Introduction to solid-state NMR spectroscopy:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Blackwell Science
2008
|
Ausgabe: | 1. publ., [Nachdr.] |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 349 S. Ill., graph. Darst. |
ISBN: | 9781405109147 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035096667 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 081013s2008 ad|| |||| 00||| eng d | ||
020 | |a 9781405109147 |9 978-1-4051-0914-7 | ||
035 | |a (OCoLC)635295064 | ||
035 | |a (DE-599)BVBBV035096667 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-703 |a DE-29T | ||
084 | |a VG 9500 |0 (DE-625)147241:253 |2 rvk | ||
084 | |a PHY 754f |2 stub | ||
084 | |a CHE 194f |2 stub | ||
084 | |a CHE 244f |2 stub | ||
100 | 1 | |a Duer, Melinda J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to solid-state NMR spectroscopy |c Melinda J. Duer |
250 | |a 1. publ., [Nachdr.] | ||
264 | 1 | |a Oxford [u.a.] |b Blackwell Science |c 2008 | |
300 | |a XIV, 349 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a NMR-Spektroskopie |0 (DE-588)4075421-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörper |0 (DE-588)4016918-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a NMR-Spektroskopie |0 (DE-588)4075421-2 |D s |
689 | 0 | 1 | |a Festkörper |0 (DE-588)4016918-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016764701&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016764701 |
Datensatz im Suchindex
_version_ | 1804138056514535424 |
---|---|
adam_text | Contents
Preface,
xii
Acknowledgements,
xv
The Basics of NMR,
1
1.1
The vector model of pulsed NMR,
1
1.1.1
Nuclei in a static, uniform magnetic field,
2
1.1.2
The effect of rf pulses,
3
1.2
The quantum mechanical picture: hamiltonians and the
Schrödinger
equation,
5
Box
1.1
Quantum mechanics and NMR,
6
Wavefunctions,
6
Operators, physical
observables
and expectation values,
7
Schrödinger s
equation, eigenfunctions and eigenvalues,
7
Spin operators and spin states,
8
Dirac s bra-ket notation,
11
Matrices,
11
1.2.1
Nuclei in a static, uniform field,
12
1.2.2
The effect of rf pulses,
15
Box
1.2
Exponential operators, rotation operators and rotations,
19
Rotation of vectors, wavefunctions and operators
(active rotations),
20
Rotation of axis frames,
23
Representation of rf fields,
25
Euler
angles,
25
Rotations with
Euler
angles,
26
Rotation of Cartesian axis frames,
27
1.3
The density matrix representation and coherences,
29
1.3.1
Coherences and populations,
30
viii Contents
1.3.2
The density operator at thermal equilibrium,
33
1.3.3
Time evolution of the density matrix,
34
1.4
Nuclear spin interactions,
37
1.4.1
Interaction tensors,
41
1.5
General features of Fourier transform NMR experiments,
43
1.5.1
Multidimensional NMR,
43
1.5.2
Phase cycling,
46
1.5.3
Quadrature detection,
48
Box
1.3
The NMR spectrometer,
53
Generating rf pulses,
53
Detecting the NMR signal,
56
Notes,
58
References,
59
Essential Techniques for Solid-State NMR,
60
2.1
Introduction,
60
2.2
Magic-angle spinning (MAS),
61
2.2.1
Spinning sidebands,
62
2.2.2
Rotor or rotational echoes,
67
2.2.3
Removing spinning sidebands,
67
2.2.4
Setting the magic-angle and spinning rate,
72
2.2.5
Magic-angle spinning for homonuclear dipolar couplings,
75
2.3
Heteronuclear decoupling,
77
2.3.1
High-power decoupling,
78
2.3.2
Other heteronuclear decoupling sequences,
81
2.4
Homonuclear decoupling,
83
2.4.1
Implementing homonuclear decoupling sequences,
83
Box
2.1
Average hamiltonian theory and the toggling frame,
86
Average hamiltonian theory,
86
The toggling frame and the WAHUHA pulse sequence,
89
2.5
Cross-polarization,
96
2.5.1
Theory,
97
2.5.2
Setting up the cross-polarization experiment,
101
Box
2.2
Cross-polarization and magic-angle spinning,
106
2.6
Echo pulse sequences,
110
Notes,
113
References,
114
Shielding and Chemical Shift: Theory and Uses,
116
3.1
Theory,
116
3.1.1
Introduction,
116
3.1.2
The chemical shielding hamiltonian,
117
Contents ix
3.1.3
Experimental manifestations of the shielding tensor,
120
3.1.4
Definition of the chemical shift,
123
3.2
The relationship between the shielding tensor and electronic
structure,
125
3.3
Measuring chemical shift anisotropies,
131
3.3.1
Magic-angle spinning with recoupling pulse sequences,
132
3.3.2
Variable-angle spinning experiments,
135
3.3.3
Magic-angle turning,
138
3.3.4
Two-dimensional separation of spinning sideband patterns,
141
3.4
Measuring the orientation of chemical shielding tensors in the molecular
frame for structure determination,
145
Notes,
149
References,
149
Dipolar Coupling: Theory and Uses,
151
4.1
Theory,
151
4.1.1
Homonuclear dipolar coupling,
154
Box
4.1
Basis sets for multispin systems,
156
4.1.2
The effect of homonuclear dipolar coupling on a spin system,
157
4.1.3
Heteronuclear dipolar coupling,
160
4.1.4
The effect of heteronuclear dipolar coupling on the spin
system,
162
4.1.5
Heteronuclear spin dipolar coupled to a homonuclear network of
spins,
163
4.1.6
The spherical tensor form of the dipolar hamiltonian,
164
Box
4.2
The dipolar hamiltonian in terms of spherical tensor
operators,
164
Spherical tensor operators,
165
Interaction tensors,
167
The homonuclear dipolar hamiltonian under static and MAS
conditions,
167
4.2
Introduction to the uses of dipolar coupling,
172
4.3
Techniques for measuring homonuclear dipolar couplings,
175
4.3.1
Recoupling pulse sequences,
175
Box
4.3
Analysis of the DRAMA pulse sequence,
180
Simulating powder patterns from the DRAMA experiment,
184
4.3.2
Double-quantum filtered experiments,
185
Box
4.4
Excitation of double-quantum coherence under magic-angle
spinning,
189
The form of the reconversion pulse sequence: the need for time-
reversal symmetry,
191
Analysis of the double-quantum filtered data,
195
x
Contents
Box
4.5
Analysis of the C7 pulse sequence for exciting double-quantum
coherence in dipolar-coupled spin pairs,
196
4.3.3
Rotational resonance,
199
Box
4.6
Theory of rotational resonance,
202
Effect of
ΗΔ
term on the density operator,
203
The hamiltonian in the new rotated frame,
204
The average hamiltonian,
205
4.4
Techniques for measuring heteronuclear dipolar couplings,
207
4.4.1
Spin-echo double resonance (SEDOR),
207
4.4.2
Rotational-echo double resonance
(REDOR),
208
Box
4.7
Analysis of the
REDOR
experiment,
210
4.5
Techniques for dipolar-coupled quadrupolar-spin-j pairs,
215
4.5.1
Transfer of population in double resonance (TRAPDOR),
216
4.5.2
Rotational-echo adiabatic-passage double-resonance
(REAPDOR),
219
4.6
Techniques for measuring dipolar couplings between quadrupolar
nuclei,
220
4.7
Correlation experiments,
221
4.7.1
Homonuclear correlation experiments for spin-j systems,
221
4.7.2
Homonuclear correlation experiments for quadrupolar spin
systems,
224
4.7.3
Heteronuclear correlation experiments for spin-y,
226
4.8
Spin-counting experiments,
227
4.8.1
The formation of multiple-quantum coherences,
228
4.8.2
Implementation of spin-counting experiments,
231
Notes,
232
References,
233
Quadrupole Coupling: Theory and Uses,
235
5.1
Introduction,
235
5.2
Theory,
237
5.2.1
The quadrupole hamiltonian,
237
Box
5.1
The quadrupole hamiltonian in terms of spherical tensor
operators: the effect of the rotating frame and magic-angle
spinning,
242
The quadrupole hamiltonian in terms of spherical tensor
operators,
242
The effect of the rotating frame: first- and second-order average
hamiltonians for the quadrupole interaction,
243
The energy levels under quadrupole coupling,
248
The effect of magic-angle spinning,
248
5.2.2
The effect of rf pulses,
249
Contents xi
5.2.3
The effects of quadrupolar nuclei on the spectra of
spin-ý
nuclei,
252
5.3
High-resolution NMR experiments for half-integer quadrupolar
nuclei,
255
5.3.1
Magic-angle spinning (MAS),
256
5.3.2
Double rotation (DOR),
259
5.3.3
Dynamic-angle spinning (DAS),
260
5.3.4
Multiple-quantum magic-angle spinning (MQMAS),
263
5.3.5
Satellite transition magic-angle spinning (STMAS),
268
5.3.6
Recording two-dimensional
datasets
for DAS, MQMAS
and STMAS,
275
5.4
Other techniques for half-integer quadrupole nuclei,
280
5.4.1
Quadrupole nutation,
282
5.4.2
Cross-polarization,
285
Notes,
290
References,
291
6
NMR Techniques for Studying Molecular Motion in Solids,
293
6.1
Introduction,
293
6.2
Powder lineshape analysis,
296
6.2.1
Simulating powder pattern lineshapes,
297
6.2.2
Resolving powder patterns,
305
6.2.3
Using homonuclear dipolar-coupling lineshapes
-
the WISE
experiment,
311
6.3
Relaxation time studies,
313
6.4
Exchange experiments,
316
6.4.1
Achieving pure absorption lineshapes in exchange spectra,
318
6.4.2
Interpreting two-dimensional exchange spectra,
320
6.5
Ή
NMR,
322
6.5.1
Measuring 2H NMR spectra,
323
6.5.2
2H lineshape simulations,
328
6.5.3
Relaxation time studies,
329
6.5.4
2H exchange experiments,
330
6.5.5
Resolving 2H powder patterns,
332
Notes,
334
References,
335
Appendix A NMR Properties of Commonly Observed Nuclei,
336
Appendix
В
The General Form of a Spin Interaction Hamiltonian in Terms of
Spherical Tensors and Spherical Tensor Operators,
337
References,
343
Index,
344
|
adam_txt |
Contents
Preface,
xii
Acknowledgements,
xv
The Basics of NMR,
1
1.1
The vector model of pulsed NMR,
1
1.1.1
Nuclei in a static, uniform magnetic field,
2
1.1.2
The effect of rf pulses,
3
1.2
The quantum mechanical picture: hamiltonians and the
Schrödinger
equation,
5
Box
1.1
Quantum mechanics and NMR,
6
Wavefunctions,
6
Operators, physical
observables
and expectation values,
7
Schrödinger's
equation, eigenfunctions and eigenvalues,
7
Spin operators and spin states,
8
Dirac's bra-ket notation,
11
Matrices,
11
1.2.1
Nuclei in a static, uniform field,
12
1.2.2
The effect of rf pulses,
15
Box
1.2
Exponential operators, rotation operators and rotations,
19
Rotation of vectors, wavefunctions and operators
(active rotations),
20
Rotation of axis frames,
23
Representation of rf fields,
25
Euler
angles,
25
Rotations with
Euler
angles,
26
Rotation of Cartesian axis frames,
27
1.3
The density matrix representation and coherences,
29
1.3.1
Coherences and populations,
30
viii Contents
1.3.2
The density operator at thermal equilibrium,
33
1.3.3
Time evolution of the density matrix,
34
1.4
Nuclear spin interactions,
37
1.4.1
Interaction tensors,
41
1.5
General features of Fourier transform NMR experiments,
43
1.5.1
Multidimensional NMR,
43
1.5.2
Phase cycling,
46
1.5.3
Quadrature detection,
48
Box
1.3
The NMR spectrometer,
53
Generating rf pulses,
53
Detecting the NMR signal,
56
Notes,
58
References,
59
Essential Techniques for Solid-State NMR,
60
2.1
Introduction,
60
2.2
Magic-angle spinning (MAS),
61
2.2.1
Spinning sidebands,
62
2.2.2
Rotor or rotational echoes,
67
2.2.3
Removing spinning sidebands,
67
2.2.4
Setting the magic-angle and spinning rate,
72
2.2.5
Magic-angle spinning for homonuclear dipolar couplings,
75
2.3
Heteronuclear decoupling,
77
2.3.1
High-power decoupling,
78
2.3.2
Other heteronuclear decoupling sequences,
81
2.4
Homonuclear decoupling,
83
2.4.1
Implementing homonuclear decoupling sequences,
83
Box
2.1
Average hamiltonian theory and the toggling frame,
86
Average hamiltonian theory,
86
The toggling frame and the WAHUHA pulse sequence,
89
2.5
Cross-polarization,
96
2.5.1
Theory,
97
2.5.2
Setting up the cross-polarization experiment,
101
Box
2.2
Cross-polarization and magic-angle spinning,
106
2.6
Echo pulse sequences,
110
Notes,
113
References,
114
Shielding and Chemical Shift: Theory and Uses,
116
3.1
Theory,
116
3.1.1
Introduction,
116
3.1.2
The chemical shielding hamiltonian,
117
Contents ix
3.1.3
Experimental manifestations of the shielding tensor,
120
3.1.4
Definition of the chemical shift,
123
3.2
The relationship between the shielding tensor and electronic
structure,
125
3.3
Measuring chemical shift anisotropies,
131
3.3.1
Magic-angle spinning with recoupling pulse sequences,
132
3.3.2
Variable-angle spinning experiments,
135
3.3.3
Magic-angle turning,
138
3.3.4
Two-dimensional separation of spinning sideband patterns,
141
3.4
Measuring the orientation of chemical shielding tensors in the molecular
frame for structure determination,
145
Notes,
149
References,
149
Dipolar Coupling: Theory and Uses,
151
4.1
Theory,
151
4.1.1
Homonuclear dipolar coupling,
154
Box
4.1
Basis sets for multispin systems,
156
4.1.2
The effect of homonuclear dipolar coupling on a spin system,
157
4.1.3
Heteronuclear dipolar coupling,
160
4.1.4
The effect of heteronuclear dipolar coupling on the spin
system,
162
4.1.5
Heteronuclear spin dipolar coupled to a homonuclear network of
spins,
163
4.1.6
The spherical tensor form of the dipolar hamiltonian,
164
Box
4.2
The dipolar hamiltonian in terms of spherical tensor
operators,
164
Spherical tensor operators,
165
Interaction tensors,
167
The homonuclear dipolar hamiltonian under static and MAS
conditions,
167
4.2
Introduction to the uses of dipolar coupling,
172
4.3
Techniques for measuring homonuclear dipolar couplings,
175
4.3.1
Recoupling pulse sequences,
175
Box
4.3
Analysis of the DRAMA pulse sequence,
180
Simulating powder patterns from the DRAMA experiment,
184
4.3.2
Double-quantum filtered experiments,
185
Box
4.4
Excitation of double-quantum coherence under magic-angle
spinning,
189
The form of the reconversion pulse sequence: the need for time-
reversal symmetry,
191
Analysis of the double-quantum filtered data,
195
x
Contents
Box
4.5
Analysis of the C7 pulse sequence for exciting double-quantum
coherence in dipolar-coupled spin pairs,
196
4.3.3
Rotational resonance,
199
Box
4.6
Theory of rotational resonance,
202
Effect of
ΗΔ
term on the density operator,
203
The hamiltonian in the new rotated frame,
204
The average hamiltonian,
205
4.4
Techniques for measuring heteronuclear dipolar couplings,
207
4.4.1
Spin-echo double resonance (SEDOR),
207
4.4.2
Rotational-echo double resonance
(REDOR),
208
Box
4.7
Analysis of the
REDOR
experiment,
210
4.5
Techniques for dipolar-coupled quadrupolar-spin-j pairs,
215
4.5.1
Transfer of population in double resonance (TRAPDOR),
216
4.5.2
Rotational-echo adiabatic-passage double-resonance
(REAPDOR),
219
4.6
Techniques for measuring dipolar couplings between quadrupolar
nuclei,
220
4.7
Correlation experiments,
221
4.7.1
Homonuclear correlation experiments for spin-j systems,
221
4.7.2
Homonuclear correlation experiments for quadrupolar spin
systems,
224
4.7.3
Heteronuclear correlation experiments for spin-y,
226
4.8
Spin-counting experiments,
227
4.8.1
The formation of multiple-quantum coherences,
228
4.8.2
Implementation of spin-counting experiments,
231
Notes,
232
References,
233
Quadrupole Coupling: Theory and Uses,
235
5.1
Introduction,
235
5.2
Theory,
237
5.2.1
The quadrupole hamiltonian,
237
Box
5.1
The quadrupole hamiltonian in terms of spherical tensor
operators: the effect of the rotating frame and magic-angle
spinning,
242
The quadrupole hamiltonian in terms of spherical tensor
operators,
242
The effect of the rotating frame: first- and second-order average
hamiltonians for the quadrupole interaction,
243
The energy levels under quadrupole coupling,
248
The effect of magic-angle spinning,
248
5.2.2
The effect of rf pulses,
249
Contents xi
5.2.3
The effects of quadrupolar nuclei on the spectra of
spin-ý
nuclei,
252
5.3
High-resolution NMR experiments for half-integer quadrupolar
nuclei,
255
5.3.1
Magic-angle spinning (MAS),
256
5.3.2
Double rotation (DOR),
259
5.3.3
Dynamic-angle spinning (DAS),
260
5.3.4
Multiple-quantum magic-angle spinning (MQMAS),
263
5.3.5
Satellite transition magic-angle spinning (STMAS),
268
5.3.6
Recording two-dimensional
datasets
for DAS, MQMAS
and STMAS,
275
5.4
Other techniques for half-integer quadrupole nuclei,
280
5.4.1
Quadrupole nutation,
282
5.4.2
Cross-polarization,
285
Notes,
290
References,
291
6
NMR Techniques for Studying Molecular Motion in Solids,
293
6.1
Introduction,
293
6.2
Powder lineshape analysis,
296
6.2.1
Simulating powder pattern lineshapes,
297
6.2.2
Resolving powder patterns,
305
6.2.3
Using homonuclear dipolar-coupling lineshapes
-
the WISE
experiment,
311
6.3
Relaxation time studies,
313
6.4
Exchange experiments,
316
6.4.1
Achieving pure absorption lineshapes in exchange spectra,
318
6.4.2
Interpreting two-dimensional exchange spectra,
320
6.5
Ή
NMR,
322
6.5.1
Measuring 2H NMR spectra,
323
6.5.2
2H lineshape simulations,
328
6.5.3
Relaxation time studies,
329
6.5.4
2H exchange experiments,
330
6.5.5
Resolving 2H powder patterns,
332
Notes,
334
References,
335
Appendix A NMR Properties of Commonly Observed Nuclei,
336
Appendix
В
The General Form of a Spin Interaction Hamiltonian in Terms of
Spherical Tensors and Spherical Tensor Operators,
337
References,
343
Index,
344 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Duer, Melinda J. |
author_facet | Duer, Melinda J. |
author_role | aut |
author_sort | Duer, Melinda J. |
author_variant | m j d mj mjd |
building | Verbundindex |
bvnumber | BV035096667 |
classification_rvk | VG 9500 |
classification_tum | PHY 754f CHE 194f CHE 244f |
ctrlnum | (OCoLC)635295064 (DE-599)BVBBV035096667 |
discipline | Chemie / Pharmazie Physik Chemie |
discipline_str_mv | Chemie / Pharmazie Physik Chemie |
edition | 1. publ., [Nachdr.] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01445nam a2200385 c 4500</leader><controlfield tag="001">BV035096667</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081013s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781405109147</subfield><subfield code="9">978-1-4051-0914-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635295064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035096667</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 9500</subfield><subfield code="0">(DE-625)147241:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 754f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 194f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 244f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duer, Melinda J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to solid-state NMR spectroscopy</subfield><subfield code="c">Melinda J. Duer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ., [Nachdr.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Blackwell Science</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 349 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">NMR-Spektroskopie</subfield><subfield code="0">(DE-588)4075421-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">NMR-Spektroskopie</subfield><subfield code="0">(DE-588)4075421-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016764701&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016764701</subfield></datafield></record></collection> |
id | DE-604.BV035096667 |
illustrated | Illustrated |
index_date | 2024-07-02T22:12:31Z |
indexdate | 2024-07-09T21:22:07Z |
institution | BVB |
isbn | 9781405109147 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016764701 |
oclc_num | 635295064 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-29T |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-29T |
physical | XIV, 349 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Blackwell Science |
record_format | marc |
spelling | Duer, Melinda J. Verfasser aut Introduction to solid-state NMR spectroscopy Melinda J. Duer 1. publ., [Nachdr.] Oxford [u.a.] Blackwell Science 2008 XIV, 349 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier NMR-Spektroskopie (DE-588)4075421-2 gnd rswk-swf Festkörper (DE-588)4016918-2 gnd rswk-swf NMR-Spektroskopie (DE-588)4075421-2 s Festkörper (DE-588)4016918-2 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016764701&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Duer, Melinda J. Introduction to solid-state NMR spectroscopy NMR-Spektroskopie (DE-588)4075421-2 gnd Festkörper (DE-588)4016918-2 gnd |
subject_GND | (DE-588)4075421-2 (DE-588)4016918-2 |
title | Introduction to solid-state NMR spectroscopy |
title_auth | Introduction to solid-state NMR spectroscopy |
title_exact_search | Introduction to solid-state NMR spectroscopy |
title_exact_search_txtP | Introduction to solid-state NMR spectroscopy |
title_full | Introduction to solid-state NMR spectroscopy Melinda J. Duer |
title_fullStr | Introduction to solid-state NMR spectroscopy Melinda J. Duer |
title_full_unstemmed | Introduction to solid-state NMR spectroscopy Melinda J. Duer |
title_short | Introduction to solid-state NMR spectroscopy |
title_sort | introduction to solid state nmr spectroscopy |
topic | NMR-Spektroskopie (DE-588)4075421-2 gnd Festkörper (DE-588)4016918-2 gnd |
topic_facet | NMR-Spektroskopie Festkörper |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016764701&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT duermelindaj introductiontosolidstatenmrspectroscopy |