Partial differential equations in economics and finance:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Nova Science Publishers
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (p. 125-131) and index |
Beschreibung: | XI, 134 S. 27 cm |
ISBN: | 9781600217067 1600217060 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035109664 | ||
003 | DE-604 | ||
005 | 20120229 | ||
007 | t | ||
008 | 081020s2007 xxu |||| 00||| eng d | ||
010 | |a 2007010101 | ||
020 | |a 9781600217067 |c hardcover |9 978-1-60021-706-7 | ||
020 | |a 1600217060 |c hardcover |9 1-60021-706-0 | ||
035 | |a (OCoLC)86090336 | ||
035 | |a (DE-599)BSZ267359128 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-521 |a DE-19 | ||
050 | 0 | |a HB135 | |
082 | 0 | |a 330.01/515353 | |
084 | |a QH 150 |0 (DE-625)141534: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
100 | 1 | |a Basov, Suren |e Verfasser |4 aut | |
245 | 1 | 0 | |a Partial differential equations in economics and finance |c Suran [i.e. Suren] Basov |
264 | 1 | |a New York |b Nova Science Publishers |c 2007 | |
300 | |a XI, 134 S. |c 27 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 125-131) and index | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Economics, Mathematical | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Finance |x Mathematical models | |
650 | 0 | 7 | |a Finanzmathematik |0 (DE-588)4017195-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Finanzmathematik |0 (DE-588)4017195-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016777507&sequence=000007&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016777507 |
Datensatz im Suchindex
_version_ | 1804138081692942336 |
---|---|
adam_text | CONTENTS PREFACE IX I MATHEMATICAL PRELIMINARIES 1 1 PARTIAL
DIFFERENTIAL EQUATIONS 5 1.1 LINEAR AND QUASILINEAR FIRST ORDER PARTIAL
DIFFERENTIAL EQUATIONS . . 5 1.1.1 EXAMPLES 6 1.2 THE COMPLETE INTEGRAL,
THE GENERAL INTEGRAL, AND THE SINGULAR INTEGRAL 8 1.2.1 COMPATIBLE
SYSTEMS OF THE FIRST ORDER PDES 9 1.3 THE SECOND ORDER PARTIAL
DIFFERENTIAL EQUATIONS 10 1.3.1 CLASSIFICATION OF THE QUASILINEAR SECOND
ORDER PARTIAL DIFFER- ENTIAL EQUATIONS 10 1.3.2 BOUNDARY VALUE PROBLEMS
FOR ELLIPTIC EQUATIONS 11 1.3.3 THE CAUCHY PROBLEM FOR A PARABOLIC
EQUATION 13 1.3.4 EXAMPLES 15 1.4 EXERCISES 18 1.5 BIBLIOGRAPHIC NOTES
19 2 STOCHASTIC PROCESSES 21 2.1 STOCHASTIC PROCESSES AND TRANSITION
PROBABILITIES 21 2.2 THE GENERATOR OF THE STOCHASTIC PROCESS 22 2.3
EXERCISES 24 2.4 BIBLIOGRAPHIC NOTES 25 II ECONOMIC APPLICATIONS 27 3
CONSUMER THEORY 31 3.1 MARSHALLIAN DEMAND AND THE INDIRECT UTILITY
FUNCTION . 31 3.2 FINDING THE INDIRECT UTILITY FROM THE MARSHALLIAN
DEMAND 33 3.3 AN EXAMPLE OF FINDING THE INDIRECT UTILITY FUNCTION FROM
THE DEMAND 34 3.4 EXERCISES 36 V1 SUREN BASOV 3.5 BIBLIOGRAPHIC NOTES 37
PRODUCER THEORY 39 4.1 THE BASICS OF THE PRODUCTION THEORY 39 4.2 THE
MAIN PARTIAL DIFFERENTIAL EQUATION OF THE PRODUCTION THEORY . . 40 4.3
EXAMPLES SOLVED 41 4.4 EXERCISES 44 4.5 BIBLIOGRAPHIC NOTES . 44 PRICING
OF THE FINANCIAL DERIVATIVES 45 5.1 FINANCIAL SECURITIES AND FINANCIAL
DERIVATIVES 45 5.2 THE FUNDAMENTAL EQUATION OF DERIVATIVES PRICING 47
5.3 PRICING OF EUROPEAN OPTIONS 48 5.4 FINANCIAL MARKETS AND BOUNDED
RATIONALITY 49 5.5 EXERCISES 49 5.6 BIBLIOGRAPHIC NOTES 49 A THEORY OF
BOUNDEDLY RATIONAL BEHAVIOR 51 6.1 A MODEL OF NOISY INDIVIDUAL
ADJUSTMENT 53 6.1.1 A ONE-DIMENSIONAL CASE 53 6.1.2 THE MULTIDIMENSIONAL
CASE 55 6.1.3 A DISCUSSION OF ONE EXPERIMENT 56 6.1.4 CONCLUSIONS 60 6.2
A MODEL OF SOCIAL LEARNING 61 6.3 LOCALLY IMPROVING ADJUSTMENT RULES AND
THE DEDUCED UTILITY .... 64 6.4 ESTIMATING THE UTILITY FUNCTION FROM THE
DATA 71 6.5 EVOLUTIONARY DETERMINATION OF ADJUSTMENT RULES 72 6.6 A NOTE
OF CAUTION 73 6.7 INCENTIVES FOR BOUNDEDLY RATIONAL AGENTS 73 6.8 THE
OPTIMAL MONOPOLY PRICING UNDER VISCOUS DEMAND AND CUS- TOMERS TURNOVER
76 6.8.1 THE MODEL 78 6.8.2 THE POPULATION TURNOVER RATE AND THE
MONOPOLIST S PROFITS . 81 6.8.3 CONCLUSIONS 82 6.9 THE EMERGING BOUNDED
RATIONALITY PARADIGM 82 6.10 EXERCISES . 83 6.11 BIBLIOGRAPHIC NOTES 84
GAME THEORY 85 7.1 THE NORMAL FORM GAMES AND NASH EQUILIBRIUM 85 7.2 AN
EVOLUTIONARY MODEL OF RECIPROCITY 86 7.2.1 THE MODEL 89 7.3 EVOLUTION OF
SOCIAL BEHAVIOR III GLOBAL ECONOMY 93 CONTENTS VII 7.3.1 THE MODEL 97
7.3.2 SOME EXAMPLES 106 7.3.3 THE BEHAVIORAL FOUNDATIONS OF THE MODEL
110 7.3.4 DISCUSSION AND CONCLUSIONS 113 7.4 EXERCISES 114 7.5
BIBLIOGRAPHIC NOTES 114 8 THE MULTIDIMENSIONAL SCREENING MODEL 117 8.1
HAMILTONIAN APPROACH AND THE FIRST ORDER CONDITIONS 118 8.2 AN EXAMPLE
120 8.3 CONCLUSIONS 121 8.4 EXERCISES 122 9 CONCLUSIONS 123 REFERENCES
125 INDEX 133 PPN: 267359128 TITEL: PARTIAL DIFFERENTIAL EQUATIONS IN
ECONOMICS AND FINANCE / SURAN BASOV. - NEW YORK, N.Y. : NOVA SCIENCE
PUBL., 2007 ISBN: 978-1-60021-706-7; 1-60021-706-0(HBK.)104.50 HBK. :
104.50 : CIP ENTRY (SEPT.) BIBLIOGRAPHISCHER DATENSATZ IM SWB-VERBUND
|
adam_txt |
CONTENTS PREFACE IX I MATHEMATICAL PRELIMINARIES 1 1 PARTIAL
DIFFERENTIAL EQUATIONS 5 1.1 LINEAR AND QUASILINEAR FIRST ORDER PARTIAL
DIFFERENTIAL EQUATIONS . . 5 1.1.1 EXAMPLES 6 1.2 THE COMPLETE INTEGRAL,
THE GENERAL INTEGRAL, AND THE SINGULAR INTEGRAL 8 1.2.1 COMPATIBLE
SYSTEMS OF THE FIRST ORDER PDES 9 1.3 THE SECOND ORDER PARTIAL
DIFFERENTIAL EQUATIONS 10 1.3.1 CLASSIFICATION OF THE QUASILINEAR SECOND
ORDER PARTIAL DIFFER- ENTIAL EQUATIONS 10 1.3.2 BOUNDARY VALUE PROBLEMS
FOR ELLIPTIC EQUATIONS 11 1.3.3 THE CAUCHY PROBLEM FOR A PARABOLIC
EQUATION 13 1.3.4 EXAMPLES 15 1.4 EXERCISES 18 1.5 BIBLIOGRAPHIC NOTES
19 2 STOCHASTIC PROCESSES 21 2.1 STOCHASTIC PROCESSES AND TRANSITION
PROBABILITIES 21 2.2 THE GENERATOR OF THE STOCHASTIC PROCESS 22 2.3
EXERCISES 24 2.4 BIBLIOGRAPHIC NOTES 25 II ECONOMIC APPLICATIONS 27 3
CONSUMER THEORY 31 3.1 MARSHALLIAN DEMAND AND THE INDIRECT UTILITY
FUNCTION . 31 3.2 FINDING THE INDIRECT UTILITY FROM THE MARSHALLIAN
DEMAND 33 3.3 AN EXAMPLE OF FINDING THE INDIRECT UTILITY FUNCTION FROM
THE DEMAND 34 3.4 EXERCISES 36 V1 SUREN BASOV 3.5 BIBLIOGRAPHIC NOTES 37
PRODUCER THEORY 39 4.1 THE BASICS OF THE PRODUCTION THEORY 39 4.2 THE
MAIN PARTIAL DIFFERENTIAL EQUATION OF THE PRODUCTION THEORY . . 40 4.3
EXAMPLES SOLVED 41 4.4 EXERCISES 44 4.5 BIBLIOGRAPHIC NOTES . 44 PRICING
OF THE FINANCIAL DERIVATIVES 45 5.1 FINANCIAL SECURITIES AND FINANCIAL
DERIVATIVES 45 5.2 THE FUNDAMENTAL EQUATION OF DERIVATIVES PRICING 47
5.3 PRICING OF EUROPEAN OPTIONS 48 5.4 FINANCIAL MARKETS AND BOUNDED
RATIONALITY 49 5.5 EXERCISES 49 5.6 BIBLIOGRAPHIC NOTES 49 A THEORY OF
BOUNDEDLY RATIONAL BEHAVIOR 51 6.1 A MODEL OF NOISY INDIVIDUAL
ADJUSTMENT 53 6.1.1 A ONE-DIMENSIONAL CASE 53 6.1.2 THE MULTIDIMENSIONAL
CASE 55 6.1.3 A DISCUSSION OF ONE EXPERIMENT 56 6.1.4 CONCLUSIONS 60 6.2
A MODEL OF SOCIAL LEARNING 61 6.3 LOCALLY IMPROVING ADJUSTMENT RULES AND
THE DEDUCED UTILITY . 64 6.4 ESTIMATING THE UTILITY FUNCTION FROM THE
DATA 71 6.5 EVOLUTIONARY DETERMINATION OF ADJUSTMENT RULES 72 6.6 A NOTE
OF CAUTION 73 6.7 INCENTIVES FOR BOUNDEDLY RATIONAL AGENTS 73 6.8 THE
OPTIMAL MONOPOLY PRICING UNDER VISCOUS DEMAND AND CUS- TOMERS TURNOVER
76 6.8.1 THE MODEL 78 6.8.2 THE POPULATION TURNOVER RATE AND THE
MONOPOLIST'S PROFITS . 81 6.8.3 CONCLUSIONS 82 6.9 THE EMERGING BOUNDED
RATIONALITY PARADIGM 82 6.10 EXERCISES . 83 6.11 BIBLIOGRAPHIC NOTES 84
GAME THEORY 85 7.1 THE NORMAL FORM GAMES AND NASH EQUILIBRIUM 85 7.2 AN
EVOLUTIONARY MODEL OF RECIPROCITY 86 7.2.1 THE MODEL 89 7.3 EVOLUTION OF
SOCIAL BEHAVIOR III GLOBAL ECONOMY 93 CONTENTS VII 7.3.1 THE MODEL 97
7.3.2 SOME EXAMPLES 106 7.3.3 THE BEHAVIORAL FOUNDATIONS OF THE MODEL
110 7.3.4 DISCUSSION AND CONCLUSIONS 113 7.4 EXERCISES 114 7.5
BIBLIOGRAPHIC NOTES 114 8 THE MULTIDIMENSIONAL SCREENING MODEL 117 8.1
HAMILTONIAN APPROACH AND THE FIRST ORDER CONDITIONS 118 8.2 AN EXAMPLE
120 8.3 CONCLUSIONS 121 8.4 EXERCISES 122 9 CONCLUSIONS 123 REFERENCES
125 INDEX 133 PPN: 267359128 TITEL: PARTIAL DIFFERENTIAL EQUATIONS IN
ECONOMICS AND FINANCE / SURAN BASOV. - NEW YORK, N.Y. : NOVA SCIENCE
PUBL., 2007 ISBN: 978-1-60021-706-7; 1-60021-706-0(HBK.)104.50 HBK. :
104.50 : CIP ENTRY (SEPT.) BIBLIOGRAPHISCHER DATENSATZ IM SWB-VERBUND |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Basov, Suren |
author_facet | Basov, Suren |
author_role | aut |
author_sort | Basov, Suren |
author_variant | s b sb |
building | Verbundindex |
bvnumber | BV035109664 |
callnumber-first | H - Social Science |
callnumber-label | HB135 |
callnumber-raw | HB135 |
callnumber-search | HB135 |
callnumber-sort | HB 3135 |
callnumber-subject | HB - Economic Theory and Demography |
classification_rvk | QH 150 SK 540 SK 980 |
ctrlnum | (OCoLC)86090336 (DE-599)BSZ267359128 |
dewey-full | 330.01/515353 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.01/515353 |
dewey-search | 330.01/515353 |
dewey-sort | 3330.01 6515353 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01842nam a2200481zc 4500</leader><controlfield tag="001">BV035109664</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120229 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081020s2007 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007010101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781600217067</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-1-60021-706-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1600217060</subfield><subfield code="c">hardcover</subfield><subfield code="9">1-60021-706-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)86090336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ267359128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HB135</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.01/515353</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 150</subfield><subfield code="0">(DE-625)141534:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Basov, Suren</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial differential equations in economics and finance</subfield><subfield code="c">Suran [i.e. Suren] Basov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Nova Science Publishers</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 134 S.</subfield><subfield code="c">27 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 125-131) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics, Mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016777507&sequence=000007&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016777507</subfield></datafield></record></collection> |
id | DE-604.BV035109664 |
illustrated | Not Illustrated |
index_date | 2024-07-02T22:17:02Z |
indexdate | 2024-07-09T21:22:31Z |
institution | BVB |
isbn | 9781600217067 1600217060 |
language | English |
lccn | 2007010101 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016777507 |
oclc_num | 86090336 |
open_access_boolean | |
owner | DE-703 DE-521 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-521 DE-19 DE-BY-UBM |
physical | XI, 134 S. 27 cm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Nova Science Publishers |
record_format | marc |
spelling | Basov, Suren Verfasser aut Partial differential equations in economics and finance Suran [i.e. Suren] Basov New York Nova Science Publishers 2007 XI, 134 S. 27 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references (p. 125-131) and index Mathematisches Modell Economics, Mathematical Differential equations, Partial Finance Mathematical models Finanzmathematik (DE-588)4017195-4 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Finanzmathematik (DE-588)4017195-4 s DE-604 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016777507&sequence=000007&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Basov, Suren Partial differential equations in economics and finance Mathematisches Modell Economics, Mathematical Differential equations, Partial Finance Mathematical models Finanzmathematik (DE-588)4017195-4 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4017195-4 (DE-588)4044779-0 |
title | Partial differential equations in economics and finance |
title_auth | Partial differential equations in economics and finance |
title_exact_search | Partial differential equations in economics and finance |
title_exact_search_txtP | Partial differential equations in economics and finance |
title_full | Partial differential equations in economics and finance Suran [i.e. Suren] Basov |
title_fullStr | Partial differential equations in economics and finance Suran [i.e. Suren] Basov |
title_full_unstemmed | Partial differential equations in economics and finance Suran [i.e. Suren] Basov |
title_short | Partial differential equations in economics and finance |
title_sort | partial differential equations in economics and finance |
topic | Mathematisches Modell Economics, Mathematical Differential equations, Partial Finance Mathematical models Finanzmathematik (DE-588)4017195-4 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematisches Modell Economics, Mathematical Differential equations, Partial Finance Mathematical models Finanzmathematik Partielle Differentialgleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016777507&sequence=000007&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT basovsuren partialdifferentialequationsineconomicsandfinance |