Materials characterization techniques:
"With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization techniques for quality assurance, contamination control, and process improvement. The book revie...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2009
|
Ausgabe: | 1st ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization techniques for quality assurance, contamination control, and process improvement. The book reviews the most popular and powerful analysis and quality control tools, explaining the appropriate uses and related technical requirements. The text features coverage of a wide range of topics, including Auger electron spectroscopy, atomic force microscopy, transmission electron microscopy, gel electrophoresis chromatography, laser confocal scanning florescent microscopy, and UV spectroscopy."--BOOK JACKET. |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 328 S. Ill., graph. Darst. 24 cm |
ISBN: | 9781420042948 1420042947 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035093549 | ||
003 | DE-604 | ||
005 | 20090708 | ||
007 | t | ||
008 | 081010s2009 xxuad|| |||| 00||| eng d | ||
010 | |a 2008030739 | ||
020 | |a 9781420042948 |c alk. paper |9 978-1-4200-4294-8 | ||
020 | |a 1420042947 |c alk. paper |9 1-4200-4294-7 | ||
035 | |a (OCoLC)144523105 | ||
035 | |a (DE-599)BVBBV035093549 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-210 |a DE-91G |a DE-29T | ||
050 | 0 | |a TA410 | |
082 | 0 | |a 620.1/10287 | |
084 | |a UP 9000 |0 (DE-625)146451: |2 rvk | ||
084 | |a WER 700f |2 stub | ||
100 | 1 | |a Zhang, Sam |e Verfasser |4 aut | |
245 | 1 | 0 | |a Materials characterization techniques |c Sam Zhang, Lin Li, Ashok Kumar |
250 | |a 1st ed. | ||
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2009 | |
300 | |a 328 S. |b Ill., graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 1 | |a "With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization techniques for quality assurance, contamination control, and process improvement. The book reviews the most popular and powerful analysis and quality control tools, explaining the appropriate uses and related technical requirements. The text features coverage of a wide range of topics, including Auger electron spectroscopy, atomic force microscopy, transmission electron microscopy, gel electrophoresis chromatography, laser confocal scanning florescent microscopy, and UV spectroscopy."--BOOK JACKET. | |
650 | 7 | |a Materiaalonderzoek |2 gtt | |
650 | 4 | |a Matériaux - Essais | |
650 | 7 | |a Wetenschappelijke technieken |2 gtt | |
650 | 4 | |a Wissenschaftliches Arbeiten | |
650 | 4 | |a Materials |x Testing | |
650 | 0 | 7 | |a Werkstoff |0 (DE-588)4065579-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenschaft |0 (DE-588)4151179-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methode |0 (DE-588)4038971-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoffprüfung |0 (DE-588)4037934-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Werkstoffprüfung |0 (DE-588)4037934-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Werkstoff |0 (DE-588)4065579-9 |D s |
689 | 1 | 1 | |a Eigenschaft |0 (DE-588)4151179-7 |D s |
689 | 1 | 2 | |a Methode |0 (DE-588)4038971-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Li, Lin |e Verfasser |4 aut | |
700 | 1 | |a Kumar, Ashok |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016761627&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016761627 |
Datensatz im Suchindex
_version_ | 1804138051815866368 |
---|---|
adam_text | Contents
Preface
.............................................................................................................xiii
1
Introduction
............................................................................................1
2
Contact Angle in Surface
Analysis
....................................................3
2.1
Introduction
.............................................................................................3
2.2
Measuring
Contact Angle
.....................................................................6
2.2.1
Static and Dynamic Sessile Drop Method
...........................7
2.2.1.1
Static Contact Angle
..............................................8
2.2.1.2
Dynamic Contact Angle
........................................8
2.2.2
Dynamic Wilhelmy Method
................................................10
2.2.3
Captive Air Bubble Method
.................................................11
2.2.4
Capillary Rise Method
..........................................................11
2.2.5
Tilted-Drop Measurement
....................................................11
2.3
Determining Surface Energy of a Homogeneous Solid
Surface
....................................................................................................11
2.3.1
Surface Tension Component
................................................13
2.3.1.1
Zisman
...................................................................13
2.3.1.2
Fowkes
...................................................................14
2.3.1.3
Owens-Wendt-Kaelble
.......................................15
2.3.1.4
Lifshitz-van
der Waals/Acid-Base
(van
Oss)
.... 16
2.3.1.5
Wu
..........................................................................16
2.3.2
Equation of State
....................................................................18
2.3.2.1
Antonow s Rule
....................................................18
2.3.2.2
Berthelot s Rule
.....................................................18
2.4
Work Examples
.....................................................................................19
2.4.1
Fowkes
.....................................................................................19
2.4.2
Case Study
—
Surface Energy of Amorphous Carbon
......21
2.5
Summary
...............................................................................................23
References
..........................................................................................................24
27
3
X-ray Photoelectron Spectroscopy and Auger Electron
Spectroscopy
.................................................................................
3.1
Introduction
...........................................................................................27
3.2
Atomic Model and Electron Configuration
......................................28
3.2.1
Energy Levels
.........................................................................30
3.2.2
Spin-Orbit Splitting
..............................................................31
3.2.3
Mean Free Path
.......................................................................33
3.3
Principles of XPS and AES
..................................................................34
3.3.1
Photoionization
......................................................................34
3.3.2
Auger Electron Generation
...................................................36
3.3.3
Background
Subtraction
.......................................................39
3.3.4
Chemical
Shift in XPS
...........................................................42
3.3.5
Quantitative Analysis
...........................................................44
3.3.6
Line Shape
..............................................................................52
3.3.7
Depth Profiling
......................................................................55
3.4
Instrumentation
....................................................................................56
3.4.1
The Vacuum System
..............................................................57
3.4.2
X-ray Sources
..........................................................................57
3.4.3
Monochromator
.....................................................................59
3.4.4
Generation of Electron Beam
...............................................60
3.4.5
Analyzers
................................................................................62
3.4.6
Electron Detectors
.................................................................63
3.4.7
Channel Electron Multipliers
...............................................64
3.4.8
Channel Plates
........................................................................64
3.4.9
Samples
...................................................................................64
3.4.10
Accessories
..............................................................................65
3.5
Routine Limits of XPS
..........................................................................65
3.5.1
Quantitative Accuracy
..........................................................65
3.5.2
Analysis Times
.......................................................................66
3.5.3
Detection Limits
.....................................................................66
3.5.4
Analysis Area Limits
............................................................66
3.5.5
Sample Size Limits
................................................................66
3.5.6
Degradation During Analysis
.............................................66
3.5.7
Comparison Between AES and XPS,
Energy-Dispersive X-ray Spectroscopy
..............................67
3.6
XPS Applications and Case Studies
...................................................67
3.6.1
Determination of Doping Effect
..........................................68
3.6.2
Chemical Reaction Determination
......................................70
3.6.3
Determination of Chemical Valence
...................................73
3.6.4
Depth Profiling
......................................................................74
3.6.5
Overlapping Problem
............................................................81
3.6.6
Determination of Film Composition
...................................82
3.7
AES Applications
..................................................................................85
3.7.1
Surface Element Determination
..........................................85
3.7.2
Concentration and Stoichiometry Determination
............85
3.7.3
Intensity-Time Curve
............................................................86
3.7.4
Chemical Shift
........................................................................87
3.7.5
Line Shape Changes
..............................................................88
3.7.6
Depth Profiling
......................................................................88
3.8
Summary
...............................................................................................89
References
..........................................................................................................90
4
Scanning Tunneling Microscopy and Atomic Force
Microscopy
...........................................................................................95
4.1
Introduction
...........................................................................................95
4.2
Working Principle
.................................................................................97
4.2.1
Scanning Tunneling Microscopy
........................................97
4.2.2
Atomic Force Microscopy
.....................................................98
4.3
Instrumentation
..................................................................................100
4.3.1
Tip and Cantilever
...............................................................101
4.3.2
Piezoelectric Scanner
..........................................................101
4.3.3
Vibration Isolation
...............................................................104
4.3.4
Resolution
.............................................................................104
4.4
Modes of Operation
...........................................................................106
4.4.1
Scanning Tunneling Microscopy
......................................106
4.4.1.1
Constant Current Mode
....................................106
4.4.1.2
Constant Height Mode
......................................106
4.4.2
Atomic Force Microscopy
...................................................106
4.4.2.1
Contact Mode
......................................................106
4.4.2.2
Noncontact
Mode
...............................................107
4.4.2.3
Tapping Mode
.....................................................108
4.5
Differences between STM and AFM
...............................................109
4.6
Applications
.........................................................................................110
4.6.1
STM Studies
..........................................................................112
4.6.2
AFM Studies
..........................................................................115
References
........................................................................................................120
5
X-ray Diffraction
...............................................................................125
5.1
X-ray Characteristics and Generation
..............................................125
5.2
Lattice Planes and Bragg s Law
........................................................127
5.3
Powder Diffraction
.............................................................................131
5.4
Thin Film Diffraction
.........................................................................134
5.5
Texture Measurement
........................................................................142
5.6
Grazing Angle X-ray Diffraction
......................................................145
Acknowledgments
.........................................................................................149
References
........................................................................................................149
6
Transmission Electron Microscopy
...............................................153
6.1
Basics of Transmission Electron Microscopes
................................153
6.2
Reciprocal Lattice
...............................................................................155
6.3
Specimen Preparation
........................................................................160
6.4
Bright-Field and Dark-Field Images
..................................................167
6.5
Electron Energy Loss Spectroscopy
.................................................170
Acknowledgments
.........................................................................................175
References
........................................................................................................175
7
Scanning Electron Microscopy
......................................................177
7.1
Introduction to Scanning Electron Microscopes
...........................177
7.1.1
Historical Background
........................................................177
7.1.2
Scanning Electron Microscopy Principles
.......................178
7.1.2.1
The Electron Gun
...............................................180
7.1.2.2
The Condenser and Objective Lenses
.............181
7.1.2.3
Scanning Coils
....................................................183
7.1.2.4
Specimen Chamber
............................................184
7.2
Electron Beam-Specimen Interaction
..............................................184
7.2.1
Backscattered Electrons
......................................................187
7.2.2
Secondary Electrons
............................................................188
7.2.3
Characteristic X-ray and Auger Electron Production
.....188
7.3
SEM
Operating Parameters
...............................................................190
7.3.1
General Aspects
...................................................................190
7.3.2
SEM
Characteristics
.............................................................190
7.3.2.1
Resolution
............................................................190
7.3.2.2
Depth of Field
.....................................................191
7.3.3
SEM
Operational Parameters
.............................................192
7.4
Applications
........................................................................................193
7.4.1
Application of
SEM in
the Synthesis
of Diamond Films
................................................................193
7.4.2
Applications of
SEM in
Electronic Devices
......................196
7.4.2.1
Fabrication of Diamond
Microcantilevers
.................................................196
7.4.2.2
Fabrication of Field Emitters
.............................197
7.4.3
Application of
SEM in
the Synthesis
of SiC Coatings
.....................................................................197
7.4.4
SEM
Analysis of Diamond-Coated
WC-Co Substrate
..................................................................200
References
........................................................................................................205
8
Chromatographic Methods
.............................................................207
8.1
Introduction
.........................................................................................207
8.2
General Principles of Chromatography
..........................................209
8.2.1
Classification of Chromatography
.....................................211
8.2.1.1
Normal-Phase and Reverse-Phase
Chromatography
.................................................211
8.2.2
Separation Modes and Mechanisms
.................................212
8.2.2.1
Adsorption Chromatography
...........................212
8.2.2.2
Partition Chromatography
................................212
8.2.2.3
Bonded-Phase Chromatography
......................213
8.2.2.4
Ion Exchange Chromatography
.......................213
8.2.2.5
Affinity Chromatography
.................................213
8.2.2.6
Size Exclusion Chromatography
.......................214
8.2.3
Fundamentals About Partition and Retention
.................214
8.2.3.1
Partition and Partition Theory
..........................214
8.3
Ion Exchange Chromatography
.......................................................217
8.3.1
Factors Affecting Separation by IEC
.................................218
8.3.2
Separating Proteins
.............................................................219
8.4
Gel Permeation Chromatography
....................................................220
8.4.1
Molecular Weights and Molecular Weight
Distribution
..........................................................................221
8.4.2
Operation of GPC
................................................................222
8.4.3
Polymer Standards and Calibration Curve
......................223
8.4.4
Sample Preparation
.............................................................224
8.4.5
GPC for
Water-Soluble
Polymers
.......................................225
8.5
Gel Electrophoresis Chromatography
.............................................225
8.5.1
Capillary Electrophoresis
...................................................226
8.5.2
Gel Electrophoresis
..............................................................226
8.5.3
Molecular Weight Markers
.................................................229
8.5.4 DNA
Electrophoresis
..........................................................229
8.6
High-Performance Liquid Chromatography
..................................229
8.6.1
WhyHPLC?
..........................................................................230
8.6.2
Isocratic Elution Versus Gradient Elution
........................231
8.6.3
Modes of HPLC
....................................................................232
8.6.4
Main Detectors of HPLC
....................................................233
8.6.5
Limitations of HPLC
...........................................................234
8.6.6
Applications of HPLC
.........................................................234
8.7
Gas Chromatography
.........................................................................234
8.7.1
Modes of GC
.........................................................................235
8.7.2
Distribution Ratio and Temperature Effect in GC
..........235
8.7.3
Retention in GC
....................................................................236
8.7.4
Carrier Gas
............................................................................236
8.7.5
Columns and Stationary Phases
........................................236
8.7.6
Detectors
...............................................................................237
8.7.7
Factors Affecting GC Separations
.....................................238
8.7.8
Features of GC
......................................................................239
8.7.9
UseofGC
..............................................................................239
8.8
Quantitative Analysis Methods
.......................................................240
8.8.1
Area/Height Percent
...........................................................240
8.8.2
External Standard Method
.................................................242
8.8.3
Internal Standard Method
..................................................244
References
........................................................................................................245
9
Infrared Spectroscopy and UV/Vis Spectroscopy
......................247
9.1
Infrared Radiation Spectroscopy
.....................................................247
9.1.1
Molecular Vibration
............................................................247
9.1.2
Resonance
.............................................................................248
9.1.3
IR
Spectroscopy
...................................................................250
9.1.4
Fourier Transform Infrared Spectrometer
.......................252
9.1.4.1
Interferometer
.....................................................252
9.1.4.2
Fourier Transformation
.....................................253
9.1.4.3
Advantages of FTIR
...........................................254
9.1.4.4
Sample Preparation
............................................255
9.1.5
Case Studies
—
Interactions Between Water and the
Polyurethane Thermoresponsive
Shape Memory
Polymer
.................................................................................256
9.2
Ultraviolet/Visible Spectroscopy
.....................................................257
9.2.1
UV Absorption
.....................................................................257
9.2.2
Beer-Lambert Law
..............................................................260
9.2.3
UV/Visible Spectra
..............................................................260
9.2.4
UV/Visible Spectroscopy
....................................................263
9.2.5
CaseStudies
..........................................................................264
References
........................................................................................................265
10
Macro and Micro Thermal Analyses
............................................267
10.1
Macro and Micro Differential Scanning Calorimetry
..................267
10.1.1
Differential Scanning Calorimetry
...................................267
10.1.2
Sample Preparation and Effect of Sample Size
................269
10.1.3
Effects of Heating Rate
........................................................270
10.1.4
Effect of Thermal History
...................................................271
10.1.5
Effect of Atmosphere
...........................................................272
10.1.6
Temperature Calibration for DSC
.....................................272
10.1.7
Observation of Thermal Transitions
(Using Semicrystalline Polymers
as Examples): Tm, Tc, and Tg
................................................273
10.1.7.1
Melting
.................................................................273
10.1.7.2
Crystallization
....................................................275
10.1.7.3
Glass Transition
..................................................276
10.1.8
Micro Differential Scanning Calorimeters
......................277
10.2
Isothermal
Titration
Calorimetry
.....................................................282
10.3
Thermogravimetric Analysis
............................................................286
10.3.1
Principle of TGA
..................................................................286
10.3.2
Sample Preparation
.............................................................287
10.3.3
Factors Affecting TGA Curves
...........................................287
10.3.3.1
Effect of Sample Holder
....................................288
10.3.3.2
Effect of Sample Mass
........................................288
10.3.3.3
Effect of Heating Rate
........................................289
10.3.3.4
Effect of Furnace Atmosphere
..........................289
10.3.4
Typical Applications of TGA
..............................................290
10.3.4.1
Thermal Stability
................................................290
10.3.4.2
Compositional Analysis
....................................290
10.3.4.3
Oxidative Stability
.............................................292
References
........................................................................................................292
11
Laser Confocal Fluorescence Microscopy
....................................295
11.1
Fluorescence and Fluorescent Dyes
.................................................295
11.2
Fluorescence Microscopy
..................................................................298
11.3
Laser Confocal
Fluorescence
Microscopy
.......................................300
11.3.1
What Is Confocal?
................................................................300
11.3.2
How LCFM Works
...............................................................302
11.3.3
Optical Sectioning and
3D
Imaging
.................................302
11.3.4
Two-Channel LCFM
............................................................304
11.3.5
Commonly Used Fluorophores (Fluorescent Dyes)
........305
11.3.6
Photobleaching
.....................................................................306
11.3.7
Resolution of LCFM and Selection of Objective
Lenses
....................................................................................308
11.3.7.1
Objective Lenses
.................................................309
11.3.7.2
Dry Lenses and Immersion Oil Lenses
...........310
11.3.8
Sample Preparation for LCFM
............................................311
11.3.9
Limitations of LCFM
...........................................................312
11.4
Applications of LCFM
........................................................................313
11.4.1
Imaging of Cells and Cell Structures
................................314
11.4.2
Morphological Studies of Polymer Blends
.......................315
References
........................................................................................................317
Index
................................................................................................................319
|
adam_txt |
Contents
Preface
.xiii
1
Introduction
.1
2
Contact Angle in Surface
Analysis
.3
2.1
Introduction
.3
2.2
Measuring
Contact Angle
.6
2.2.1
Static and Dynamic Sessile Drop Method
.7
2.2.1.1
Static Contact Angle
.8
2.2.1.2
Dynamic Contact Angle
.8
2.2.2
Dynamic Wilhelmy Method
.10
2.2.3
Captive Air Bubble Method
.11
2.2.4
Capillary Rise Method
.11
2.2.5
Tilted-Drop Measurement
.11
2.3
Determining Surface Energy of a Homogeneous Solid
Surface
.11
2.3.1
Surface Tension Component
.13
2.3.1.1
Zisman
.13
2.3.1.2
Fowkes
.14
2.3.1.3
Owens-Wendt-Kaelble
.15
2.3.1.4
Lifshitz-van
der Waals/Acid-Base
(van
Oss)
. 16
2.3.1.5
Wu
.16
2.3.2
Equation of State
.18
2.3.2.1
Antonow's Rule
.18
2.3.2.2
Berthelot's Rule
.18
2.4
Work Examples
.19
2.4.1
Fowkes
.19
2.4.2
Case Study
—
Surface Energy of Amorphous Carbon
.21
2.5
Summary
.23
References
.24
27
3
X-ray Photoelectron Spectroscopy and Auger Electron
Spectroscopy
.
3.1
Introduction
.27
3.2
Atomic Model and Electron Configuration
.28
3.2.1
Energy Levels
.30
3.2.2
Spin-Orbit Splitting
.31
3.2.3
Mean Free Path
.33
3.3
Principles of XPS and AES
.34
3.3.1
Photoionization
.34
3.3.2
Auger Electron Generation
.36
3.3.3
Background
Subtraction
.39
3.3.4
Chemical
Shift in XPS
.42
3.3.5
Quantitative Analysis
.44
3.3.6
Line Shape
.52
3.3.7
Depth Profiling
.55
3.4
Instrumentation
.56
3.4.1
The Vacuum System
.57
3.4.2
X-ray Sources
.57
3.4.3
Monochromator
.59
3.4.4
Generation of Electron Beam
.60
3.4.5
Analyzers
.62
3.4.6
Electron Detectors
.63
3.4.7
Channel Electron Multipliers
.64
3.4.8
Channel Plates
.64
3.4.9
Samples
.64
3.4.10
Accessories
.65
3.5
Routine Limits of XPS
.65
3.5.1
Quantitative Accuracy
.65
3.5.2
Analysis Times
.66
3.5.3
Detection Limits
.66
3.5.4
Analysis Area Limits
.66
3.5.5
Sample Size Limits
.66
3.5.6
Degradation During Analysis
.66
3.5.7
Comparison Between AES and XPS,
Energy-Dispersive X-ray Spectroscopy
.67
3.6
XPS Applications and Case Studies
.67
3.6.1
Determination of Doping Effect
.68
3.6.2
Chemical Reaction Determination
.70
3.6.3
Determination of Chemical Valence
.73
3.6.4
Depth Profiling
.74
3.6.5
Overlapping Problem
.81
3.6.6
Determination of Film Composition
.82
3.7
AES Applications
.85
3.7.1
Surface Element Determination
.85
3.7.2
Concentration and Stoichiometry Determination
.85
3.7.3
Intensity-Time Curve
.86
3.7.4
Chemical Shift
.87
3.7.5
Line Shape Changes
.88
3.7.6
Depth Profiling
.88
3.8
Summary
.89
References
.90
4
Scanning Tunneling Microscopy and Atomic Force
Microscopy
.95
4.1
Introduction
.95
4.2
Working Principle
.97
4.2.1
Scanning Tunneling Microscopy
.97
4.2.2
Atomic Force Microscopy
.98
4.3
Instrumentation
.100
4.3.1
Tip and Cantilever
.101
4.3.2
Piezoelectric Scanner
.101
4.3.3
Vibration Isolation
.104
4.3.4
Resolution
.104
4.4
Modes of Operation
.106
4.4.1
Scanning Tunneling Microscopy
.106
4.4.1.1
Constant Current Mode
.106
4.4.1.2
Constant Height Mode
.106
4.4.2
Atomic Force Microscopy
.106
4.4.2.1
Contact Mode
.106
4.4.2.2
Noncontact
Mode
.107
4.4.2.3
Tapping Mode
.108
4.5
Differences between STM and AFM
.109
4.6
Applications
.110
4.6.1
STM Studies
.112
4.6.2
AFM Studies
.115
References
.120
5
X-ray Diffraction
.125
5.1
X-ray Characteristics and Generation
.125
5.2
Lattice Planes and Bragg's Law
.127
5.3
Powder Diffraction
.131
5.4
Thin Film Diffraction
.134
5.5
Texture Measurement
.142
5.6
Grazing Angle X-ray Diffraction
.145
Acknowledgments
.149
References
.149
6
Transmission Electron Microscopy
.153
6.1
Basics of Transmission Electron Microscopes
.153
6.2
Reciprocal Lattice
.155
6.3
Specimen Preparation
.160
6.4
Bright-Field and Dark-Field Images
.167
6.5
Electron Energy Loss Spectroscopy
.170
Acknowledgments
.175
References
.175
7
Scanning Electron Microscopy
.177
7.1
Introduction to Scanning Electron Microscopes
.177
7.1.1
Historical Background
.177
7.1.2
Scanning Electron Microscopy Principles
.178
7.1.2.1
The Electron Gun
.180
7.1.2.2
The Condenser and Objective Lenses
.181
7.1.2.3
Scanning Coils
.183
7.1.2.4
Specimen Chamber
.184
7.2
Electron Beam-Specimen Interaction
.184
7.2.1
Backscattered Electrons
.187
7.2.2
Secondary Electrons
.188
7.2.3
Characteristic X-ray and Auger Electron Production
.188
7.3
SEM
Operating Parameters
.190
7.3.1
General Aspects
.190
7.3.2
SEM
Characteristics
.190
7.3.2.1
Resolution
.190
7.3.2.2
Depth of Field
.191
7.3.3
SEM
Operational Parameters
.192
7.4
Applications
.193
7.4.1
Application of
SEM in
the Synthesis
of Diamond Films
.193
7.4.2
Applications of
SEM in
Electronic Devices
.196
7.4.2.1
Fabrication of Diamond
Microcantilevers
.196
7.4.2.2
Fabrication of Field Emitters
.197
7.4.3
Application of
SEM in
the Synthesis
of SiC Coatings
.197
7.4.4
SEM
Analysis of Diamond-Coated
WC-Co Substrate
.200
References
.205
8
Chromatographic Methods
.207
8.1
Introduction
.207
8.2
General Principles of Chromatography
.209
8.2.1
Classification of Chromatography
.211
8.2.1.1
Normal-Phase and Reverse-Phase
Chromatography
.211
8.2.2
Separation Modes and Mechanisms
.212
8.2.2.1
Adsorption Chromatography
.212
8.2.2.2
Partition Chromatography
.212
8.2.2.3
Bonded-Phase Chromatography
.213
8.2.2.4
Ion Exchange Chromatography
.213
8.2.2.5
Affinity Chromatography
.213
8.2.2.6
Size Exclusion Chromatography
.214
8.2.3
Fundamentals About Partition and Retention
.214
8.2.3.1
Partition and Partition Theory
.214
8.3
Ion Exchange Chromatography
.217
8.3.1
Factors Affecting Separation by IEC
.218
8.3.2
Separating Proteins
.219
8.4
Gel Permeation Chromatography
.220
8.4.1
Molecular Weights and Molecular Weight
Distribution
.221
8.4.2
Operation of GPC
.222
8.4.3
Polymer Standards and Calibration Curve
.223
8.4.4
Sample Preparation
.224
8.4.5
GPC for
Water-Soluble
Polymers
.225
8.5
Gel Electrophoresis Chromatography
.225
8.5.1
Capillary Electrophoresis
.226
8.5.2
Gel Electrophoresis
.226
8.5.3
Molecular Weight Markers
.229
8.5.4 DNA
Electrophoresis
.229
8.6
High-Performance Liquid Chromatography
.229
8.6.1
WhyHPLC?
.230
8.6.2
Isocratic Elution Versus Gradient Elution
.231
8.6.3
Modes of HPLC
.232
8.6.4
Main Detectors of HPLC
.233
8.6.5
Limitations of HPLC
.234
8.6.6
Applications of HPLC
.234
8.7
Gas Chromatography
.234
8.7.1
Modes of GC
.235
8.7.2
Distribution Ratio and Temperature Effect in GC
.235
8.7.3
Retention in GC
.236
8.7.4
Carrier Gas
.236
8.7.5
Columns and Stationary Phases
.236
8.7.6
Detectors
.237
8.7.7
Factors Affecting GC Separations
.238
8.7.8
Features of GC
.239
8.7.9
UseofGC
.239
8.8
Quantitative Analysis Methods
.240
8.8.1
Area/Height Percent
.240
8.8.2
External Standard Method
.242
8.8.3
Internal Standard Method
.244
References
.245
9
Infrared Spectroscopy and UV/Vis Spectroscopy
.247
9.1
Infrared Radiation Spectroscopy
.247
9.1.1
Molecular Vibration
.247
9.1.2
Resonance
.248
9.1.3
IR
Spectroscopy
.250
9.1.4
Fourier Transform Infrared Spectrometer
.252
9.1.4.1
Interferometer
.252
9.1.4.2
Fourier Transformation
.253
9.1.4.3
Advantages of FTIR
.254
9.1.4.4
Sample Preparation
.255
9.1.5
Case Studies
—
Interactions Between Water and the
Polyurethane Thermoresponsive
Shape Memory
Polymer
.256
9.2
Ultraviolet/Visible Spectroscopy
.257
9.2.1
UV Absorption
.257
9.2.2
Beer-Lambert Law
.260
9.2.3
UV/Visible Spectra
.260
9.2.4
UV/Visible Spectroscopy
.263
9.2.5
CaseStudies
.264
References
.265
10
Macro and Micro Thermal Analyses
.267
10.1
Macro and Micro Differential Scanning Calorimetry
.267
10.1.1
Differential Scanning Calorimetry
.267
10.1.2
Sample Preparation and Effect of Sample Size
.269
10.1.3
Effects of Heating Rate
.270
10.1.4
Effect of Thermal History
.271
10.1.5
Effect of Atmosphere
.272
10.1.6
Temperature Calibration for DSC
.272
10.1.7
Observation of Thermal Transitions
(Using Semicrystalline Polymers
as Examples): Tm, Tc, and Tg
.273
10.1.7.1
Melting
.273
10.1.7.2
Crystallization
.275
10.1.7.3
Glass Transition
.276
10.1.8
Micro Differential Scanning Calorimeters
.277
10.2
Isothermal
Titration
Calorimetry
.282
10.3
Thermogravimetric Analysis
.286
10.3.1
Principle of TGA
.286
10.3.2
Sample Preparation
.287
10.3.3
Factors Affecting TGA Curves
.287
10.3.3.1
Effect of Sample Holder
.288
10.3.3.2
Effect of Sample Mass
.288
10.3.3.3
Effect of Heating Rate
.289
10.3.3.4
Effect of Furnace Atmosphere
.289
10.3.4
Typical Applications of TGA
.290
10.3.4.1
Thermal Stability
.290
10.3.4.2
Compositional Analysis
.290
10.3.4.3
Oxidative Stability
.292
References
.292
11
Laser Confocal Fluorescence Microscopy
.295
11.1
Fluorescence and Fluorescent Dyes
.295
11.2
Fluorescence Microscopy
.298
11.3
Laser Confocal
Fluorescence
Microscopy
.300
11.3.1
What Is Confocal?
.300
11.3.2
How LCFM Works
.302
11.3.3
Optical Sectioning and
3D
Imaging
.302
11.3.4
Two-Channel LCFM
.304
11.3.5
Commonly Used Fluorophores (Fluorescent Dyes)
.305
11.3.6
Photobleaching
.306
11.3.7
Resolution of LCFM and Selection of Objective
Lenses
.308
11.3.7.1
Objective Lenses
.309
11.3.7.2
Dry Lenses and Immersion Oil Lenses
.310
11.3.8
Sample Preparation for LCFM
.311
11.3.9
Limitations of LCFM
.312
11.4
Applications of LCFM
.313
11.4.1
Imaging of Cells and Cell Structures
.314
11.4.2
Morphological Studies of Polymer Blends
.315
References
.317
Index
.319 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Zhang, Sam Li, Lin Kumar, Ashok |
author_facet | Zhang, Sam Li, Lin Kumar, Ashok |
author_role | aut aut aut |
author_sort | Zhang, Sam |
author_variant | s z sz l l ll a k ak |
building | Verbundindex |
bvnumber | BV035093549 |
callnumber-first | T - Technology |
callnumber-label | TA410 |
callnumber-raw | TA410 |
callnumber-search | TA410 |
callnumber-sort | TA 3410 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UP 9000 |
classification_tum | WER 700f |
ctrlnum | (OCoLC)144523105 (DE-599)BVBBV035093549 |
dewey-full | 620.1/10287 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/10287 |
dewey-search | 620.1/10287 |
dewey-sort | 3620.1 510287 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Werkstoffwissenschaften |
discipline_str_mv | Physik Werkstoffwissenschaften |
edition | 1st ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02849nam a2200589zc 4500</leader><controlfield tag="001">BV035093549</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090708 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081010s2009 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008030739</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420042948</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-1-4200-4294-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1420042947</subfield><subfield code="c">alk. paper</subfield><subfield code="9">1-4200-4294-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)144523105</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035093549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA410</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/10287</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 9000</subfield><subfield code="0">(DE-625)146451:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 700f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Sam</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Materials characterization techniques</subfield><subfield code="c">Sam Zhang, Lin Li, Ashok Kumar</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">328 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization techniques for quality assurance, contamination control, and process improvement. The book reviews the most popular and powerful analysis and quality control tools, explaining the appropriate uses and related technical requirements. The text features coverage of a wide range of topics, including Auger electron spectroscopy, atomic force microscopy, transmission electron microscopy, gel electrophoresis chromatography, laser confocal scanning florescent microscopy, and UV spectroscopy."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Materiaalonderzoek</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matériaux - Essais</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wetenschappelijke technieken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wissenschaftliches Arbeiten</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Testing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenschaft</subfield><subfield code="0">(DE-588)4151179-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffprüfung</subfield><subfield code="0">(DE-588)4037934-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Werkstoffprüfung</subfield><subfield code="0">(DE-588)4037934-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Eigenschaft</subfield><subfield code="0">(DE-588)4151179-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Lin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Ashok</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016761627&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016761627</subfield></datafield></record></collection> |
id | DE-604.BV035093549 |
illustrated | Illustrated |
index_date | 2024-07-02T22:11:29Z |
indexdate | 2024-07-09T21:22:03Z |
institution | BVB |
isbn | 9781420042948 1420042947 |
language | English |
lccn | 2008030739 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016761627 |
oclc_num | 144523105 |
open_access_boolean | |
owner | DE-703 DE-210 DE-91G DE-BY-TUM DE-29T |
owner_facet | DE-703 DE-210 DE-91G DE-BY-TUM DE-29T |
physical | 328 S. Ill., graph. Darst. 24 cm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | CRC Press |
record_format | marc |
spelling | Zhang, Sam Verfasser aut Materials characterization techniques Sam Zhang, Lin Li, Ashok Kumar 1st ed. Boca Raton [u.a.] CRC Press 2009 328 S. Ill., graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index "With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization techniques for quality assurance, contamination control, and process improvement. The book reviews the most popular and powerful analysis and quality control tools, explaining the appropriate uses and related technical requirements. The text features coverage of a wide range of topics, including Auger electron spectroscopy, atomic force microscopy, transmission electron microscopy, gel electrophoresis chromatography, laser confocal scanning florescent microscopy, and UV spectroscopy."--BOOK JACKET. Materiaalonderzoek gtt Matériaux - Essais Wetenschappelijke technieken gtt Wissenschaftliches Arbeiten Materials Testing Werkstoff (DE-588)4065579-9 gnd rswk-swf Eigenschaft (DE-588)4151179-7 gnd rswk-swf Methode (DE-588)4038971-6 gnd rswk-swf Werkstoffprüfung (DE-588)4037934-6 gnd rswk-swf Werkstoffprüfung (DE-588)4037934-6 s DE-604 Werkstoff (DE-588)4065579-9 s Eigenschaft (DE-588)4151179-7 s Methode (DE-588)4038971-6 s Li, Lin Verfasser aut Kumar, Ashok Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016761627&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zhang, Sam Li, Lin Kumar, Ashok Materials characterization techniques Materiaalonderzoek gtt Matériaux - Essais Wetenschappelijke technieken gtt Wissenschaftliches Arbeiten Materials Testing Werkstoff (DE-588)4065579-9 gnd Eigenschaft (DE-588)4151179-7 gnd Methode (DE-588)4038971-6 gnd Werkstoffprüfung (DE-588)4037934-6 gnd |
subject_GND | (DE-588)4065579-9 (DE-588)4151179-7 (DE-588)4038971-6 (DE-588)4037934-6 |
title | Materials characterization techniques |
title_auth | Materials characterization techniques |
title_exact_search | Materials characterization techniques |
title_exact_search_txtP | Materials characterization techniques |
title_full | Materials characterization techniques Sam Zhang, Lin Li, Ashok Kumar |
title_fullStr | Materials characterization techniques Sam Zhang, Lin Li, Ashok Kumar |
title_full_unstemmed | Materials characterization techniques Sam Zhang, Lin Li, Ashok Kumar |
title_short | Materials characterization techniques |
title_sort | materials characterization techniques |
topic | Materiaalonderzoek gtt Matériaux - Essais Wetenschappelijke technieken gtt Wissenschaftliches Arbeiten Materials Testing Werkstoff (DE-588)4065579-9 gnd Eigenschaft (DE-588)4151179-7 gnd Methode (DE-588)4038971-6 gnd Werkstoffprüfung (DE-588)4037934-6 gnd |
topic_facet | Materiaalonderzoek Matériaux - Essais Wetenschappelijke technieken Wissenschaftliches Arbeiten Materials Testing Werkstoff Eigenschaft Methode Werkstoffprüfung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016761627&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhangsam materialscharacterizationtechniques AT lilin materialscharacterizationtechniques AT kumarashok materialscharacterizationtechniques |