Nanochemistry: a chemical approach to nanomaterials
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
RSC Publ.
2009
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | LIII, 820 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035107875 | ||
003 | DE-604 | ||
005 | 20120419 | ||
007 | t | ||
008 | 081020s2009 ad|| |||| 00||| eng d | ||
020 | |z 9781847558954 |9 978-1-84755-895-4 | ||
035 | |a (OCoLC)260209007 | ||
035 | |a (DE-599)BVBBV035107875 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-703 |a DE-19 |a DE-29T |a DE-91G |a DE-83 | ||
050 | 0 | |a QC176.8.N35 | |
082 | 0 | |a 620.5 |2 22 | |
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a CHE 380f |2 stub | ||
084 | |a TEC 030f |2 stub | ||
100 | 1 | |a Ozin, Geoffrey A. |d 1943- |e Verfasser |0 (DE-588)139009639 |4 aut | |
245 | 1 | 0 | |a Nanochemistry |b a chemical approach to nanomaterials |c Geoffrey A. Ozin, André C. Arsenault and Ludovico Cademartiri |
250 | |a 2. ed. | ||
264 | 1 | |a Cambridge |b RSC Publ. |c 2009 | |
300 | |a LIII, 820 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Nanoscience | |
650 | 4 | |a Nanostructured materials | |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanopartikel |0 (DE-588)4333369-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemie |0 (DE-588)4009816-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Chemie |0 (DE-588)4009816-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nanopartikel |0 (DE-588)4333369-2 |D s |
689 | 1 | 1 | |a Chemie |0 (DE-588)4009816-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Arsenault, André C. |d 1979- |e Verfasser |0 (DE-588)1044017937 |4 aut | |
700 | 1 | |a Cademartiri, Ludovico |d 1978- |e Verfasser |0 (DE-588)136451217 |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016775757&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016775757 |
Datensatz im Suchindex
_version_ | 1804138078970839040 |
---|---|
adam_text | Titel: Nanochemistry
Autor: Ozin, Geoffrey A
Jahr: 2009
Contents
List of Acronyms xxxvii
Teaching (Nano) Materials xli
Learning (Nano) Materials xliii
Guessing (Nano) Materials xliv
About the Authors xlv
Acknowledgements I
Nanofood for Thought-Thinking about Nanochemistry,
Nanosciencc, Nanotechnology and Nanosafety lii
Chapter 1 Nanochemistry Basics 3
1.1 The Roots of Nanochemistry in Materials
Chemistry 3
1.2 Synthesis of Materials and Nanomaterials 5
1.3 Materials Self-Assembly 9
1.4 Big Bang to the Universe 10
1.5 Why Nano? 10
1.6 What Do we Mean by Large and Small
Nanomaterials? 11
1.7 Do it Yourself Quantum Mechanics 12
1.8 What is Nanochemistry? 13
1.9 Molecular v.v. Materials Self-Assembly 13
1.10 What is Hierarchical Assembly? 14
Nanochemistry: A Chemical Approach to Nanomaterials
By Geoffrey A. Ozin, Andre C. Arsenault and Ludovico Cademartiri
O The Royal Society of Chemistry 2009
Published by the Royal Society of Chemistry, www.rsc.org
xxiii
Con/ails
xxiv
1.11 Directing Self-Assembly
1.12 Supramolecular Vision
1.13 Genealogy of Self-Assembling Materials
1.14 Unlocking the Key to Porous Solids
1.15 Learning from Biominerals Form is Function
1.16 Can You Curve a Crystal?
1.17 Patterns, Patterns Everywhere
1.18 Synthetic Creations with Natural Form
1.19 Two-Dimensional Assemblies
1.20 SAMs and Soft Lithography
1.21 Clever Clusters
1.22 Extending the Prospects of Nanowires
1.23 Coercing Colloids
1.24 Mesoscale Self-Assembly
1.25 Materials Self-Assembly of Integrated
Systems
References
Nanofood for Thought - Materials Chemistry.
Nanochemistry, Genealogy, Materials Self-Assembly.
Length Scales
Chapter 2 Chemical Patterning and Lithography
2.1 Lord s Prayer on the Head of a Pin
2.2 Soft Lithography
2.3 What are Self-Assembled Monolayers?
2.4 The Science and Art of Soft Lithography
2.5 Patterning Wettability?
2.6 Condensation Figures
2.7 Microlens Arrays
2.8 Nanoring Arrays
2.9 SAM Registration
2.10 Patterning the Solid State
2.11 Primed for Printing Polymers
2.12 Beyond Molecules - Transfer Printing
of Thin Films
2.13 Microcontact Printing Living Bacteria
2.14 Electrically Contacting SAMs
2.15 SAM Crystal Engineering
2.16 Learning From Nature s Biocrystal Engineeriim
2.17 Wet Stamping - The Incredible Shrinking
Liesegang Rings
2.18 Wet Etch Patterns
2.19 Colloidal Microsphere Patterns
2.20 SAM Patterned Opal Marble Arrays
15
15
16
19
- *
24
25
26
28
31
32
34
35
38
40
41
53
57
57
58
60
61
63
65
65
67
69
69
73
74
75
76
78
80
83
85
87
88
Contents
2.21 Switching SAM Function 89
2.22 Patterning by Photocatalysis 90
2.23 Reversibly Switching SAMs 91
2.24 Electrowettability Switch 92
2.25 Metamorphic Mold - Adjustable
Microtopography PDMS 95
2.26 Sweet Chips 96
2.27 All Fall Down in a Row Lithography 97
2.28 Nanoskiving 99
2.29 Patterning Nanochannel Alumina Membranes
With Single Channel Resolution 100
References 103
Ncmofood for Thought - Soft Lithography, SAMs,
Patterning 112
Chapter 3 Layer-by-Layer Self-Assembly 117
3.1 Building One Layer at a Time 117
3.2 Electrostatic Superlattices 117
3.3 Organic Polyelectrolyte Multilayers 119
3.4 Layer-by-Layer Smart Windows 120
3.5 How Thick is Thin? 121
3.6 Assembling Metallopolymers 122
3.7 Directly Imaging Polyelectrolyte Multilayers 122
3.8 Polyelcctrolyte-Colloid Multilayers 124
3.9 Graded Composition LbL Films 125
3.10 LbL MEMS 126
3.11 Trapping Active Proteins 128
3.12 Protein Laden Porous LbL Multilayers 129
3.13 Layering on Curved Surfaces 130
3.14 Microcrystal Packaging - Polyelectrolyte Coated
Crystal Drug Delivery Systems 132
3.15 Hydrolytically Degradable LbL Films
for Drug Delivery 134
3.16 Nanobaloons - New Generation Ultrasound
Contrast Agents 135
3.17 Crystal Engineering of Oriented Zeolite Film 138
3.18 Zeolite-Ordered Multicrystal Arrays 141
3.19 Crosslinked Crystal Arrays 142
3.20 Tunable Structural Color in Multilayer
Bragg Stacks 143
3.21 2D LbL Structural Color 145
3.22 Layering with Topological Complexity 147
3.23 Patterned Multilayers 149
3.24 Non-Electrostatic Layer-by-Layer Assembly 150
Contents
151
3 25 Low-Pressure Layers
3.26 Layer-by-Layer Self-Limiting Reactions
References
Nanofoodfor Thought - Designer Monolayers.
Multilayers. Materials Flat land
Chapter 4 Nanocontact Printing and Writing - Stamps
and Tips
152
162
167
171
4.1 Sub-100 nm Soft Lithography Ul1
4.2 Extending Microcontact Printing
4.3 Putting on the Pressure 169
4.4 Defect Patterning Topologicals Directed
Etching
4.5 Below 50 nm Nanocontact Printing 17-
4.6 Nanocontact Writing - Dip Pen Nanolithography 173
4.7 DPN of Silicon 174
4.8 DPN on Glass 175
4.9 Nanoscale Writing on Semiconductor Nanowires 176
4.10 Sol-Gel DPN 177
4.11 Soft Patterning of Hard Magnets 178
4.12 Writing Molecular Recognition 179
4.13 DPN Written Protein Recognition Nanostructures 1S1
4.14 HIV Detection Using DPN Arrays 182
4.15 Patterning Bioconstructions 183
4.16 Eating Patterns - Enzyme DPN 185
4.17 Electrostatic DPN 186
4.18 Electrochemical DPN 186
4.19 SPM Nano— Electrochemistry 187
4.20 Beyond DPN - Electrowhittling Nanostructures 189
4.21 Nanospinning E ibers 190
4.22 OLED Tip - AFM with a Nanoscale Scanning
Light Probe 191
4.23 Hot Tips - DPN Soldering Iron 193
4.24 Combi Nano - DPN Combinatorial Libraries 193
4.25 50,000 Tips Go Sailing by, Go Sailing by
in the Morning 196
4.26 Nanoblotters 197
4.27 Nanoscale Patterning of PDMS Stamps
the DPN Way [98
4.28 Scanning Probe Contact Printing (SP-CP)
4.29 Dip Pen Nanolithography Stamp TIP - Beyond
DPN CP
4.30 Best of Both Worlds ^03
4.31 The Nanogenie is out of the Bottle 203
200
Contents xxvii
References 204
Nanofood for Thought - Sharper Chemical Patterning
Tools 210
Chapter 5 Nanorod, Nanotube, Nanowire Self-Assembly 215
5.1 Building Block Assembly 215
5.2 Templating Nanowircs 216
5.3 Modulated Diameter Gold Nanorods 217
5.4 Modulated Composition Nanorods 218
5.5 Barcoded Nanorod Orthogonal Sclf-Assembly 221
5.6 Nanodisk Codes 224
5.7 Sir SERS 226
5.8 Self-Assembling Nanorods 227
5.9 Magnetic Nanorods Bunch Up 229
5.10 Magnetic Nanorods and Magnetic Nanoclusters 230
5.11 An Irresistible Attraction for Biomolcculcs 232
5.12 Hierarchically Ordered Nanorods 233
5.13 Nanorod Devices 235
5.14 Nanotubes from Nanoporous Templates 236
5.15 Layer-by-Laycr Nanotubes from Nanorods 238
5.16 Synthesis of Single Crystal Semiconductor
Nanowires 239
5.17 Vapor-Liquid-Solid Synthesis of Nanowires 240
5.18 What Controls Nanowire-Oriented Growth? 241
5.19 Marrying Plasmonics and Catalytics 242
5.20 Nanowire Quantum Size Effects 244
5.21 Single-Source Precursors 245
5.22 Supercritical Fluid-Liquid-Solid Synthesis 245
5.23 Ultrathin Nanowires-Nanothcrmoelcctrics 246
5.24 Zoo of Nanowire Compositions and Architectures 250
5.25 Got the Nanoneedlc 251
5.26 Manipulating Nanowires 252
5.27 Blowing Nanotube and Nanowire Bubbles
Everywhere 254
5.28 Crossed Semiconductor Nanowires - Smallest
LED 257
5.29 Nanowire Diodes and Transistors 259
5.30 Nanowire Sensors 260
5.31 Catalytic Nanowire Electronics 261
5.32 Nanowire Heterostructures 262
5.33 Longitudinal Nanowire Superlattices 263
5.34 Nanoscale Ionics: Ion-Exchange of Nanorods 266
5.35 Axial Nanowire Heterostructures 269
5.36 Nanowires Branch Out 269
Omi M.v
XXVIll
Coaxially Gated Nanowire Transistor
Vertical Nanowire Field Efiect Transistors
Integrated Metal-Semiconductor Nanowires
Nanoscale Electrical Contacts
Photon-Driven Nanowire Laser
Electrically Driven Nanowire Laser
Nanowire UV Photodctcctors
Simplifying Complex Nanowires
Nanowire Casting of Single-Crystal Nanotubes
Solution-Phase Routes to Nanowires
Spinning Nanowire Devices
Hollow Nanofibers by Eleetrospinning
Carbon Nanotubes
Carbon Nanotube Structure and Electrical
Properties
Gone Ballistic
Carbon Nanotube Nanomechanics
Carbon Nanotube Chemistry
Carbon Nanotubes All in a Row
Carbon Nanotube Photonic Crystal
Putting Carbon Nanotubes Exactly Where You
Want Them
The Nanowire Pitch Challenge
Integrated Nanowire Nanoelcctronics
Silicon Nanowire Solar Cells - Self-Powered
Nanoelectronics
See-Through Nanoelectronics Circuits
Piezoelectric Nanowire Electrical Nanogenerators
Carbon Nanotube Radio Receiver
Silicon Nanowire NEMS: Very High Frequency
Resonators and Ultra High Sensitivity
Mass Monitors
Nanowires that Never Forget
A Small Thought at the End of a Large Chapter
References
Nanofood for Thought - Wires, Rods, Tubes, Low
Dimensionality
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60
5.61
5.62
5.63
5.64
6.1
6.2
6.3
6.4
Building-Block Assembly
When is a Nanocrystal a Nanocluster
or a Nanoparticle?
Synthesis of Capped Semiconductor Nanocrystals
Electrons and Holes in Nanocrystal Boxes
272
273
274
276
278
279
279
281
283
285
286
288
289
291
292
293
296
298
300
301
303
305
306
307
310
311
312
315
315
330
Chapter 6 Nanocrystal Synthesis and Self-Assembly 335
335
336
336
339
Contents xxjx
6.5 Nanocluster Phase Transformations 342
6.6 Watching Nanocrystals Grow 343
6.7 Nanocrystals in Nanobeakers 345
6.8 Capped Gold Nanocrystals - Nanonugget Rush 346
6.9 At Last a Single Crystal X-Ray Diffraction
Structure of a Thiolate Ligand-Cappcd Gold
Nanocluster 348
6.10 Alkanethiolate Capped Nanoclusters Diagnostics 350
6.11 Periodic Table of Capped Nanocrystals 351
6.12 There s Gold in Them Thar Hills! 352
6.13 Capped Nanocrystal Architectures and
Morphologies 353
6.14 Alkanethiolate Capped Silver Nanocrystal
Superlattice 353
6.15 Active Plasmonics - Tunable Silver Nanocrystal
Superlattices 355
6.16 Crystals of Nanocrystals 357
6.17 Getting Nanocrystal Superlattices to Conduct 358
6.18 Synergy in Nano 360
6.19 What if you Don t Like Organics? 360
6.20 Beyond Crystals of Nanocrystals - Binary
Nanocrystal Superlattices 362
6.21 Capped Magnetic Nanocrystal Superlattice - High
Density Data Storage Materials 363
6.22 Soft Lithography of Capped Nanocrystals 364
6.23 Organizing Nanocrystals by Evaporation 365
6.24 Pot of Gold at the Bottom of the Nanofunnel 366
6.25 Electroluminescent Semiconductor Nanocrystals 368
6.26 Full Color Nanocrystal-Polymcr Composites 370
6.27 Flipping a Nanocrystal Switch 372
6.28 Photochromic Metal Nanocrystals 373
6.29 Water-Soluble Nanocrystals 374
6.30 Capped Semiconductor Nanocrystal Meets
Biomolecule 377
6.31 Hot Nanorods Cure for Cancer 380
6.32 Origin of the Color of Nanoscopic Gold 381
6.33 Nanocrystal DNA Sensors - Besting the Best 383
6.34 Fingering Nanocrystals 385
6.35 DNA-Gold Senses Mercury 387
6.36 Nanocrystal Semiconductor Alloys and
Beyond 387
6.37 Alloying Core-Shell Magnetic Nanocrystals 389
6.38 Nanocrystal Grows a Hole 390
6.39 Semiconductor Nanocrystals Extend and
Branch Out 391
( (Ulfl Nf.V
6.40 Tetrapod of Tetrapods - Towards Inorganic ^
Dcndrimers
6.41 Nanocrystals Go Hyper ; ~
6 42 Golden Tips - Making Contact with Nanorous
6.43 Marriage of Convenience - Designed Assembly of
Nanociystal Dimcrs, Heterodimers, Heteroinmers
399
and Chains -
6.44 Carbon Nanoclustcrs - Buckyballs 41
6.45 Building Nanodevices with Buckyballs 410
6 46 Carbon Catalysis with Buckyball 411
4 P
References
Nana food for Thought — Nanocrystals, Quantum Dots,
Quantum Size Effects 426
Chapter 7 Microspheres - Colors from the Beaker 431
7.1 Nature s Photonic Crystals 431
7.2 Photonic Crystals 432
7.3 Photonic Semiconductors 453
7.4 Defects, Defects, Defects 434
7.5 Computing with Light 435
7.6 Color Tunability 436
7.7 Transferring Nature s Photonic Crystal
Technology to the Chemistry Laboratory 436
7.8 Microsphere Building Blocks 437
7.9 Silica Microspheres 437
7.10 Latex Microspheres 438
7.11 Multi-Shell Microspheres 438
7.12 On The Fly: Microsphere Synthesis and
Microbubble Generation in Microfluidic Reactors 439
7.13 Patterning Microspheres - Inside and Outside 444
7.14 Basics of Microsphere Self-Assembly 449
7.15 Microsphere Self-Assembly - Crystals and Films 450
7.16 Colloidal Crystalline Fluids 45!
7.17 Beyond Face Centered Cubic Packing of
Microspheres 45s
7.18 Templates - Confinement and Epitaxy 454
7.19 Rolling Out the Opal Carpet of Many Colors 455
7.20 Photonic Crystal Marbles 457
7.21 Spotting Colloidal Crystals 460
7.22 Photonic Crystal Fibers 461
7.23 Optical Properties of Colloidal Crystals -
Combined Bragg-Snell Laws 46
7 75 H S1Ct?PrCal Pr°pertieSofColloid:1l Crystals 463
/¦25 How Perfect is Perfect? 464
Contents xxxi
7.26 Cracking Controversy 466
7.27 Synthesizing a Full Photonic Band Gap 468
7.28 Escape from the Dielectric Microsphere Prison -
Bottom-Up and Top-Down Synthesis
of Monodispersed Metal Microspheres 469
7.29 Writing Defects 470
7.30 Getting Smart with Planar Defects 472
7.31 Getting Even Smarter with Planar Defects 474
7.32 Switching Light with Light 476
7.33 Thermochromic Colloidal Photonic Crystal Switch 477
7.34 Liquid Crystal Photonic Crystal 477
7.35 Internal Light Sources 480
7.36 Photonic Inks 481
7.37 Full-Color Photonic Crystal Display 482
7.38 Elastically Tunable Photonic Crystals - From
Color Fingerprinting to Anti-Counterfeiting 484
7.39 Magnetically Tuneable Photonic Crystals -
Magnetic Liquid Color 485
7.40 Electric Field Color Tuned Colloidal Crystal 487
7.41 Color Oscillator 488
7.42 Photonic Crystal Sensors 490
7.43 Colloidal Crystal Chromatography 491
7.44 Walking Macromolecules Through Colloidal
Crystals 493
7.45 Slow Photons in the Fast Lane 496
7.46 Enhanced and Direction-Dependent
Photocatalysis 497
7.47 Boosting Photoconductivity in a Silicon Solar Cell 499
7.48 Encrypted Colloidal Crystals 501
7.49 Medusa Chemistry - A Butterfly of Stone 503
7.50 Gazing in the Photonic Crystal Ball 504
References 506
Nanofood for Thought — Colloidal Assembly, Colloidal
Crystals, Colloidal Crystal Devices, Structural Color 516
Chapter 8 Microporous and Mesoporous Materials from
Soft Building Blocks 521
8.1 Escape from the Zeolite Prison 521
8.2 A Periodic Table of Materials Filled with Holes 522
8.3 Modular Self-Assembly of Microporous Materials 523
8.4 Hydrogen Storage Coordination Frameworks 525
8.5 Crystalline Organic Frameworks, COFs 526
8.6 Overview and Prospects of Microporous Materials 527
8.7 Mesoscale Soft Building Blocks 528
Cements
xxxii
8.8 Mesogrowth - Interfaces and Mesoepitaxy ^30
8.9 Mesogrowth and Topological Delects
8.10 Mesogrowth and the Micelle v.v Liquid Crystal
Templating Paradox
8.11 Meso-Opals
Mesoporous Materials by Design 5.8
8.12
53:
534
535
538
8.13 Tuning Length Scales
8.14 Mesostructurc and Dimensionality 541)
8.15 Stand Up and Be Counted 541
8.16 Making Mesochannels Stand Up 543
8.17 When It Rains It Pours Vertical Mesochannels 543
8.18 Shock em to Stand Up - Electrochemically
Assisted Assembly of Periodic Mesoporous Silica
Film with Orthogonal Channels 545
8.19 Mesomorphology - Spheres, Other Shapes 545
8.20 PMOs Shape Up for High Performance IIPLC 548
8.21 Mesomorphology - Morphosynthesis of Curved
Form 549
8.22 Mesomorphology - Chiral Mesoporous Silica 551
8.23 Mesomorphology - Patterned Films. Soft
Lithography, Micromolding 552
8.24 Mesocomposition - Nature of Precursors 555
8.25 Sidearm Mesofunctionalization 555
8.26 Organics in the Backbone 557
8.27 One-Pot Synthesis of Periodic Mesoporous
Polyphenolformaldehyde Materials
and Carbon Copies 560
8.28 Mesopore Replication 560
8.29 Plastic Clones of Periodic Mesoporous Silica Shapes 563
8.30 Mesotexture 565
8.31 Nearly Crystalline Pore Walls In Periodic
Mesoporous Silica 565
8.32 Guests in Mcsopores 568
8.33 Mesoporous Silica Nanoparticles Smart Drug
Delivery 559
8.34 Permeating the Impermeable 571
8.35 Capped Nanocrystal Meets Surfactant Mesophase 571
8.36 Marking Time in Mesostructured Silica - New
Approach to Optical Data Storage 573
8.37 Periodic Mesoporous Silica-Polymer Hybrids 575
8.38 Mesochemistry - Synthesis in Intermediate-
Dimensions
References
Nanofood for Thought - Soft Blocks Template Hard
Precursors, Holey Materials 59O
576
577
Contents
Chapter 9 Self-Assembling Block Copolymers
XXX111
595
9.1 Polymers, Polymers Everywhere in
Nanochemistry 595
9.2 Block Copolymer Self-Assembly - Chip Off
the Old Block 595
9.3 Assembling Inorganic Polymers 598
9.4 Block Copolypeptides 598
9.5 Block Copolymer Biofactories 601
9.6 Block Copolymer Thin Films 602
9.7 Electrical Ordering 603
9.8 Spatial Confinement of Block Copolymers 604
9.9 3-D Block Copolymer Spatial Confinement 605
9.10 Nanoepitaxy 607
9.11 Making Micelles 608
9.12 Living Block Copolymers Give Birth to Living
Block Copolymer Cylindrical Micelles 611
9.13 Nanoporous Antireflection Coatings Made by
Layer-By-Layer Self-Assembly of Block
Copolymer Micelles 612
9.14 Supramolecular Assemblies 613
9.15 Supramolecular Mushrooms 616
9.16 Structural Color from Lightscale Block
Copolymers 618
9.17 1-D Block Copolymer Spatial Confinement -
Hierarchical Bragg Mirrors 619
9.18 Color Tunable Block Copolymer Gel Bragg
Mirror 620
9.19 Harnessing Rigid Rods 622
9.20 Nanostructured Ceramics 623
9.21 Nano-objects 624
9.22 Block Copolymer Lithography 626
9.23 Decorating Block Copolymers 627
9.24 A Case of Wettability 628
9.25 Nanowires from Block Copolymers 631
References 632
Nonofoodfor Thought - Block Copolymer Self-Assembling
Nanostructures 639
Chapter 10 Biomaterials and Bioinspiration 643
10.1 Nature did it First 643
10.2 To Mimic or to Use? 644
10.3 Faux Fossils 646
10.4 Nature s Siliceous Sculptures 647
10.5 Ancient to Modern Synthetic Morphology
10.6 Biomimicry
10.7 Biological Lessons in Materials Design
10.8 Biomineralization and Biomimicry Analogies
10.9 Morphosynthesis - Inorganic Materials with
Complex Form
10.10 Morphosynthesis-Echinodcrm v.v. Block
Copolymer
10.11 Aluminophosphatcs Shape Up
10.12 Better Bones Through Chemistry
10.13 Mineralizing Nanofibers
10.14 Mimicking the Mosquito Eye - Synthetic
Antifogging Surface
10.15 Bioinspiration-Chcmically Driven Nanorod
Motors
10.16 Bioinspiration-Lcarning from Nature
10.17 Bioinspiration-Viral Cage Directed Synthesis
of Nanociusters
10.18 Biomaterials - Using Nature for our Own
Means
10.19 Viruses that Glitter
10.20 Polynucleotide Directed Nanocluster
Assembly
10.21 DNA Coded Nanocluster Chains
10.22 Building with DNA
10.23 A Smile Written in your DNA
10.24 Bacteria Directed Materials Self-Assembly
10.25 Using a Virus that is Benign, to Align
10.26 Magnetic Spider Silk
10.27 Protein S-layer Masks
10.28 Fishy Top-Down Photonic Crystals
10.29 Polymer Life-Forms
10.30 Surface Binding Through Directed Evolution
10.31 Nanovvire Evolution
10.32 Biomoleeular Motors - Nanomachines
Everywhere
10.33 How Biomotors Work
10.34 Kinesin - Walk Along
10.35 Muscle Powered Nanomachines
10.36 Bacteria Power
10.37 ATPase - Biomotor Nanopropellers
10.38 (Bio) Inspiration
References
Nanofoodfor Thought - Organic Matrix,
Biomineralization, Biomimetics, Bioinspiration
Contents
XXXV
Chapter 11 Self-Assembly of Large Building Blocks 719
11.1 Self-assembling Supra-micron Shapes 719
11.2 Synthesis Using the Capillary Bond 720
11.3 Crystallizing Large Polyhedral-Shaped Building
Blocks 721
11.4 Self-Assembling 2D and 3D Electrical Circuits
and Devices 72]
11.5 Crystallizing Micron-Sized Planar Building
Blocks 722
11.6 Polyhedra with Patterned Faces that
Autoconstruct 725
11.7 Large Sphere Building Block Self-Assemble
into 3D Crystals 727
11.8 Synthetic MEMS? 728
11.9 Contact Electrification - Charging the Balls
to Order 729
11.10 Magnetic Self-Assembly 730
11.11 Dynamic Self-Assembly 732
11.12 Autonomous Self-Assembly 735
11.13 Self-Assembly and Synthetic Life 736
References 737
Nanofood for Thought - Static and Dynamic, Capillary
Bond, Shape Assembly 740
Chapter 12 Nano and Beyond 743
12.1 Assembling the Future 743
12.2 Do-It-Yourself Microfluidics 744
12.3 One Wire - One Solar Cell 744
12.4 Stretchy Silicon 744
12.5 Inhibiting HIV with Gold 745
12.6 Many-Face Nanocubes 746
12.7 Nanominerals 748
12.8 NanoRockets 748
12.9 Galvanized Nanostructures 749
12.10 Moving Cargoes at the Nanoscale 750
12.11 Writing 3D Gooey Inks 750
12.12 A Mask of Nanowires 751
12.13 Liquid Lasers 752
12.14 Remediating with Nanowires and Nanocrystals 752
12.15 Assemblying Nanocrystals via DNA 754
12.16 Graphene - The Prince of Electronics? 754
12.17 Self-Healing Materials 755
12.18 Multiferroics Down Below 755
xxxvi
12.19 Materials Retro-assembly
12.20 Matter that Matters - Materials ol the
Next Kind
References
Nanofood for Thought - Nana Potpourri
Chapter 13 Nanochemistry Nanolabs
13.1 Luminescent Nanoring Array 768
13.2 Ferromagnetic Nanocrystal Array 769
13.3 Zeolite Membrane 769
13.4 Elcctrochromic Device 769
13.5 Size Reduction Soft-Lithography 769
13.6 Self-assembly of Barcoded Magnetic Nanorods 769
13.7 Carbon Nanotube Field Emitting Display 769
13.8 Photoconducting Selenium Nanowircs 770
13.9 Metal Colloids 770
13.10 Metal-Nonmetal Transition 770
13.11 Near Infrared Emitting Quantum Dots 770
13.12 Nanocrystals in Nanobeakers 770
13.13 Colloidal Photonic Crystal Fingerprinting 770
13.14 Colloidal Crystal Capillary Column 771
13.15 Low Dielectric Constant Film 771
13.16 Block Copolymer Lithography 771
13.17 Virus Mineralization 771
13.18 Biological Structures and Templates 771
13.19 Mcsoscopic Sclf-Asscmbly 772
13.20 Colloidal Crystal Shapes 772
Appendix A: Origin of the Term Self-Assembly 773
Appendix B: Origin of the Nanochemistry 779
Appendix C: Cytotoxicity of Nanoparticles 781
Subject Index
785
|
adam_txt |
Titel: Nanochemistry
Autor: Ozin, Geoffrey A
Jahr: 2009
Contents
List of Acronyms xxxvii
Teaching (Nano) Materials xli
Learning (Nano) Materials xliii
Guessing (Nano) Materials xliv
About the Authors xlv
Acknowledgements I
Nanofood for Thought-Thinking about Nanochemistry,
Nanosciencc, Nanotechnology and Nanosafety lii
Chapter 1 Nanochemistry Basics 3
1.1 The Roots of Nanochemistry in Materials
Chemistry 3
1.2 Synthesis of Materials and Nanomaterials 5
1.3 Materials Self-Assembly 9
1.4 Big Bang to the Universe 10
1.5 Why Nano? 10
1.6 What Do we Mean by Large and Small
Nanomaterials? 11
1.7 Do it Yourself Quantum Mechanics 12
1.8 What is Nanochemistry? 13
1.9 Molecular v.v. Materials Self-Assembly 13
1.10 What is Hierarchical Assembly? 14
Nanochemistry: A Chemical Approach to Nanomaterials
By Geoffrey A. Ozin, Andre C. Arsenault and Ludovico Cademartiri
O The Royal Society of Chemistry 2009
Published by the Royal Society of Chemistry, www.rsc.org
xxiii
Con/ails
xxiv
1.11 Directing Self-Assembly
1.12 Supramolecular Vision
1.13 Genealogy of Self-Assembling Materials
1.14 Unlocking the Key to Porous Solids
1.15 Learning from Biominerals Form is Function
1.16 Can You Curve a Crystal?
1.17 Patterns, Patterns Everywhere
1.18 Synthetic Creations with Natural Form
1.19 Two-Dimensional Assemblies
1.20 SAMs and Soft Lithography
1.21 Clever Clusters
1.22 Extending the Prospects of Nanowires
1.23 Coercing Colloids
1.24 Mesoscale Self-Assembly
1.25 Materials Self-Assembly of Integrated
Systems
References
Nanofood for Thought - Materials Chemistry.
Nanochemistry, Genealogy, Materials Self-Assembly.
Length Scales
Chapter 2 Chemical Patterning and Lithography
2.1 Lord's Prayer on the Head of a Pin
2.2 Soft Lithography
2.3 What are Self-Assembled Monolayers?
2.4 The Science and Art of Soft Lithography
2.5 Patterning Wettability?
2.6 Condensation Figures
2.7 Microlens Arrays
2.8 Nanoring Arrays
2.9 SAM Registration
2.10 Patterning the Solid State
2.11 Primed for Printing Polymers
2.12 Beyond Molecules - Transfer Printing
of Thin Films
2.13 Microcontact Printing Living Bacteria
2.14 Electrically Contacting SAMs
2.15 SAM Crystal Engineering
2.16 Learning From Nature's Biocrystal Engineeriim
2.17 Wet Stamping - The Incredible Shrinking
Liesegang Rings
2.18 Wet Etch Patterns
2.19 Colloidal Microsphere Patterns
2.20 SAM Patterned Opal Marble Arrays
15
15
16
19
- *
24
25
26
28
31
32
34
35
38
40
41
53
57
57
58
60
61
63
65
65
67
69
69
73
74
75
76
78
80
83
85
87
88
\
Contents
2.21 Switching SAM Function 89
2.22 Patterning by Photocatalysis 90
2.23 Reversibly Switching SAMs 91
2.24 Electrowettability Switch 92
2.25 Metamorphic Mold - Adjustable
Microtopography PDMS 95
2.26 Sweet Chips 96
2.27 All Fall Down in a Row Lithography 97
2.28 Nanoskiving 99
2.29 Patterning Nanochannel Alumina Membranes
With Single Channel Resolution 100
References 103
Ncmofood for Thought - Soft Lithography, SAMs,
Patterning 112
Chapter 3 Layer-by-Layer Self-Assembly 117
3.1 Building One Layer at a Time 117
3.2 Electrostatic Superlattices 117
3.3 Organic Polyelectrolyte Multilayers 119
3.4 Layer-by-Layer Smart Windows 120
3.5 How Thick is Thin? 121
3.6 Assembling Metallopolymers 122
3.7 Directly Imaging Polyelectrolyte Multilayers 122
3.8 Polyelcctrolyte-Colloid Multilayers 124
3.9 Graded Composition LbL Films 125
3.10 LbL MEMS 126
3.11 Trapping Active Proteins 128
3.12 Protein Laden Porous LbL Multilayers 129
3.13 Layering on Curved Surfaces 130
3.14 Microcrystal Packaging - Polyelectrolyte Coated
Crystal Drug Delivery Systems 132
3.15 Hydrolytically Degradable LbL Films
for Drug Delivery 134
3.16 Nanobaloons - New Generation Ultrasound
Contrast Agents 135
3.17 Crystal Engineering of Oriented Zeolite Film 138
3.18 Zeolite-Ordered Multicrystal Arrays 141
3.19 Crosslinked Crystal Arrays 142
3.20 Tunable Structural Color in Multilayer
Bragg Stacks 143
3.21 2D LbL Structural Color 145
3.22 Layering with Topological Complexity 147
3.23 Patterned Multilayers 149
3.24 Non-Electrostatic Layer-by-Layer Assembly 150
Contents
151
3 25 Low-Pressure Layers
3.26 Layer-by-Layer Self-Limiting Reactions
References
Nanofoodfor Thought - Designer Monolayers.
Multilayers. Materials Flat land
Chapter 4 Nanocontact Printing and Writing - Stamps
and Tips
152
162
167
171
4.1 Sub-100 nm Soft Lithography Ul1
4.2 Extending Microcontact Printing
4.3 Putting on the Pressure 169
4.4 Defect Patterning Topologicals Directed
Etching
4.5 Below 50 nm Nanocontact Printing 17-
4.6 Nanocontact Writing - Dip Pen Nanolithography 173
4.7 DPN of Silicon 174
4.8 DPN on Glass 175
4.9 Nanoscale Writing on Semiconductor Nanowires 176
4.10 Sol-Gel DPN 177
4.11 Soft Patterning of Hard Magnets 178
4.12 Writing Molecular Recognition 179
4.13 DPN Written Protein Recognition Nanostructures 1S1
4.14 HIV Detection Using DPN Arrays 182
4.15 Patterning Bioconstructions 183
4.16 Eating Patterns - Enzyme DPN 185
4.17 Electrostatic DPN 186
4.18 Electrochemical DPN 186
4.19 SPM Nano— Electrochemistry 187
4.20 Beyond DPN - Electrowhittling Nanostructures 189
4.21 Nanospinning E"ibers 190
4.22 OLED Tip - AFM with a Nanoscale Scanning
Light Probe 191
4.23 Hot Tips - DPN Soldering Iron 193
4.24 Combi Nano - DPN Combinatorial Libraries 193
4.25 50,000 Tips Go Sailing by, Go Sailing by
in the Morning 196
4.26 Nanoblotters 197
4.27 Nanoscale Patterning of PDMS Stamps
the DPN Way [98
4.28 Scanning Probe Contact Printing (SP-CP)
4.29 Dip Pen Nanolithography Stamp TIP - Beyond
DPN CP
4.30 Best of Both Worlds ^03
4.31 The Nanogenie is out of the Bottle 203
200
Contents xxvii
References 204
Nanofood for Thought - Sharper Chemical Patterning
Tools 210
Chapter 5 Nanorod, Nanotube, Nanowire Self-Assembly 215
5.1 Building Block Assembly 215
5.2 Templating Nanowircs 216
5.3 Modulated Diameter Gold Nanorods 217
5.4 Modulated Composition Nanorods 218
5.5 Barcoded Nanorod Orthogonal Sclf-Assembly 221
5.6 Nanodisk Codes 224
5.7 Sir SERS 226
5.8 Self-Assembling Nanorods 227
5.9 Magnetic Nanorods Bunch Up 229
5.10 Magnetic Nanorods and Magnetic Nanoclusters 230
5.11 An Irresistible Attraction for Biomolcculcs 232
5.12 Hierarchically Ordered Nanorods 233
5.13 Nanorod Devices 235
5.14 Nanotubes from Nanoporous Templates 236
5.15 Layer-by-Laycr Nanotubes from Nanorods 238
5.16 Synthesis of Single Crystal Semiconductor
Nanowires 239
5.17 Vapor-Liquid-Solid Synthesis of Nanowires 240
5.18 What Controls Nanowire-Oriented Growth? 241
5.19 Marrying Plasmonics and Catalytics 242
5.20 Nanowire Quantum Size Effects 244
5.21 Single-Source Precursors 245
5.22 Supercritical Fluid-Liquid-Solid Synthesis 245
5.23 Ultrathin Nanowires-Nanothcrmoelcctrics 246
5.24 Zoo of Nanowire Compositions and Architectures 250
5.25 Got the Nanoneedlc 251
5.26 Manipulating Nanowires 252
5.27 Blowing Nanotube and Nanowire Bubbles
Everywhere 254
5.28 Crossed Semiconductor Nanowires - Smallest
LED 257
5.29 Nanowire Diodes and Transistors 259
5.30 Nanowire Sensors 260
5.31 Catalytic Nanowire Electronics 261
5.32 Nanowire Heterostructures 262
5.33 Longitudinal Nanowire Superlattices 263
5.34 Nanoscale Ionics: Ion-Exchange of Nanorods 266
5.35 Axial Nanowire Heterostructures 269
5.36 Nanowires Branch Out 269
Omi'M.v
XXVIll
Coaxially Gated Nanowire Transistor
Vertical Nanowire Field Efiect Transistors
Integrated Metal-Semiconductor Nanowires
Nanoscale Electrical Contacts
Photon-Driven Nanowire Laser
Electrically Driven Nanowire Laser
Nanowire UV Photodctcctors
Simplifying Complex Nanowires
Nanowire Casting of Single-Crystal Nanotubes
Solution-Phase Routes to Nanowires
Spinning Nanowire Devices
Hollow Nanofibers by Eleetrospinning
Carbon Nanotubes
Carbon Nanotube Structure and Electrical
Properties
Gone Ballistic
Carbon Nanotube Nanomechanics
Carbon Nanotube Chemistry
Carbon Nanotubes All in a Row
Carbon Nanotube Photonic Crystal
Putting Carbon Nanotubes Exactly Where You
Want Them
The Nanowire Pitch Challenge
Integrated Nanowire Nanoelcctronics
Silicon Nanowire Solar Cells - Self-Powered
Nanoelectronics
See-Through Nanoelectronics Circuits
Piezoelectric Nanowire Electrical Nanogenerators
Carbon Nanotube Radio Receiver
Silicon Nanowire NEMS: Very High Frequency
Resonators and Ultra High Sensitivity
Mass Monitors
Nanowires that Never Forget
A Small Thought at the End of a Large Chapter
References
Nanofood for Thought - Wires, Rods, Tubes, Low
Dimensionality
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.58
5.59
5.60
5.61
5.62
5.63
5.64
6.1
6.2
6.3
6.4
Building-Block Assembly
When is a Nanocrystal a Nanocluster
or a Nanoparticle?
Synthesis of Capped Semiconductor Nanocrystals
Electrons and Holes in Nanocrystal Boxes
272
273
274
276
278
279
279
281
283
285
286
288
289
291
292
293
296
298
300
301
303
305
306
307
310
311
312
315
315
330
Chapter 6 Nanocrystal Synthesis and Self-Assembly 335
335
336
336
339
Contents xxjx
6.5 Nanocluster Phase Transformations 342
6.6 Watching Nanocrystals Grow 343
6.7 Nanocrystals in Nanobeakers 345
6.8 Capped Gold Nanocrystals - Nanonugget Rush 346
6.9 At Last a Single Crystal X-Ray Diffraction
Structure of a Thiolate Ligand-Cappcd Gold
Nanocluster 348
6.10 Alkanethiolate Capped Nanoclusters Diagnostics 350
6.11 Periodic Table of Capped Nanocrystals 351
6.12 There's Gold in Them Thar Hills! 352
6.13 Capped Nanocrystal Architectures and
Morphologies 353
6.14 Alkanethiolate Capped Silver Nanocrystal
Superlattice 353
6.15 Active Plasmonics - Tunable Silver Nanocrystal
Superlattices 355
6.16 Crystals of Nanocrystals 357
6.17 Getting Nanocrystal Superlattices to Conduct 358
6.18 Synergy in Nano 360
6.19 What if you Don't Like Organics? 360
6.20 Beyond Crystals of Nanocrystals - Binary
Nanocrystal Superlattices 362
6.21 Capped Magnetic Nanocrystal Superlattice - High
Density Data Storage Materials 363
6.22 Soft Lithography of Capped Nanocrystals 364
6.23 Organizing Nanocrystals by Evaporation 365
6.24 Pot of Gold at the Bottom of the Nanofunnel 366
6.25 Electroluminescent Semiconductor Nanocrystals 368
6.26 Full Color Nanocrystal-Polymcr Composites 370
6.27 Flipping a Nanocrystal Switch 372
6.28 Photochromic Metal Nanocrystals 373
6.29 Water-Soluble Nanocrystals 374
6.30 Capped Semiconductor Nanocrystal Meets
Biomolecule 377
6.31 Hot Nanorods Cure for Cancer 380
6.32 Origin of the Color of Nanoscopic Gold 381
6.33 Nanocrystal DNA Sensors - Besting the Best 383
6.34 Fingering Nanocrystals 385
6.35 DNA-Gold Senses Mercury 387
6.36 Nanocrystal Semiconductor Alloys and
Beyond 387
6.37 Alloying Core-Shell Magnetic Nanocrystals 389
6.38 Nanocrystal Grows a Hole 390
6.39 Semiconductor Nanocrystals Extend and
Branch Out 391
('(Ulfl'Nf.V
6.40 Tetrapod of Tetrapods - Towards Inorganic ^
Dcndrimers ' '
6.41 Nanocrystals Go Hyper ; ~
6 42 Golden Tips - Making Contact with Nanorous
6.43 Marriage of Convenience - Designed Assembly of
Nanociystal Dimcrs, Heterodimers, Heteroinmers
399
and Chains -
6.44 Carbon Nanoclustcrs - Buckyballs 41
6.45 Building Nanodevices with Buckyballs 410
6 46 Carbon Catalysis with Buckyball 411
4 P
References "
Nana food for Thought — Nanocrystals, Quantum Dots,
Quantum Size Effects 426
Chapter 7 Microspheres - Colors from the Beaker 431
7.1 Nature's Photonic Crystals 431
7.2 Photonic Crystals 432
7.3 Photonic Semiconductors 453
7.4 Defects, Defects, Defects 434
7.5 Computing with Light 435
7.6 Color Tunability 436
7.7 Transferring Nature's Photonic Crystal
Technology to the Chemistry Laboratory 436
7.8 Microsphere Building Blocks 437
7.9 Silica Microspheres 437
7.10 Latex Microspheres 438
7.11 Multi-Shell Microspheres 438
7.12 On The Fly: Microsphere Synthesis and
Microbubble Generation in Microfluidic Reactors 439
7.13 Patterning Microspheres - Inside and Outside 444
7.14 Basics of Microsphere Self-Assembly 449
7.15 Microsphere Self-Assembly - Crystals and Films 450
7.16 Colloidal Crystalline Fluids 45!
7.17 Beyond Face Centered Cubic Packing of
Microspheres 45s
7.18 Templates - Confinement and Epitaxy 454
7.19 Rolling Out the Opal Carpet of Many Colors 455
7.20 Photonic Crystal Marbles 457
7.21 Spotting Colloidal Crystals 460
7.22 Photonic Crystal Fibers 461
7.23 Optical Properties of Colloidal Crystals -
Combined Bragg-Snell Laws 46"
7 75 H'S1Ct?PrCal Pr°pertieSofColloid:1l Crystals 463
/¦25 How Perfect is Perfect? 464
Contents xxxi
7.26 Cracking Controversy 466
7.27 Synthesizing a Full Photonic Band Gap 468
7.28 Escape from the Dielectric Microsphere Prison -
Bottom-Up and Top-Down Synthesis
of Monodispersed Metal Microspheres 469
7.29 Writing Defects 470
7.30 Getting Smart with Planar Defects 472
7.31 Getting Even Smarter with Planar Defects 474
7.32 Switching Light with Light 476
7.33 Thermochromic Colloidal Photonic Crystal Switch 477
7.34 Liquid Crystal Photonic Crystal 477
7.35 Internal Light Sources 480
7.36 Photonic Inks 481
7.37 Full-Color Photonic Crystal Display 482
7.38 Elastically Tunable Photonic Crystals - From
Color Fingerprinting to Anti-Counterfeiting 484
7.39 Magnetically Tuneable Photonic Crystals -
Magnetic Liquid Color 485
7.40 Electric Field Color Tuned Colloidal Crystal 487
7.41 Color Oscillator 488
7.42 Photonic Crystal Sensors 490
7.43 Colloidal Crystal Chromatography 491
7.44 Walking Macromolecules Through Colloidal
Crystals 493
7.45 Slow Photons in the Fast Lane 496
7.46 Enhanced and Direction-Dependent
Photocatalysis 497
7.47 Boosting Photoconductivity in a Silicon Solar Cell 499
7.48 Encrypted Colloidal Crystals 501
7.49 Medusa Chemistry - A Butterfly of Stone 503
7.50 Gazing in the Photonic Crystal Ball 504
References 506
Nanofood for Thought — Colloidal Assembly, Colloidal
Crystals, Colloidal Crystal Devices, Structural Color 516
Chapter 8 Microporous and Mesoporous Materials from
Soft Building Blocks 521
8.1 Escape from the Zeolite Prison 521
8.2 A Periodic Table of Materials Filled with Holes 522
8.3 Modular Self-Assembly of Microporous Materials 523
8.4 Hydrogen Storage Coordination Frameworks 525
8.5 Crystalline Organic Frameworks, COFs 526
8.6 Overview and Prospects of Microporous Materials 527
8.7 Mesoscale Soft Building Blocks 528
Cements
xxxii
8.8 Mesogrowth - Interfaces and Mesoepitaxy ^30
8.9 Mesogrowth and Topological Delects
8.10 Mesogrowth and the Micelle v.v Liquid Crystal
Templating Paradox
8.11 Meso-Opals
Mesoporous Materials by Design 5.8
8.12
53:
534
535
538
8.13 Tuning Length Scales
8.14 Mesostructurc and Dimensionality 541)
8.15 Stand Up and Be Counted 541
8.16 Making Mesochannels Stand Up 543
8.17 When It Rains It Pours Vertical Mesochannels 543
8.18 Shock'em to Stand Up - Electrochemically
Assisted Assembly of Periodic Mesoporous Silica
Film with Orthogonal Channels 545
8.19 Mesomorphology - Spheres, Other Shapes 545
8.20 PMOs Shape Up for High Performance IIPLC 548
8.21 Mesomorphology - Morphosynthesis of Curved
Form 549
8.22 Mesomorphology - Chiral Mesoporous Silica 551
8.23 Mesomorphology - Patterned Films. Soft
Lithography, Micromolding 552
8.24 Mesocomposition - Nature of Precursors 555
8.25 Sidearm Mesofunctionalization 555
8.26 Organics in the Backbone 557
8.27 One-Pot Synthesis of Periodic Mesoporous
Polyphenolformaldehyde Materials
and Carbon Copies 560
8.28 Mesopore Replication 560
8.29 Plastic Clones of Periodic Mesoporous Silica Shapes 563
8.30 Mesotexture 565
8.31 Nearly Crystalline Pore Walls In Periodic
Mesoporous Silica 565
8.32 Guests in Mcsopores 568
8.33 Mesoporous Silica Nanoparticles Smart Drug
Delivery 559
8.34 Permeating the Impermeable 571
8.35 Capped Nanocrystal Meets Surfactant Mesophase 571
8.36 Marking Time in Mesostructured Silica - New
Approach to Optical Data Storage 573
8.37 Periodic Mesoporous Silica-Polymer Hybrids 575
8.38 Mesochemistry - Synthesis in "Intermediate-
Dimensions
References
Nanofood for Thought - Soft Blocks Template Hard
Precursors, Holey Materials 59O
576
577
Contents
Chapter 9 Self-Assembling Block Copolymers
XXX111
595
9.1 Polymers, Polymers Everywhere in
Nanochemistry 595
9.2 Block Copolymer Self-Assembly - Chip Off
the Old Block 595
9.3 Assembling Inorganic Polymers 598
9.4 Block Copolypeptides 598
9.5 Block Copolymer Biofactories 601
9.6 Block Copolymer Thin Films 602
9.7 Electrical Ordering 603
9.8 Spatial Confinement of Block Copolymers 604
9.9 3-D Block Copolymer Spatial Confinement 605
9.10 Nanoepitaxy 607
9.11 Making Micelles 608
9.12 Living Block Copolymers Give Birth to Living
Block Copolymer Cylindrical Micelles 611
9.13 Nanoporous Antireflection Coatings Made by
Layer-By-Layer Self-Assembly of Block
Copolymer Micelles 612
9.14 Supramolecular Assemblies 613
9.15 Supramolecular Mushrooms 616
9.16 Structural Color from Lightscale Block
Copolymers 618
9.17 1-D Block Copolymer Spatial Confinement -
Hierarchical Bragg Mirrors 619
9.18 Color Tunable Block Copolymer Gel Bragg
Mirror 620
9.19 Harnessing Rigid Rods 622
9.20 Nanostructured Ceramics 623
9.21 Nano-objects 624
9.22 Block Copolymer Lithography 626
9.23 Decorating Block Copolymers 627
9.24 A Case of Wettability 628
9.25 Nanowires from Block Copolymers 631
References 632
Nonofoodfor Thought - Block Copolymer Self-Assembling
Nanostructures 639
Chapter 10 Biomaterials and Bioinspiration 643
10.1 Nature did it First 643
10.2 To Mimic or to Use? 644
10.3 Faux Fossils 646
10.4 Nature's Siliceous Sculptures 647
10.5 Ancient to Modern Synthetic Morphology
10.6 Biomimicry
10.7 Biological Lessons in Materials Design
10.8 Biomineralization and Biomimicry Analogies
10.9 Morphosynthesis - Inorganic Materials with
Complex Form
10.10 Morphosynthesis-Echinodcrm v.v. Block
Copolymer
10.11 Aluminophosphatcs Shape Up
10.12 Better Bones Through Chemistry
10.13 Mineralizing Nanofibers
10.14 Mimicking the Mosquito Eye - Synthetic
Antifogging Surface
10.15 Bioinspiration-Chcmically Driven Nanorod
Motors
10.16 Bioinspiration-Lcarning from Nature
10.17 Bioinspiration-Viral Cage Directed Synthesis
of Nanociusters
10.18 Biomaterials - Using Nature for our Own
Means
10.19 Viruses that Glitter
10.20 Polynucleotide Directed Nanocluster
Assembly
10.21 DNA Coded Nanocluster Chains
10.22 Building with DNA
10.23 A Smile Written in your DNA
10.24 Bacteria Directed Materials Self-Assembly
10.25 Using a Virus that is Benign, to Align
10.26 Magnetic Spider Silk
10.27 Protein S-layer Masks
10.28 Fishy Top-Down Photonic Crystals
10.29 Polymer Life-Forms
10.30 Surface Binding Through Directed Evolution
10.31 Nanovvire Evolution
10.32 Biomoleeular Motors - Nanomachines
Everywhere
10.33 How Biomotors Work
10.34 Kinesin - Walk Along
10.35 Muscle Powered Nanomachines
10.36 Bacteria Power
10.37 ATPase - Biomotor Nanopropellers
10.38 (Bio) Inspiration
References
Nanofoodfor Thought - Organic Matrix,
Biomineralization, Biomimetics, Bioinspiration
Contents
XXXV
Chapter 11 Self-Assembly of Large Building Blocks 719
11.1 Self-assembling Supra-micron Shapes 719
11.2 Synthesis Using the "Capillary Bond" 720
11.3 Crystallizing Large Polyhedral-Shaped Building
Blocks 721
11.4 Self-Assembling 2D and 3D Electrical Circuits
and Devices 72]
11.5 Crystallizing Micron-Sized Planar Building
Blocks 722
11.6 Polyhedra with Patterned Faces that
Autoconstruct 725
11.7 Large Sphere Building Block Self-Assemble
into 3D Crystals 727
11.8 Synthetic MEMS? 728
11.9 Contact Electrification - Charging the Balls
to Order 729
11.10 Magnetic Self-Assembly 730
11.11 Dynamic Self-Assembly 732
11.12 Autonomous Self-Assembly 735
11.13 Self-Assembly and Synthetic Life 736
References 737
Nanofood for Thought - Static and Dynamic, Capillary
Bond, Shape Assembly 740
Chapter 12 Nano and Beyond 743
12.1 Assembling the Future 743
12.2 Do-It-Yourself Microfluidics 744
12.3 One Wire - One Solar Cell 744
12.4 Stretchy Silicon 744
12.5 Inhibiting HIV with Gold 745
12.6 Many-Face Nanocubes 746
12.7 Nanominerals 748
12.8 NanoRockets 748
12.9 Galvanized Nanostructures 749
12.10 Moving Cargoes at the Nanoscale 750
12.11 Writing 3D Gooey Inks 750
12.12 A Mask of Nanowires 751
12.13 Liquid Lasers 752
12.14 Remediating with Nanowires and Nanocrystals 752
12.15 Assemblying Nanocrystals via DNA 754
12.16 Graphene - The Prince of Electronics? 754
12.17 Self-Healing Materials 755
12.18 Multiferroics Down Below 755
xxxvi
12.19 Materials Retro-assembly
12.20 Matter that Matters - Materials ol the
"Next Kind"
References
Nanofood for Thought - Nana Potpourri
Chapter 13 Nanochemistry Nanolabs
13.1 Luminescent Nanoring Array 768
13.2 Ferromagnetic Nanocrystal Array 769
13.3 Zeolite Membrane 769
13.4 Elcctrochromic Device 769
13.5 Size Reduction Soft-Lithography 769
13.6 Self-assembly of Barcoded Magnetic Nanorods 769
13.7 Carbon Nanotube Field Emitting Display 769
13.8 Photoconducting Selenium Nanowircs 770
13.9 Metal Colloids 770
13.10 Metal-Nonmetal Transition 770
13.11 Near Infrared Emitting Quantum Dots 770
13.12 Nanocrystals in Nanobeakers 770
13.13 Colloidal Photonic Crystal Fingerprinting 770
13.14 Colloidal Crystal Capillary Column 771
13.15 Low Dielectric Constant Film 771
13.16 Block Copolymer Lithography 771
13.17 Virus Mineralization 771
13.18 Biological Structures and Templates 771
13.19 Mcsoscopic Sclf-Asscmbly 772
13.20 Colloidal Crystal Shapes 772
Appendix A: Origin of the Term "Self-Assembly" 773
Appendix B: Origin of the Nanochemistry 779
Appendix C: Cytotoxicity of Nanoparticles 781
Subject Index
785 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Ozin, Geoffrey A. 1943- Arsenault, André C. 1979- Cademartiri, Ludovico 1978- |
author_GND | (DE-588)139009639 (DE-588)1044017937 (DE-588)136451217 |
author_facet | Ozin, Geoffrey A. 1943- Arsenault, André C. 1979- Cademartiri, Ludovico 1978- |
author_role | aut aut aut |
author_sort | Ozin, Geoffrey A. 1943- |
author_variant | g a o ga gao a c a ac aca l c lc |
building | Verbundindex |
bvnumber | BV035107875 |
callnumber-first | Q - Science |
callnumber-label | QC176 |
callnumber-raw | QC176.8.N35 |
callnumber-search | QC176.8.N35 |
callnumber-sort | QC 3176.8 N35 |
callnumber-subject | QC - Physics |
classification_rvk | VE 9850 |
classification_tum | CHE 380f TEC 030f |
ctrlnum | (OCoLC)260209007 (DE-599)BVBBV035107875 |
dewey-full | 620.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.5 |
dewey-search | 620.5 |
dewey-sort | 3620.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Technik Chemie |
discipline_str_mv | Chemie / Pharmazie Technik Chemie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01959nam a2200493 c 4500</leader><controlfield tag="001">BV035107875</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120419 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081020s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781847558954</subfield><subfield code="9">978-1-84755-895-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)260209007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035107875</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC176.8.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 380f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 030f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ozin, Geoffrey A.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139009639</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanochemistry</subfield><subfield code="b">a chemical approach to nanomaterials</subfield><subfield code="c">Geoffrey A. Ozin, André C. Arsenault and Ludovico Cademartiri</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">RSC Publ.</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LIII, 820 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoscience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanopartikel</subfield><subfield code="0">(DE-588)4333369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nanopartikel</subfield><subfield code="0">(DE-588)4333369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arsenault, André C.</subfield><subfield code="d">1979-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1044017937</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cademartiri, Ludovico</subfield><subfield code="d">1978-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136451217</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016775757&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016775757</subfield></datafield></record></collection> |
id | DE-604.BV035107875 |
illustrated | Illustrated |
index_date | 2024-07-02T22:16:28Z |
indexdate | 2024-07-09T21:22:29Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016775757 |
oclc_num | 260209007 |
open_access_boolean | |
owner | DE-20 DE-703 DE-19 DE-BY-UBM DE-29T DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-20 DE-703 DE-19 DE-BY-UBM DE-29T DE-91G DE-BY-TUM DE-83 |
physical | LIII, 820 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | RSC Publ. |
record_format | marc |
spelling | Ozin, Geoffrey A. 1943- Verfasser (DE-588)139009639 aut Nanochemistry a chemical approach to nanomaterials Geoffrey A. Ozin, André C. Arsenault and Ludovico Cademartiri 2. ed. Cambridge RSC Publ. 2009 LIII, 820 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanoscience Nanostructured materials Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Nanopartikel (DE-588)4333369-2 gnd rswk-swf Chemie (DE-588)4009816-3 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 s Chemie (DE-588)4009816-3 s DE-604 Nanopartikel (DE-588)4333369-2 s Arsenault, André C. 1979- Verfasser (DE-588)1044017937 aut Cademartiri, Ludovico 1978- Verfasser (DE-588)136451217 aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016775757&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ozin, Geoffrey A. 1943- Arsenault, André C. 1979- Cademartiri, Ludovico 1978- Nanochemistry a chemical approach to nanomaterials Nanoscience Nanostructured materials Nanostrukturiertes Material (DE-588)4342626-8 gnd Nanopartikel (DE-588)4333369-2 gnd Chemie (DE-588)4009816-3 gnd |
subject_GND | (DE-588)4342626-8 (DE-588)4333369-2 (DE-588)4009816-3 |
title | Nanochemistry a chemical approach to nanomaterials |
title_auth | Nanochemistry a chemical approach to nanomaterials |
title_exact_search | Nanochemistry a chemical approach to nanomaterials |
title_exact_search_txtP | Nanochemistry a chemical approach to nanomaterials |
title_full | Nanochemistry a chemical approach to nanomaterials Geoffrey A. Ozin, André C. Arsenault and Ludovico Cademartiri |
title_fullStr | Nanochemistry a chemical approach to nanomaterials Geoffrey A. Ozin, André C. Arsenault and Ludovico Cademartiri |
title_full_unstemmed | Nanochemistry a chemical approach to nanomaterials Geoffrey A. Ozin, André C. Arsenault and Ludovico Cademartiri |
title_short | Nanochemistry |
title_sort | nanochemistry a chemical approach to nanomaterials |
title_sub | a chemical approach to nanomaterials |
topic | Nanoscience Nanostructured materials Nanostrukturiertes Material (DE-588)4342626-8 gnd Nanopartikel (DE-588)4333369-2 gnd Chemie (DE-588)4009816-3 gnd |
topic_facet | Nanoscience Nanostructured materials Nanostrukturiertes Material Nanopartikel Chemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016775757&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ozingeoffreya nanochemistryachemicalapproachtonanomaterials AT arsenaultandrec nanochemistryachemicalapproachtonanomaterials AT cademartiriludovico nanochemistryachemicalapproachtonanomaterials |