Shi-Hai Dong |
title_full_unstemmed | Factorization method in quantum mechanics by Shi-Hai Dong |
title_short | Factorization method in quantum mechanics |
title_sort | factorization method in quantum mechanics |
topic | Factorisation Théorie quantique Quantentheorie Factorization (Mathematics) Quantum theory Faktorisierung (DE-588)4128927-4 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Factorisation Théorie quantique Quantentheorie Factorization (Mathematics) Quantum theory Faktorisierung Quantenmechanik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2887497&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016778314&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000012461 |
work_keys_str_mv | AT dongshihai factorizationmethodinquantummechanics |