Flash chemistry: fast organic synthesis in microsystems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
Wiley
2008
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | IX, 234 S. Ill., graph. Darst. |
ISBN: | 9780470035863 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035107936 | ||
003 | DE-604 | ||
005 | 20100212 | ||
007 | t | ||
008 | 081020s2008 xxuad|| |||| 00||| eng d | ||
010 | |a 2008027929 | ||
020 | |a 9780470035863 |c cloth : alk. paper |9 978-0-470-03586-3 | ||
035 | |a (OCoLC)232636765 | ||
035 | |a (DE-599)BVBBV035107936 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-29T |a DE-19 |a DE-526 | ||
050 | 0 | |a QD262 | |
082 | 0 | |a 547/.2 | |
084 | |a VK 5500 |0 (DE-625)147401:253 |2 rvk | ||
100 | 1 | |a Yoshida, Junichi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Flash chemistry |b fast organic synthesis in microsystems |c Jun-ichi Yoshida |
250 | |a 1. publ. | ||
264 | 1 | |a Hoboken, N.J. |b Wiley |c 2008 | |
300 | |a IX, 234 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Organic compounds |x Synthesis | |
650 | 4 | |a Intermediates (Chemistry) | |
650 | 4 | |a Microreactors | |
650 | 4 | |a Organic reaction mechanisms | |
650 | 0 | 7 | |a Mikroreaktor |0 (DE-588)4786310-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zwischenstufe |g Chemie |0 (DE-588)4303545-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Organische Synthese |0 (DE-588)4075695-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mikroreaktor |0 (DE-588)4786310-9 |D s |
689 | 0 | 1 | |a Organische Synthese |0 (DE-588)4075695-6 |D s |
689 | 0 | 2 | |a Zwischenstufe |g Chemie |0 (DE-588)4303545-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016775817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016775817 |
Datensatz im Suchindex
_version_ | 1804138079078842368 |
---|---|
adam_text | Contents
Preface
χι
1
Introduction
1
1.1
Flask Chemistry
2
1.2
Flash Chemistry
3
1.3
Flask Chemistry or Flash Chemistry
4
References
5
2
The Background to Flash Chemistry
7
2.1
How do Chemical Reactions Take Place?
7
2.1.1
Macroscopic View of Chemical Reactions
8
2.1.2
Thermodynamic Equilibrium and Kinetics
8
2.1.3
Kinetics
10
2.1.4
Transition State Theory
12
2.1.5
Femtosecond Chemistry and Reaction Dynamics
12
2.1.6
Reactions for Dynamics and Reactions for
Synthesis
13
2.1.7
Bimolecular Reactions in the Gas Phase
15
2.1.8
Bimolecular Reactions in the Solution Phase
16
2.1.9
Fast Chemical Synthesis Inspired by Reaction
Dynamics
17
References
18
3
What is Flash Chemistry?
19
4
Why is Flash Chemistry Needed?
23
4.1
Chemical Reaction, an Extremely Fast Process
at Molecular Level
23
4.2
Rapid Construction of Chemical Libraries
24
4.3
Rapid Synthesis of Radioactive Positron Emission
Tomography Probes
27
4.4
On-demand Rapid Synthesis in Industry
30
CONTENTS
4.5
Conclusions
31
References
31
Methods of Activating Molecules
33
5.1
Thermal Activation of Organic Molecules
33
5.1.1
High Temperature Reactions
33
5.1.2
Flash Vacuum Pyrolysis
35
5.1.3
Microwave Reactions
36
5.2
Photochemical Activation
38
5.3
Electrochemical Activation
39
5.4
Chemical Activation
41
5.5
Accumulation of Reactive Species
43
5.5.1
The Cation-pool Method
44
5.6
Continuous Generation of Reactive Species
in a Flow System
57
5.7
Interconversion
Between Reactive Species
59
5.8
Conclusions
62
References
63
Control of Extremely Fast Reactions
69
6.1
Mixing
69
6.1.1
How Does Mixing Take Place?
70
6.1.2
Molecular Diffusion and Brownian Motion
72
6.1.3
Disguised Chemical Selectivity
73
6.1.4
Lowering the Reaction Temperature
76
6.1.5
The High Dilution Method
77
6.1.6
Micromixing
78
6.1.7
Friedel-Crafts Alkylation Using an N-acyliminium
Ion Pool
78
6.1.8
Micromixing as a Powerful Tool for Flash
Chemistry
85
6.1.9
Disguised Chemical Selectivity in Competitive
Parallel Reactions
85
6.2
Temperature Control
87
6.2.1
Exothermicity of Fast Reactions
87
6.2.2
Hammond s Postulate
89
6.2.3
The Friedel-Crafts Reaction
90
6.2.4
Solvent
92
6.2.5
Heat Transfer
93
6.2.6
Precise Temperature Control in Microflow
Systems
95
CONTENTS
vii
6.3
Residence
Time Control
97
6.3.1
The Discovery of
Benzynę.
The Concept
of Reactive Intermediates
98
6.3.2
o-Bromophenyllithium
99
6.4
Conclusions
102
References
102
7
Microfluidic Devices and Microflow Systems
105
7.1
Brief History
105
7.1.1
Microflow Systems for Chemical Analysis
106
7.1.2
Microflow Systems for Chemical Synthesis
107
7.2
Characteristic Features of Microflow Systems
108
7.3
Microstructured Fluidic Devices
110
7.3.1
Microchip Reactors
110
7.3.2
Microtube
Reactors
112
7.3.3
Micromixer
113
7.3.4
Passive
Micromixers
114
7.3.5
Microheat Exchanger
125
7.3.6
Photochemical Microflow Reactor
126
7.3.7
Electrochemical Microflow Reactor
128
7.3.8
Catalyst-containing Microflow Reactor
129
7.3.9
Microflow Reactors for High-pressure and
High-temperature Conditions
131
7.4
Conclusions
133
References
133
8
Applications of Flash Chemistry in Organic Synthesis
137
8.1
Highly Exothermic Reactions that are Difficult
to Control in
Macrobatch
Reactors
138
8.1.1
Fluorination
138
8.1.2
Chlorination and Bromination
139
8.1.3
Nitration
142
8.1.4 1,4-
Addition Reactions of Amines
143
8.1.5
Halogen-magnesium Exchange Reactions
143
8.1.6
Oxidation of an Alkene with
H2O2/HCO2H
145
8.2
Reactions in which a Reactive Intermediate Easily
Decomposes in
Macrobatch
Reactors
147
8.2.1
Swern-Moffatt Oxidation
147
8.2.2
Organolithium Reactions
150
8.3
Reactions with Products which Easily Decompose
in
Macrobatch
Reactors
153
CONTENTS
8.3.1
Dehydration of an Allylic Alcohol to Give
a
Diene
as an Unstable Product
153
8.4
Reactions in which Undesired By-products are
Produced in the Subsequent Reactions in
Macrobatch
Reactors
154
8.4.1
Friedel-Crafts Reactions
154
8.4.2
lodination
of Aromatic Compounds
157
8.4.3
Reaction of Phenylmagnesium Bromide with
Boronic Acid Trimethyl Ester
158
8.4.4 [4 + 2]
Cycloaddition
Reaction of N-acyliminium
Ion with
Olefin
160
8.4.5
Biphasic Azo-coupling Reactions
162
8.5
Reactions that can be Accelerated Using Microflow
Systems
163
8.5.1
Acceleration of Reactions at High Temperatures
163
8.5.2
Acceleration of Radical Reactions Using Quickly
Decomposing Radical Initiators
165
8.5.3
Acceleration by Controlled Mass Transfer
166
8.5.4
Acceleration by Microwaves
167
8.5.5
Acceleration by High-pressure and
High-temperature Conditions
167
8.6
Conclusions
169
References
169
Polymer Synthesis Based on Flash Chemistry
173
9.1
Polymerization
173
9.2
Chain-growth Polymerization and Step-growth
Polymerization
174
9.3
Molecular Weight and Molecular-weight Distribution
176
9.4
Cationic Polymerization
176
9.4.1
Conventional Cationic Polymerization
176
9.4.2
Living Cationic Polymerization
178
9.4.3
Ideal Living Cationic Polymerization
180
9.4.4
Fast Initiation and Mixing
181
9.4.5
Cation-pool Initiated Polymerization of Vinyl
Ethers Using a Microflow System
182
9.4.6
Livingness of the Microflow System-controlled
Cationic Polymerization
184
9.4.7
Comparison Between Conventional Living
Cationic Polymerization and Microflow
System-controlled Cationic Polymerization
185
CONTENTS ix
9.4.8 Microflow
System-controlled Cationic
Polymerization Initiated by CF3SO3H
187
9.5
Free-radical Polymerization
189
9.5.1
Conventional Free-radical Polymerization
189
9.5.2
Living-radical Polymerization
190
9.5.3
Emulsion and Suspension Polymerization
191
9.5.4
Radical Polymerization in Microflow Systems
192
9.5.5
Simulation of Free-radical Polymerization
in Microflow Systems
196
9.6
Conclusions
197
References
197
10
Industrial Applications of Flash Chemistry
199
10.1
Synthesis of Diarylethene as a Photochromic
Compound (Micrometer-size Single-channel Reactor)
201
10.2
Synthesis of a Pharmaceutically Interesting
Spiro
Lactone Fragment of
Neuropeptide
Y
(Millimeter-size Single-channel Reactor)
206
10.3
Grignard Exchange Process (Internal Numbering-up)
208
10.4
Radical Polymerization Process (Numbering-up)
212
10.5
Other Examples of Industrial Applications of Flash
Chemistry
218
10.6
Flash Chemistry as a Powerful Means of Sustainable
Chemical Synthesis
219
10.7
Conclusions
220
References
221
11
Outlook for Flash Chemistry
223
Index
225
|
adam_txt |
Contents
Preface
χι
1
Introduction
1
1.1
Flask Chemistry
2
1.2
Flash Chemistry
3
1.3
Flask Chemistry or Flash Chemistry
4
References
5
2
The Background to Flash Chemistry
7
2.1
How do Chemical Reactions Take Place?
7
2.1.1
Macroscopic View of Chemical Reactions
8
2.1.2
Thermodynamic Equilibrium and Kinetics
8
2.1.3
Kinetics
10
2.1.4
Transition State Theory
12
2.1.5
Femtosecond Chemistry and Reaction Dynamics
12
2.1.6
Reactions for Dynamics and Reactions for
Synthesis
13
2.1.7
Bimolecular Reactions in the Gas Phase
15
2.1.8
Bimolecular Reactions in the Solution Phase
16
2.1.9
Fast Chemical Synthesis Inspired by Reaction
Dynamics
17
References
18
3
What is Flash Chemistry?
19
4
Why is Flash Chemistry Needed?
23
4.1
Chemical Reaction, an Extremely Fast Process
at Molecular Level
23
4.2
Rapid Construction of Chemical Libraries
24
4.3
Rapid Synthesis of Radioactive Positron Emission
Tomography Probes
27
4.4
On-demand Rapid Synthesis in Industry
30
CONTENTS
4.5
Conclusions
31
References
31
Methods of Activating Molecules
33
5.1
Thermal Activation of Organic Molecules
33
5.1.1
High Temperature Reactions
33
5.1.2
Flash Vacuum Pyrolysis
35
5.1.3
Microwave Reactions
36
5.2
Photochemical Activation
38
5.3
Electrochemical Activation
39
5.4
Chemical Activation
41
5.5
Accumulation of Reactive Species
43
5.5.1
The Cation-pool Method
44
5.6
Continuous Generation of Reactive Species
in a Flow System
57
5.7
Interconversion
Between Reactive Species
59
5.8
Conclusions
62
References
63
Control of Extremely Fast Reactions
69
6.1
Mixing
69
6.1.1
How Does Mixing Take Place?
70
6.1.2
Molecular Diffusion and Brownian Motion
72
6.1.3
Disguised Chemical Selectivity
73
6.1.4
Lowering the Reaction Temperature
76
6.1.5
The High Dilution Method
77
6.1.6
Micromixing
78
6.1.7
Friedel-Crafts Alkylation Using an N-acyliminium
Ion Pool
78
6.1.8
Micromixing as a Powerful Tool for Flash
Chemistry
85
6.1.9
Disguised Chemical Selectivity in Competitive
Parallel Reactions
85
6.2
Temperature Control
87
6.2.1
Exothermicity of Fast Reactions
87
6.2.2
Hammond's Postulate
89
6.2.3
The Friedel-Crafts Reaction
90
6.2.4
Solvent
92
6.2.5
Heat Transfer
93
6.2.6
Precise Temperature Control in Microflow
Systems
95
CONTENTS
vii
6.3
Residence
Time Control
97
6.3.1
The Discovery of
Benzynę.
The Concept
of Reactive Intermediates
98
6.3.2
o-Bromophenyllithium
99
6.4
Conclusions
102
References
102
7
Microfluidic Devices and Microflow Systems
105
7.1
Brief History
105
7.1.1
Microflow Systems for Chemical Analysis
106
7.1.2
Microflow Systems for Chemical Synthesis
107
7.2
Characteristic Features of Microflow Systems
108
7.3
Microstructured Fluidic Devices
110
7.3.1
Microchip Reactors
110
7.3.2
Microtube
Reactors
112
7.3.3
Micromixer
113
7.3.4
Passive
Micromixers
114
7.3.5
Microheat Exchanger
125
7.3.6
Photochemical Microflow Reactor
126
7.3.7
Electrochemical Microflow Reactor
128
7.3.8
Catalyst-containing Microflow Reactor
129
7.3.9
Microflow Reactors for High-pressure and
High-temperature Conditions
131
7.4
Conclusions
133
References
133
8
Applications of Flash Chemistry in Organic Synthesis
137
8.1
Highly Exothermic Reactions that are Difficult
to Control in
Macrobatch
Reactors
138
8.1.1
Fluorination
138
8.1.2
Chlorination and Bromination
139
8.1.3
Nitration
142
8.1.4 1,4-
Addition Reactions of Amines
143
8.1.5
Halogen-magnesium Exchange Reactions
143
8.1.6
Oxidation of an Alkene with
H2O2/HCO2H
145
8.2
Reactions in which a Reactive Intermediate Easily
Decomposes in
Macrobatch
Reactors
147
8.2.1
Swern-Moffatt Oxidation
147
8.2.2
Organolithium Reactions
150
8.3
Reactions with Products which Easily Decompose
in
Macrobatch
Reactors
153
CONTENTS
8.3.1
Dehydration of an Allylic Alcohol to Give
a
Diene
as an Unstable Product
153
8.4
Reactions in which Undesired By-products are
Produced in the Subsequent Reactions in
Macrobatch
Reactors
154
8.4.1
Friedel-Crafts Reactions
154
8.4.2
lodination
of Aromatic Compounds
157
8.4.3
Reaction of Phenylmagnesium Bromide with
Boronic Acid Trimethyl Ester
158
8.4.4 [4 + 2]
Cycloaddition
Reaction of N-acyliminium
Ion with
Olefin
160
8.4.5
Biphasic Azo-coupling Reactions
162
8.5
Reactions that can be Accelerated Using Microflow
Systems
163
8.5.1
Acceleration of Reactions at High Temperatures
163
8.5.2
Acceleration of Radical Reactions Using Quickly
Decomposing Radical Initiators
165
8.5.3
Acceleration by Controlled Mass Transfer
166
8.5.4
Acceleration by Microwaves
167
8.5.5
Acceleration by High-pressure and
High-temperature Conditions
167
8.6
Conclusions
169
References
169
Polymer Synthesis Based on Flash Chemistry
173
9.1
Polymerization
173
9.2
Chain-growth Polymerization and Step-growth
Polymerization
174
9.3
Molecular Weight and Molecular-weight Distribution
176
9.4
Cationic Polymerization
176
9.4.1
Conventional Cationic Polymerization
176
9.4.2
Living Cationic Polymerization
178
9.4.3
Ideal Living Cationic Polymerization
180
9.4.4
Fast Initiation and Mixing
181
9.4.5
Cation-pool Initiated Polymerization of Vinyl
Ethers Using a Microflow System
182
9.4.6
Livingness of the Microflow System-controlled
Cationic Polymerization
184
9.4.7
Comparison Between Conventional Living
Cationic Polymerization and Microflow
System-controlled Cationic Polymerization
185
CONTENTS ix
9.4.8 Microflow
System-controlled Cationic
Polymerization Initiated by CF3SO3H
187
9.5
Free-radical Polymerization
189
9.5.1
Conventional Free-radical Polymerization
189
9.5.2
Living-radical Polymerization
190
9.5.3
Emulsion and Suspension Polymerization
191
9.5.4
Radical Polymerization in Microflow Systems
192
9.5.5
Simulation of Free-radical Polymerization
in Microflow Systems
196
9.6
Conclusions
197
References
197
10
Industrial Applications of Flash Chemistry
199
10.1
Synthesis of Diarylethene as a Photochromic
Compound (Micrometer-size Single-channel Reactor)
201
10.2
Synthesis of a Pharmaceutically Interesting
Spiro
Lactone Fragment of
Neuropeptide
Y
(Millimeter-size Single-channel Reactor)
206
10.3
Grignard Exchange Process (Internal Numbering-up)
208
10.4
Radical Polymerization Process (Numbering-up)
212
10.5
Other Examples of Industrial Applications of Flash
Chemistry
218
10.6
Flash Chemistry as a Powerful Means of Sustainable
Chemical Synthesis
219
10.7
Conclusions
220
References
221
11
Outlook for Flash Chemistry
223
Index
225 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Yoshida, Junichi |
author_facet | Yoshida, Junichi |
author_role | aut |
author_sort | Yoshida, Junichi |
author_variant | j y jy |
building | Verbundindex |
bvnumber | BV035107936 |
callnumber-first | Q - Science |
callnumber-label | QD262 |
callnumber-raw | QD262 |
callnumber-search | QD262 |
callnumber-sort | QD 3262 |
callnumber-subject | QD - Chemistry |
classification_rvk | VK 5500 |
ctrlnum | (OCoLC)232636765 (DE-599)BVBBV035107936 |
dewey-full | 547/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547/.2 |
dewey-search | 547/.2 |
dewey-sort | 3547 12 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01824nam a2200481zc 4500</leader><controlfield tag="001">BV035107936</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100212 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081020s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008027929</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470035863</subfield><subfield code="c">cloth : alk. paper</subfield><subfield code="9">978-0-470-03586-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)232636765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035107936</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-526</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD262</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547/.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 5500</subfield><subfield code="0">(DE-625)147401:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoshida, Junichi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flash chemistry</subfield><subfield code="b">fast organic synthesis in microsystems</subfield><subfield code="c">Jun-ichi Yoshida</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">Wiley</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 234 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic compounds</subfield><subfield code="x">Synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intermediates (Chemistry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microreactors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic reaction mechanisms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikroreaktor</subfield><subfield code="0">(DE-588)4786310-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zwischenstufe</subfield><subfield code="g">Chemie</subfield><subfield code="0">(DE-588)4303545-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organische Synthese</subfield><subfield code="0">(DE-588)4075695-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mikroreaktor</subfield><subfield code="0">(DE-588)4786310-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Organische Synthese</subfield><subfield code="0">(DE-588)4075695-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zwischenstufe</subfield><subfield code="g">Chemie</subfield><subfield code="0">(DE-588)4303545-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016775817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016775817</subfield></datafield></record></collection> |
id | DE-604.BV035107936 |
illustrated | Illustrated |
index_date | 2024-07-02T22:16:29Z |
indexdate | 2024-07-09T21:22:29Z |
institution | BVB |
isbn | 9780470035863 |
language | English |
lccn | 2008027929 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016775817 |
oclc_num | 232636765 |
open_access_boolean | |
owner | DE-703 DE-29T DE-19 DE-BY-UBM DE-526 |
owner_facet | DE-703 DE-29T DE-19 DE-BY-UBM DE-526 |
physical | IX, 234 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Yoshida, Junichi Verfasser aut Flash chemistry fast organic synthesis in microsystems Jun-ichi Yoshida 1. publ. Hoboken, N.J. Wiley 2008 IX, 234 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Organic compounds Synthesis Intermediates (Chemistry) Microreactors Organic reaction mechanisms Mikroreaktor (DE-588)4786310-9 gnd rswk-swf Zwischenstufe Chemie (DE-588)4303545-0 gnd rswk-swf Organische Synthese (DE-588)4075695-6 gnd rswk-swf Mikroreaktor (DE-588)4786310-9 s Organische Synthese (DE-588)4075695-6 s Zwischenstufe Chemie (DE-588)4303545-0 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016775817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Yoshida, Junichi Flash chemistry fast organic synthesis in microsystems Organic compounds Synthesis Intermediates (Chemistry) Microreactors Organic reaction mechanisms Mikroreaktor (DE-588)4786310-9 gnd Zwischenstufe Chemie (DE-588)4303545-0 gnd Organische Synthese (DE-588)4075695-6 gnd |
subject_GND | (DE-588)4786310-9 (DE-588)4303545-0 (DE-588)4075695-6 |
title | Flash chemistry fast organic synthesis in microsystems |
title_auth | Flash chemistry fast organic synthesis in microsystems |
title_exact_search | Flash chemistry fast organic synthesis in microsystems |
title_exact_search_txtP | Flash chemistry fast organic synthesis in microsystems |
title_full | Flash chemistry fast organic synthesis in microsystems Jun-ichi Yoshida |
title_fullStr | Flash chemistry fast organic synthesis in microsystems Jun-ichi Yoshida |
title_full_unstemmed | Flash chemistry fast organic synthesis in microsystems Jun-ichi Yoshida |
title_short | Flash chemistry |
title_sort | flash chemistry fast organic synthesis in microsystems |
title_sub | fast organic synthesis in microsystems |
topic | Organic compounds Synthesis Intermediates (Chemistry) Microreactors Organic reaction mechanisms Mikroreaktor (DE-588)4786310-9 gnd Zwischenstufe Chemie (DE-588)4303545-0 gnd Organische Synthese (DE-588)4075695-6 gnd |
topic_facet | Organic compounds Synthesis Intermediates (Chemistry) Microreactors Organic reaction mechanisms Mikroreaktor Zwischenstufe Chemie Organische Synthese |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016775817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT yoshidajunichi flashchemistryfastorganicsynthesisinmicrosystems |