Aerodynamics for engineers:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Upper Saddle River, NJ
Pearson Prentice-Hall
2009
|
Ausgabe: | 5. ed., int. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 752 S. Ill., graph. Darst. |
ISBN: | 9780132355216 0132355213 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035093772 | ||
003 | DE-604 | ||
005 | 20090303 | ||
007 | t | ||
008 | 081010s2009 ad|| |||| 00||| eng d | ||
015 | |a GBA827062 |2 dnb | ||
020 | |a 9780132355216 |9 978-0-13-235521-6 | ||
020 | |a 0132355213 |9 0-13-235521-3 | ||
035 | |a (OCoLC)288987066 | ||
035 | |a (DE-599)BVBBV035093772 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T |a DE-573 |a DE-1050 | ||
050 | 0 | |a TL570 | |
082 | 0 | |a 629.1323 |2 22 | |
084 | |a UF 4700 |0 (DE-625)145591: |2 rvk | ||
084 | |a ZO 7230 |0 (DE-625)157840: |2 rvk | ||
100 | 1 | |a Bertin, John J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Aerodynamics for engineers |c John J. Bertin and Russell M. Cummings |
250 | |a 5. ed., int. ed. | ||
264 | 1 | |a Upper Saddle River, NJ |b Pearson Prentice-Hall |c 2009 | |
300 | |a 752 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Aerodynamics | |
650 | 4 | |a Aérodynamique | |
650 | 4 | |a Aérospatiale (Ingénierie) | |
650 | 4 | |a Aerodynamics | |
650 | 0 | 7 | |a Aerodynamik |0 (DE-588)4000589-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Aerodynamik |0 (DE-588)4000589-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cummings, Russell M. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016761846&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016761846 |
Datensatz im Suchindex
_version_ | 1804138052144070656 |
---|---|
adam_text | Contents
PREFACE
TO THE FIFTH EDITION
PREFACE TO THE FOURTH EDITION
CHAPTER
1
WHY STUDY AERODYNAMICS?
1.1
The Energy-Maneuverability Technique
21
1.1.1
Specific Excess Power
24
1.1.2
Using Specific Excess Power to Change
the Energy Height
25
1.1.3
John R. Boyd Meet Harry Hillaker
26
1.2
Solving for the Aerothermodynamic
Parameters
26
1.2.1
Concept of a Fluid
27
1.2.2
Fluid as a Continuum
27
1.2.3
Fluid Properties
28
1.2.4
Pressure Variation in a Static Fluid Medium
34
1.2.5
The Standard Atmosphere
39
1.3
Summary
42
Problems
42
References
47
IS
17
21
CHAPTER
2
FUNDAMENTALS OF FLUID MECHANICS
2.1
Introduction to Fluid Dynamics
49
2.2
Conservation of Mass
51
2.3
Conservation of Linear Momentum
54
2.4
Applications to Constant-Property Flows
2.5
Reynolds Number and
Mach
Number as
Similarity Parameters
65
2.6
Concept of the Boundary Layer
69
2.7
Conservation of Energy
72
2.8
First Law of Thermodynamics
72
2.9
Derivation of the Energy Equation
74
2.9.1
Integral Form of the Energy Equation
77
2.9.2
Energy of the System
78
48
59
Contents
2.9.3
Flow Work
78
2.9.4
Viscous Work
79
2.9.5
Shaft Work
80
2.9.6
Application of the Integral Form
of the Energy Equation
80
2.10
Summary
82
Problems
82
References
93
CHAPTER
3
DYNAMICS OF AN INCOMPRESSIBLE,
INVISCID FLOW FIELD ft
3.1
Inviscid Flows
94
3.2
Bernoulli s Equation
95
3.3
Use of Bernoulli s Equation
to Determine Airspeed
98
3.4
The Pressure Coefficient
101
3.5
Circulation
103
3.6
Irrotational Flow
105
3.7
Kelvin s Theorem
106
3.7.1
Implication of Kelvin s Theorem
107
3.8
Incompressible, Irrotational Flow
108
3.8.1
Boundary Conditions
108
3.9
Stream Function in a Two-Dimensional,
Incompressible Flow
108
3.10
Relation Between Streamlines and Equipotential
Lines
110
3.11
Superposition of Flows
113
3.12
Elementary Flows
113
3.12.1
Uniform Flow
113
3.12.2
Source or Sink
114
3.12.3
Doublet
116
3.12.4
Potential Vortex
117
3.12.5
Summary of Stream Functions
and of Potential Functions
119
3.13
Adding Elementary Flows to Describe How
Around a Cylinder
119
3.13.1
Velocity Field
119
3.13.2
Pressure Distribution
122
3.13.3
Lift and Drag
125
3.14
Lift and Drag Coefficients as Dimensionless
Flow-Field Parameters
128
3.15
Row Around a Cylinder with Circulation
133
3.15.1
Velocity Field
133
3.15.2
Lift and Drag
133
Contents
3.16
Source
Density Distribution
on the Body Surface
135
3.17
Incompressible, Axisymmetric Flow
140
3.17.1
Flow around a Sphere
141
3.18
Summary
143
Problems
144
References
157
CHAPTER
4
VISCOUS BOUNDARY LAYERS
4.1
Equations Governing the Boundary Layer
for a Steady, Two-Dimensional, Incompressible
Flow
159
4.2
Boundary Conditions
162
4.3
Incompressible, Laminar Boundary Layer
163
4.3.1
Numerical Solutions for the Falkner-Skan
Problem
166
A A Boundary-Layer Transition
180
4.5
Incompressible, Turbulent Boundary Layer
183
4.5.1
Derivation of the Momentum Equation
for Turbulent Boundary Layer
184
4.5.2
Approaches to Turbulence Modeling
187
4.5.3
Turbulent Boundary Layer for a Flat Plate
188
4.6
Eddy Viscosity and Mixing Length Concepts
191
4.7
Integral Equations for a Flat-Plate Boundary
Layer
193
4.7.1
Application of the Integral Equations of Motion
to a Turbulent, Flat-Plate Boundary Layer
196
4.7.2
Integral Solutions for a Turbulent Boundary
Layer with a Pressure Gradient
202
4.8
Thermal Boundary Layer for Constant-Property
Flows
203
4.8.1
Reynolds Analogy
205
4.8.2
Thermal Boundary Layer for Pr
Φ
1 206
4.9
Summary
210
Problems
210
References
214
f
58
CHAPTER
5
CHARACTERISTIC PARAMETERS FOR AIRFOIL
AND WING AERODYNAMICS
5.1
Characterization of Aerodynamic Forces
and Moments
215
5.1.1
General Comments
215
5.1.2
Parameters That Govern Aerodynamic Forces
218
215
Contents
5.2
Airfoil Geometry Parameters
219
5.2.1
Airfoil-Section Nomenclature
219
5.2.2
Leading-Edge Radius and Chord Line
220
5.2.3
Mean Camber Line
220
5.2.4
Maximum Thickness and Thickness
Distribution
221
5.2.5
Trailing-Edge Angle
222
5.3
Wing-Geometry Parameters
222
5.4
Aerodynamic Force and Moment
Coefficients
229
5.4.1
Lift Coefficient
229
5.4.2
Moment Coefficient
234
5.4.3
Drag Coefficient
236
5.4.4
Boundary-Layer Transition
240
5.4.5
Effect of Surface Roughness on
the Aerodynamic Forces
243
5.4.6
Method for Predicting Aircraft Parasite
Drag
246
5.5
Wings of Finite Span
256
5.5.1
Lift
257
5.5.2
Drag
260
5.5.3
Lift/Drag Ratio
264
Problems
269
References
273
CHAPTER
6
INCOMPRESSIBLE FLOWS AROUND AIRFOILS
OF INFINITE SPAN
275
6.1
General Comments
275
6.2
Circulation and the Generation of Lift
276
6.2.1
Starting Vortex
277
6.3
General Thin-Airfoil Theory
278
6.4
Thin, Flat-Plate Airfoil (Symmetric Airfoil)
281
6.5
Thin, Cambered Airfoil
285
6.5.1
Vorticity Distribution
286
6.5.2
Aerodynamic Coefficients for a Cambered
Airfoil
287
6.6
Laminar-Flow Airfoils
294
6.7
High-Lift Airfoil Sections
299
6.8
Multielement Airfoil Sections for Generating
High Lift
304
6.9
High-Lift Military Airfoils
312
Problems
314
References
316
Contents
CHAPTER
7
INCOMPRESSIBLE FLOW
ABOUT WINGS OF FINITE SPAN
319
7.1
General Comments
319
7.2
Vortex System
322
7.3
Lifting-Line Theory for Unswept Wings
323
7.3.1
Trailing Vortices and Downwash
326
7.3.2
Case of Elliptic Spanwise Circulation
Distribution
328
7.3.3
Technique for General Spanwise Circulation
Distribution
333
7.3.4
Lift on the Wing
339
7.3.5
Vortex-Induced Drag
339
7.3.6
Some Final Comments on Lifting-Line Theory
346
7.4
Panel Methods
349
7.4.1
Boundary Conditions
350
7.4.2
Methods
351
7.5
Vortex Lattice Method
352
7.5.1
Velocity Induced by a General Horseshoe
Vortex
356
7.5.2
Application of the Boundary Conditions
360
7.5.3
Relations for a Planar Wing
362
7.6
Factors Affecting Drag Due-to-Lift at Subsonic
Speeds
374
7.7
Delta Wings
377
7.8
Leading-Edge Extensions
387
7.9
Asymmetric Loads on the Fuselage at High
Angles of Attack
391
7.9.1
Asymmetric Vortex Shedding
392
7.9.2
Wakelike Flows
394
7.10
Flow Fields For Aircraft at High Angles
of Attack
394
7.11
Unmanned Air Vehicle Wings
396
7.12
Summary
398
Problems
399
References
400
CHAPTER
8
DYNAMICS OF A COMPRESSIBLE FLOW FIELD
404
8.1
Thermodynamic Concepts
405
8.1.1
Specific Heats
405
8.1.2
Additional Relations
407
8.1.3
Second Law of Thermodynamics
and Reversibility
408
8.1.4
Speed of Sound
410
8.2
Adiabatic Flow in a Variable-Area
Streamtube
412
10
Contents
8.3
Isentropic Flow in a Variable-Area
Streamtube
417
8.4
Characteristic Equations and Prandtl-Meyer
Rows
422
8.5
Shockwaves
430
8.6
Viscous Boundary Layer
440
8.6.1
Effects of Compressibility
442
8.7
The
Role
of Experiments for Generating
Information Defining the Flow Field
446
8.7.1
Ground-Based Tests
446
8.7.2
Flight Tests
450
8.8
Comments About The Scaling/Correction
Process(Es)
For Relatively Clean Cruise
Configurations
455
8.9
Shock-Wave/Boundary-Layer Interactions
455
Problems
457
References
464
CHAPTER
9
COMPRESSIBLE, SUBSONIC FLOWS
AND TRANSONIC FLOWS
467
9.1
Compressible, Subsonic Flow
468
9.1.1
Linearized Theory for Compressible Subsonic
Flow About a Thin Wing at Relatively Small
Angles of Attack
468
9.2
Transonic Flow Past Unswept Airfoils
473
9.3
Wave Drag Reduction by Design
482
9.3.1
Airfoil Contour Wave Drag Approaches
482
9.3.2
Supercritical Airfoil Sections
482
9.4
Swept Wings at Transonic Speeds
484
9.4.1
Wing-Body Interactions and the Area Rule
486
9.4.2
Second-Order Area-Rule Considerations
494
9.4.3
Forward Swept Wing
497
9.5
Transonic Aircraft
500
9.6
Summary
503
Problems
503
References
504
CHAPTER
10
TWO-DIMENSIONAL, SUPERSONIC FLOWS
AROUND THIN AIRFOILS
507
10.1
Linear Theory
508
10.1.1
Lift
509
10.1.2
Drag
512
10.1.3
Pitching Moment
513
Contents
11
10.2
Second-Order Theory
(Busemann s
Theory)
516
10.3
Shock-Expansion Technique
519
Problems
524
References
527
CHAPTER
11
SUPERSONIC FLOWS OVER WINGS AND AIRPLANE
CONFIGURATIONS
528
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
General Remarks About Lift and Drag
530
General Remarks About Supersonic Wings
531
Governing Equation and Boundary
Conditions
533
Consequences of Linearity
535
Solution Methods
535
Conical-Flow Method
536
11.6.1
Rectangular Wings
537
11.6.2
Swept Wings
542
11.6.3
Delta and Arrow Wings
546
Singularity-Distribution Method
548
11.7.1
Find the Pressure Distribution Given the
Configuration
550
11.7.2
Numerical Method for Calculating the Pressure
Distribution Given the Configuration
559
11.7.3
Numerical Method for the Determination of
Camber Distribution
572
Design Considerations for Supersonic
Aircraft
575
Some Comments About the Design of the SST
andoftheHSCT
579
11.9.1
The Supersonic Transport (SST),
the Concorde
579
11.9.2
The High-Speed Civil Transport (HSCT)
580
11.9.3
Reducing the Sonic Boom
580
11.9.4
Classifying High-Speed Aircraft Designs
582
Slender Body Theory
584
Aerodynamic Interaction
587
Aerodynamic Analysis for Complete
Configurations in a Supersonic Stream
590
Problems
591
References
593
CHAPTER
12
HYPERSONIC FLOWS
12.1
Newtonian Flow Model
597
12.2
Stagnation Region Flow-Field Properties
600
596
,._ Contents
12.3
Modified Newtonian Flow
605
12.4
High L/D Hypersonic Configurations
—
Waveriders
621
12.5
Aerodynamic Heating
628
12.5.1
Similarity Solutions for Heat Transfer
632
12.6
A Hypersonic Cruiser for the Twenty-First
Century?
634
12.7
Importance of Interrelating CFD, Ground-Test
Data, and Flight-Test Data
638
12.8
Boundary-Layer Transition Methodology
640
Problems
644
References
646
CHAPTER
13
AERODYNAMIC DESICN CONSIDERATIONS
649
13.1
High-Lift Configurations
649
13.1.1
Increasing the Area
650
13.1.2
Increasing the Lift Coefficient
651
13.1.3
Flap Systems
652
13.1.4
Multielement Airfoils
656
13.1.5
Power-Augmented Lift
659
13.2
Circulation Control Wing
663
13.3
Design Considerations For Tactical Military
Aircraft
664
13.4
Drag Reduction
669
13.4.1
Variable-Twist, Variable-Camber Wings
669
13.4.2
Laminar-Flow Control
670
13.4.3
Wingtip Devices
673
13.4.4
Wing
Planform
676
13.5
Development of an Airframe Modification
to Improve the Mission Effectiveness of
an Existing Airplane
678
13.5.1
TheEA
-бВ
678
13.5.2
The Evolution of the F-16
681
13.5.3
External Carriage of Stores
689
13.5.4
Additional Comments
694
13.6
Considerations for Wing/Canard, Wing/Tail,
and Tailless Configurations
694
13.7
Comments on the F-15 Design
699
13.8
The Design of the F-22
700
13.9
The Design of the F-35
703
Problems
706
References
708
Contents
13
CHAPTER
14 TOOLS
FOR DEFINING
THE AERODYNAMIC ENVIRONMENT
14.1
CFD Tools
713
14.1.1
Semiempirical Methods
713
14.1.2
Surface Panel Methods for
Inviscidì
Flows
714
14.1.3
Euler
Codes for Inviscid Flow Fields
715
14.1.4
Two-Layer Flow Models
715
14.1.5
Computational Techniques that Treat the Entire
Flow Field in a Unified Fashion
716
14.1.6
Integrating the Diverse CFD Tools
717
14.2
Establishing the Credibility of CFD
Simulations
718
14.3
Ground-Based Test Programs
720
14.4
Flight-Test Programs
723
14.5
Integration of Experimental and Computational
Tools: The Aerodynamic Design Philosophy
724
References
725
APPENDIX A THE EQUATIONS OF MOTION WRITTEN
IN CONSERVATION FORM
APPENDIX
В
A COLLECTION OF OFTEN USED TABLES
INDEX
711
728
734
742
|
adam_txt |
Contents
PREFACE
TO THE FIFTH EDITION
PREFACE TO THE FOURTH EDITION
CHAPTER
1
WHY STUDY AERODYNAMICS?
1.1
The Energy-Maneuverability Technique
21
1.1.1
Specific Excess Power
24
1.1.2
Using Specific Excess Power to Change
the Energy Height
25
1.1.3
John R. Boyd Meet Harry Hillaker
26
1.2
Solving for the Aerothermodynamic
Parameters
26
1.2.1
Concept of a Fluid
27
1.2.2
Fluid as a Continuum
27
1.2.3
Fluid Properties
28
1.2.4
Pressure Variation in a Static Fluid Medium
34
1.2.5
The Standard Atmosphere
39
1.3
Summary
42
Problems
42
References
47
IS
17
21
CHAPTER
2
FUNDAMENTALS OF FLUID MECHANICS
2.1
Introduction to Fluid Dynamics
49
2.2
Conservation of Mass
51
2.3
Conservation of Linear Momentum
54
2.4
Applications to Constant-Property Flows
2.5
Reynolds Number and
Mach
Number as
Similarity Parameters
65
2.6
Concept of the Boundary Layer
69
2.7
Conservation of Energy
72
2.8
First Law of Thermodynamics
72
2.9
Derivation of the Energy Equation
74
2.9.1
Integral Form of the Energy Equation
77
2.9.2
Energy of the System
78
48
59
Contents
2.9.3
Flow Work
78
2.9.4
Viscous Work
79
2.9.5
Shaft Work
80
2.9.6
Application of the Integral Form
of the Energy Equation
80
2.10
Summary
82
Problems
82
References
93
CHAPTER
3
DYNAMICS OF AN INCOMPRESSIBLE,
INVISCID FLOW FIELD ft
3.1
Inviscid Flows
94
3.2
Bernoulli's Equation
95
3.3
Use of Bernoulli's Equation
to Determine Airspeed
98
3.4
The Pressure Coefficient
101
3.5
Circulation
103
3.6
Irrotational Flow
105
3.7
Kelvin's Theorem
106
3.7.1
Implication of Kelvin's Theorem
107
3.8
Incompressible, Irrotational Flow
108
3.8.1
Boundary Conditions
108
3.9
Stream Function in a Two-Dimensional,
Incompressible Flow
108
3.10
Relation Between Streamlines and Equipotential
Lines
110
3.11
Superposition of Flows
113
3.12
Elementary Flows
113
3.12.1
Uniform Flow
113
3.12.2
Source or Sink
114
3.12.3
Doublet
116
3.12.4
Potential Vortex
117
3.12.5
Summary of Stream Functions
and of Potential Functions
119
3.13
Adding Elementary Flows to Describe How
Around a Cylinder
119
3.13.1
Velocity Field
119
3.13.2
Pressure Distribution
122
3.13.3
Lift and Drag
125
3.14
Lift and Drag Coefficients as Dimensionless
Flow-Field Parameters
128
3.15
Row Around a Cylinder with Circulation
133
3.15.1
Velocity Field
133
3.15.2
Lift and Drag
133
Contents
3.16
Source
Density Distribution
on the Body Surface
135
3.17
Incompressible, Axisymmetric Flow
140
3.17.1
Flow around a Sphere
141
3.18
Summary
143
Problems
144
References
157
CHAPTER
4
VISCOUS BOUNDARY LAYERS
4.1
Equations Governing the Boundary Layer
for a Steady, Two-Dimensional, Incompressible
Flow
159
4.2
Boundary Conditions
162
4.3
Incompressible, Laminar Boundary Layer
163
4.3.1
Numerical Solutions for the Falkner-Skan
Problem
166
A A Boundary-Layer Transition
180
4.5
Incompressible, Turbulent Boundary Layer
183
4.5.1
Derivation of the Momentum Equation
for Turbulent Boundary Layer
184
4.5.2
Approaches to Turbulence Modeling
187
4.5.3
Turbulent Boundary Layer for a Flat Plate
188
4.6
Eddy Viscosity and Mixing Length Concepts
191
4.7
Integral Equations for a Flat-Plate Boundary
Layer
193
4.7.1
Application of the Integral Equations of Motion
to a Turbulent, Flat-Plate Boundary Layer
196
4.7.2
Integral Solutions for a Turbulent Boundary
Layer with a Pressure Gradient
202
4.8
Thermal Boundary Layer for Constant-Property
Flows
203
4.8.1
Reynolds Analogy
205
4.8.2
Thermal Boundary Layer for Pr
Φ
1 206
4.9
Summary
210
Problems
210
References
214
f
58
CHAPTER
5
CHARACTERISTIC PARAMETERS FOR AIRFOIL
AND WING AERODYNAMICS
5.1
Characterization of Aerodynamic Forces
and Moments
215
5.1.1
General Comments
215
5.1.2
Parameters That Govern Aerodynamic Forces
218
215
Contents
5.2
Airfoil Geometry Parameters
219
5.2.1
Airfoil-Section Nomenclature
219
5.2.2
Leading-Edge Radius and Chord Line
220
5.2.3
Mean Camber Line
220
5.2.4
Maximum Thickness and Thickness
Distribution
221
5.2.5
Trailing-Edge Angle
222
5.3
Wing-Geometry Parameters
222
5.4
Aerodynamic Force and Moment
Coefficients
229
5.4.1
Lift Coefficient
229
5.4.2
Moment Coefficient
234
5.4.3
Drag Coefficient
236
5.4.4
Boundary-Layer Transition
240
5.4.5
Effect of Surface Roughness on
the Aerodynamic Forces
243
5.4.6
Method for Predicting Aircraft Parasite
Drag
246
5.5
Wings of Finite Span
256
5.5.1
Lift
257
5.5.2
Drag
260
5.5.3
Lift/Drag Ratio
264
Problems
269
References
273
CHAPTER
6
INCOMPRESSIBLE FLOWS AROUND AIRFOILS
OF INFINITE SPAN
275
6.1
General Comments
275
6.2
Circulation and the Generation of Lift
276
6.2.1
Starting Vortex
277
6.3
General Thin-Airfoil Theory
278
6.4
Thin, Flat-Plate Airfoil (Symmetric Airfoil)
281
6.5
Thin, Cambered Airfoil
285
6.5.1
Vorticity Distribution
286
6.5.2
Aerodynamic Coefficients for a Cambered
Airfoil
287
6.6
Laminar-Flow Airfoils
294
6.7
High-Lift Airfoil Sections
299
6.8
Multielement Airfoil Sections for Generating
High Lift
304
6.9
High-Lift Military Airfoils
312
Problems
314
References
316
Contents
CHAPTER
7
INCOMPRESSIBLE FLOW
ABOUT WINGS OF FINITE SPAN
319
7.1
General Comments
319
7.2
Vortex System
322
7.3
Lifting-Line Theory for Unswept Wings
323
7.3.1
Trailing Vortices and Downwash
326
7.3.2
Case of Elliptic Spanwise Circulation
Distribution
328
7.3.3
Technique for General Spanwise Circulation
Distribution
333
7.3.4
Lift on the Wing
339
7.3.5
Vortex-Induced Drag
339
7.3.6
Some Final Comments on Lifting-Line Theory
346
7.4
Panel Methods
349
7.4.1
Boundary Conditions
350
7.4.2
Methods
351
7.5
Vortex Lattice Method
352
7.5.1
Velocity Induced by a General Horseshoe
Vortex
356
7.5.2
Application of the Boundary Conditions
360
7.5.3
Relations for a Planar Wing
362
7.6
Factors Affecting Drag Due-to-Lift at Subsonic
Speeds
374
7.7
Delta Wings
377
7.8
Leading-Edge Extensions
387
7.9
Asymmetric Loads on the Fuselage at High
Angles of Attack
391
7.9.1
Asymmetric Vortex Shedding
392
7.9.2
Wakelike Flows
394
7.10
Flow Fields For Aircraft at High Angles
of Attack
394
7.11
Unmanned Air Vehicle Wings
396
7.12
Summary
398
Problems
399
References
400
CHAPTER
8
DYNAMICS OF A COMPRESSIBLE FLOW FIELD
404
8.1
Thermodynamic Concepts
405
8.1.1
Specific Heats
405
8.1.2
Additional Relations
407
8.1.3
Second Law of Thermodynamics
and Reversibility
408
8.1.4
Speed of Sound
410
8.2
Adiabatic Flow in a Variable-Area
Streamtube
412
10
Contents
8.3
Isentropic Flow in a Variable-Area
Streamtube
417
8.4
Characteristic Equations and Prandtl-Meyer
Rows
422
8.5
Shockwaves
430
8.6
Viscous Boundary Layer
440
8.6.1
Effects of Compressibility
442
8.7
The
Role
of Experiments for Generating
Information Defining the Flow Field
446
8.7.1
Ground-Based Tests
446
8.7.2
Flight Tests
450
8.8
Comments About The Scaling/Correction
Process(Es)
For Relatively Clean Cruise
Configurations
455
8.9
Shock-Wave/Boundary-Layer Interactions
455
Problems
457
References
464
CHAPTER
9
COMPRESSIBLE, SUBSONIC FLOWS
AND TRANSONIC FLOWS
467
9.1
Compressible, Subsonic Flow
468
9.1.1
Linearized Theory for Compressible Subsonic
Flow About a Thin Wing at Relatively Small
Angles of Attack
468
9.2
Transonic Flow Past Unswept Airfoils
473
9.3
Wave Drag Reduction by Design
482
9.3.1
Airfoil Contour Wave Drag Approaches
482
9.3.2
Supercritical Airfoil Sections
482
9.4
Swept Wings at Transonic Speeds
484
9.4.1
Wing-Body Interactions and the "Area Rule"
486
9.4.2
Second-Order Area-Rule Considerations
494
9.4.3
Forward Swept Wing
497
9.5
Transonic Aircraft
500
9.6
Summary
503
Problems
503
References
504
CHAPTER
10
TWO-DIMENSIONAL, SUPERSONIC FLOWS
AROUND THIN AIRFOILS
507
10.1
Linear Theory
508
10.1.1
Lift
509
10.1.2
Drag
512
10.1.3
Pitching Moment
513
Contents
11
10.2
Second-Order Theory
(Busemann's
Theory)
516
10.3
Shock-Expansion Technique
519
Problems
524
References
527
CHAPTER
11
SUPERSONIC FLOWS OVER WINGS AND AIRPLANE
CONFIGURATIONS
528
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
General Remarks About Lift and Drag
530
General Remarks About Supersonic Wings
531
Governing Equation and Boundary
Conditions
533
Consequences of Linearity
535
Solution Methods
535
Conical-Flow Method
536
11.6.1
Rectangular Wings
537
11.6.2
Swept Wings
542
11.6.3
Delta and Arrow Wings
546
Singularity-Distribution Method
548
11.7.1
Find the Pressure Distribution Given the
Configuration
550
11.7.2
Numerical Method for Calculating the Pressure
Distribution Given the Configuration
559
11.7.3
Numerical Method for the Determination of
Camber Distribution
572
Design Considerations for Supersonic
Aircraft
575
Some Comments About the Design of the SST
andoftheHSCT
579
11.9.1
The Supersonic Transport (SST),
the Concorde
579
11.9.2
The High-Speed Civil Transport (HSCT)
580
11.9.3
Reducing the Sonic Boom
580
11.9.4
Classifying High-Speed Aircraft Designs
582
Slender Body Theory
584
Aerodynamic Interaction
587
Aerodynamic Analysis for Complete
Configurations in a Supersonic Stream
590
Problems
591
References
593
CHAPTER
12
HYPERSONIC FLOWS
12.1
Newtonian Flow Model
597
12.2
Stagnation Region Flow-Field Properties
600
596
,._ Contents
12.3
Modified Newtonian Flow
605
12.4
High L/D Hypersonic Configurations
—
Waveriders
621
12.5
Aerodynamic Heating
628
12.5.1
Similarity Solutions for Heat Transfer
632
12.6
A Hypersonic Cruiser for the Twenty-First
Century?
634
12.7
Importance of Interrelating CFD, Ground-Test
Data, and Flight-Test Data
638
12.8
Boundary-Layer Transition Methodology
640
Problems
644
References
646
CHAPTER
13
AERODYNAMIC DESICN CONSIDERATIONS
649
13.1
High-Lift Configurations
649
13.1.1
Increasing the Area
650
13.1.2
Increasing the Lift Coefficient
651
13.1.3
Flap Systems
652
13.1.4
Multielement Airfoils
656
13.1.5
Power-Augmented Lift
659
13.2
Circulation Control Wing
663
13.3
Design Considerations For Tactical Military
Aircraft
664
13.4
Drag Reduction
669
13.4.1
Variable-Twist, Variable-Camber Wings
669
13.4.2
Laminar-Flow Control
670
13.4.3
Wingtip Devices
673
13.4.4
Wing
Planform
676
13.5
Development of an Airframe Modification
to Improve the Mission Effectiveness of
an Existing Airplane
678
13.5.1
TheEA
-бВ
678
13.5.2
The Evolution of the F-16
681
13.5.3
External Carriage of Stores
689
13.5.4
Additional Comments
694
13.6
Considerations for Wing/Canard, Wing/Tail,
and Tailless Configurations
694
13.7
Comments on the F-15 Design
699
13.8
The Design of the F-22
700
13.9
The Design of the F-35
703
Problems
706
References
708
Contents
13
CHAPTER
14 TOOLS
FOR DEFINING
THE AERODYNAMIC ENVIRONMENT
14.1
CFD Tools
713
14.1.1
Semiempirical Methods
713
14.1.2
Surface Panel Methods for
Inviscidì
Flows
714
14.1.3
Euler
Codes for Inviscid Flow Fields
715
14.1.4
Two-Layer Flow Models
715
14.1.5
Computational Techniques that Treat the Entire
Flow Field in a Unified Fashion
716
14.1.6
Integrating the Diverse CFD Tools
717
14.2
Establishing the Credibility of CFD
Simulations
718
14.3
Ground-Based Test Programs
720
14.4
Flight-Test Programs
723
14.5
Integration of Experimental and Computational
Tools: The Aerodynamic Design Philosophy
724
References
725
APPENDIX A THE EQUATIONS OF MOTION WRITTEN
IN CONSERVATION FORM
APPENDIX
В
A COLLECTION OF OFTEN USED TABLES
INDEX
711
728
734
742 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bertin, John J. Cummings, Russell M. |
author_facet | Bertin, John J. Cummings, Russell M. |
author_role | aut aut |
author_sort | Bertin, John J. |
author_variant | j j b jj jjb r m c rm rmc |
building | Verbundindex |
bvnumber | BV035093772 |
callnumber-first | T - Technology |
callnumber-label | TL570 |
callnumber-raw | TL570 |
callnumber-search | TL570 |
callnumber-sort | TL 3570 |
callnumber-subject | TL - Motor Vehicles and Aeronautics |
classification_rvk | UF 4700 ZO 7230 |
ctrlnum | (OCoLC)288987066 (DE-599)BVBBV035093772 |
dewey-full | 629.1323 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.1323 |
dewey-search | 629.1323 |
dewey-sort | 3629.1323 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Verkehr / Transport |
discipline_str_mv | Physik Verkehr / Transport |
edition | 5. ed., int. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01662nam a2200457 c 4500</leader><controlfield tag="001">BV035093772</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090303 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081010s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA827062</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780132355216</subfield><subfield code="9">978-0-13-235521-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0132355213</subfield><subfield code="9">0-13-235521-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)288987066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035093772</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL570</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.1323</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4700</subfield><subfield code="0">(DE-625)145591:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 7230</subfield><subfield code="0">(DE-625)157840:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bertin, John J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerodynamics for engineers</subfield><subfield code="c">John J. Bertin and Russell M. Cummings</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed., int. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River, NJ</subfield><subfield code="b">Pearson Prentice-Hall</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">752 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aérodynamique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aérospatiale (Ingénierie)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cummings, Russell M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016761846&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016761846</subfield></datafield></record></collection> |
id | DE-604.BV035093772 |
illustrated | Illustrated |
index_date | 2024-07-02T22:11:34Z |
indexdate | 2024-07-09T21:22:03Z |
institution | BVB |
isbn | 9780132355216 0132355213 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016761846 |
oclc_num | 288987066 |
open_access_boolean | |
owner | DE-703 DE-29T DE-573 DE-1050 |
owner_facet | DE-703 DE-29T DE-573 DE-1050 |
physical | 752 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Pearson Prentice-Hall |
record_format | marc |
spelling | Bertin, John J. Verfasser aut Aerodynamics for engineers John J. Bertin and Russell M. Cummings 5. ed., int. ed. Upper Saddle River, NJ Pearson Prentice-Hall 2009 752 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Aerodynamics Aérodynamique Aérospatiale (Ingénierie) Aerodynamik (DE-588)4000589-6 gnd rswk-swf Aerodynamik (DE-588)4000589-6 s DE-604 Cummings, Russell M. Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016761846&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bertin, John J. Cummings, Russell M. Aerodynamics for engineers Aerodynamics Aérodynamique Aérospatiale (Ingénierie) Aerodynamik (DE-588)4000589-6 gnd |
subject_GND | (DE-588)4000589-6 |
title | Aerodynamics for engineers |
title_auth | Aerodynamics for engineers |
title_exact_search | Aerodynamics for engineers |
title_exact_search_txtP | Aerodynamics for engineers |
title_full | Aerodynamics for engineers John J. Bertin and Russell M. Cummings |
title_fullStr | Aerodynamics for engineers John J. Bertin and Russell M. Cummings |
title_full_unstemmed | Aerodynamics for engineers John J. Bertin and Russell M. Cummings |
title_short | Aerodynamics for engineers |
title_sort | aerodynamics for engineers |
topic | Aerodynamics Aérodynamique Aérospatiale (Ingénierie) Aerodynamik (DE-588)4000589-6 gnd |
topic_facet | Aerodynamics Aérodynamique Aérospatiale (Ingénierie) Aerodynamik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016761846&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bertinjohnj aerodynamicsforengineers AT cummingsrussellm aerodynamicsforengineers |