Mathematics emerging: a sourcebook 1540 - 1900
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2008
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (p. [636]-648) and index |
Beschreibung: | xxi, 653 S. graph. Darst. |
ISBN: | 9780199226900 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035087584 | ||
003 | DE-604 | ||
005 | 20121112 | ||
007 | t | ||
008 | 081007s2008 d||| |||| 00||| eng d | ||
015 | |a GBA759542 |2 dnb | ||
020 | |a 9780199226900 |9 978-0-19-922690-0 | ||
035 | |a (OCoLC)248980897 | ||
035 | |a (DE-599)BVBBV035087584 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-19 |a DE-11 | ||
050 | 0 | |a QA21 | |
082 | 0 | |a 510.9 |2 22 | |
084 | |a SG 553 |0 (DE-625)143061: |2 rvk | ||
100 | 1 | |a Stedall, Jacqueline A. |e Verfasser |0 (DE-588)1019195649 |4 aut | |
245 | 1 | 0 | |a Mathematics emerging |b a sourcebook 1540 - 1900 |c Jacqueline Stedall |
250 | |a 1. publ. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2008 | |
300 | |a xxi, 653 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. [636]-648) and index | ||
648 | 7 | |a Geschichte 1800 v. Chr.-1902 |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics / History | |
650 | 4 | |a Mathematics / Sources | |
650 | 4 | |a Geschichte | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematics |x History | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4135952-5 |a Quelle |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Geschichte 1800 v. Chr.-1902 |A z |
689 | 0 | |C b |5 DE-604 | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016755748&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016755748 | ||
942 | 1 | 1 | |c 509 |e 22/bsb |
Datensatz im Suchindex
_version_ | 1804138043155677184 |
---|---|
adam_text | CONTENTS ACKNOWLEDGEMENTS XIII INTRODUCTION XV BEGINNINGS I 1.1
BEGINNINGS OF ARITHMETIC 2 1.1.1 LARGE NUMBER CALCULATIONS, C. 1800 BC 2
1.1.2 SACROBOSCO S ALGORISMUS, C. 1230 AD 4 1.2 BEGINNINGS OF GEOMETRY 8
1.2.1 EUCUED S DEFINITIONS, C. 250 BC 9 1.2.2 EUCLID S CONSTRUCTION OF
PROPORTIONALS, C. 250 BC 12 1.2.3 ARCHIMEDES ON CIRCLE MEASUREMENT, C.
250 BC 14 1.2.4 APOLLONIUS CONICS, C. 185 BC 16 1.3 BEGINNINGS OFA
THEORY OF NUMBERS 19 1.3.1 EUCLID S DEFINITIONS OF NUMBER, C. 250 BC 19
1.3.2 EUCLID S PROOF OF THE INFINITY OF PRIMES, C. 250 BC 23 1.3.3 THE
ARITHMETICA OF DIOPHANTUS, (AFTER 150 AD) 24 1 .4 BEGINNINGS OF ALGEBRA
26 1.4.1 COMPLETING THE SQUARE, C. 1800 BC 26 1.4.2 AL-KHWAERIZML S
A!-JABR, C. 825 AD 29 FRESHIDEAS 33 2.1 IMPROVEMENTS IN CALCULATION 34
2.1.1 STEVIN S DECIMAL FRACTIONS, 1585 34 2.1.2 NAPIER S LOGARITHMS,
1614 39 2.2 IMPROVEMENTS IN NOTATION 43 2.2.1 HARRIOT S NOTATION, C.
1600 44 2.2.2 DESCARTES NOTATION, 1637 46 2.3 ANALYTIC GEOMETRY 47 2.3.1
VIETE S INTRODUCTION TO THE ANALYTIC ART, 1591 47 2.3.2 FERMAT AND
ANALYTIC GEOMETRY, 1636 50 2.3.3 DESCARTES AND ANALYTIC GEOMETRY, 1637
54 2.4 INDIVISIBLES 62 2.4.1 CAVALIERI S THEORY OF INDIVISIBLES, 1635 62
2.4.2 WALLIS AND HOBBES ON INDIVISIBLES, 1656 66 VLLL CONTENTS 3
FORESHADOWINGS OF CALCULUS 71 3.1 METHODS FOR TANGENTS 72 3.1.1 FERMAT S
TANGENT METHOD, 1629 72 3.1.2 DESCARTES TANGENT METHOD, 1637 74 3.2
METHODS OF QUADRATURE 78 3.2.1 FERMAT S QUADRATURE OF HIGHER HYPERBOLAS,
EARLY 1640S 78 3.2.2 BROUNCKER AND THE RECTANGULAR HYPERBOLA, C. 1655 84
3.2.3 WALLIS USE OF INDIVISIBLES, 1656 89 3.2.4 MERCATOR AND THE
RECTANGULAR HYPERBOLA, 1668 95 3.3 A METHOD OFCUBATURE 100 3.3.1
TORRICELLI S INFINITE SOLID, 1644 100 3.4 A METHOD OF RECTIFICATION 102
3.4.1 NEUE AND THE SEMICUBICAL PARABOLA, 1657 102 4 THE CALCULUS OF
NEWTON AND OF LEIBNIZ 105 4.1 THE CALCULUS OF NEWTON 105 4.1.1 THE
CHRONOLOGY OF NEWTON S CALCULUS 105 4.1.2 NEWTON S TREATISE ON FLUXIONS
AND SERIES, 1671 107 4.1.3 NEWTON S FIRST PUBLICATIONOF HIS CALCULUS,
1704 114 4.2 THE CALCULUS OF LEIBNIZ 119 4.2.1 LEIBNIZ S FIRST
PUBLICATION OF HIS CALCULUS, 1684 120 5 THE MATHEMATICS OF NATURE:
NEWTON S PRINCIPIA 133 5.1 NEWTON S PRINCIPIA, BOOK I 135 5.1.1
THEAXIOMS 135 5.1.2 ULTIMATE RATIOS 139 5.1.3 PROPERTIES OF SMALL ANGLES
142 5.1.4 MOTION UNDER A CENTRIPETAL FORCE 144 5.1.5 QUANTITATIVE
MEASURES OF CENTRIPETAL FORCE 147 5.1.6 THE INVERSE SQUARE LAW FOR A
PARABOLA 150 6 EARLY NUMBER THEORY 155 6.1 PERFECT NUMBERS 155 6.1.1
EUCLID S THEOREM ON PERFECT NUMBERS, C. 250 BC 155 6.1.2 MERSENNE
PRIMES, 1644 157 6.1.3 FERMAT S LITTLE THEOREM, 1640 159 6.2 PELLV
EQUATION 162 6.2.1 FERMAT S CHALLENGE AND BROUNCKER S RESPONSE, 1657 162
6.3 FERMAT S FINAL CHALLENGE 165 7 EARLY PROBABILITY 167 7.1 THE
MATHEMATICS OF GAMBLING 167 7.1.1 PASCAL S CORRESPONDENCE WITH FERMAT,
1654 167 7.1.2 JACOB BERNOULLI S ARS CONJECTANDI, 1713 170 7.1.3 DE
MOIVRE S CALCULATION OF CONFIDENCE, 1738 176 7.2 MATHEMATICAL
PROBABILITY THEORY 180 7.2.1 BAYES THEOREM, 1763 180 7.2.2 LAPLACE AND
AN APPLICATION OF PROBABILITY, 1812 182 8 POWER SERIES 189 8.1
DISCOVERIES OF POWER SERIES 190 8.1.1 NEWTON AND THE GENERAL BINOMIAL
THEOREM, 1664-1665 190 8.1.2 NEWTON S DE ANALYSI , 1669 193 8.1.3
NEWTON S SETTERS TO LEIBNIZ, 1676 196 8.1.4 GREGORY S BINOMIAL
EXPANSION, 1670 198 8.2 TAYLOR SERIES 201 8.2.1 TAYLOR S INCREMENT
METHOD, 1715 201 8.2.2 MACLAURIN S SERIES, 1742 206 8.2.3 FUNCTIONS AS
INFINITE SERIES, 1748 208 8.3 CONVERGENCE OF SERIES 209 8.3.1
D ALEMBERT S RATIO TEST, 1761 210 8.3.2 LAGRANGE AND THE REMAINDER TERM,
1 797 215 8.4 FOURIER SERIES 223 8.4.1 FOURIER S DERIVATION OF HIS
COEFFICIENTS, 1822 223 9 FUNCTIONS 229 9.1 EARLY DEFINITIONS OF
FUNCTIONS 229 9.1.1 JOHANN BERNOULLI S DEFINITION OF FUNCTION, 1718 229
9.1.2 EULER S DEFINITION OF A FUNCTION (1), 1748 233 9.1.3 EULER S
DEFINITION OF A FUNCTION (2), 1755 238 9.2 LOGARITHMIC AND CIRCULAR
FUNCTIONS 244 9.2.1 A NEW DEFINITION OF LOGARITHMS, 1748 244 9.2.2
SERIES FOR SINE AND COSINE, 1748 250 9.2.3 EULER S UNINCATION OF
ELEMENTARY FUNCTIONS, 1748 253 9.3 NINETEENTH-CENTURY DEFINITIONS OF
FUNCTION 254 9.3.1 A DEFINITION FROM DEDEKIND, 1888 256 10 MAKING
CALCULUS WORK 259 10.1 USES OF CALCULUS 260 10.1.1 [ACOB BERNOULLI S
CURVEOF UNIFORM DESCENT, 1690 260 10.1.2 D ALEMBERT AND THE WAVE
EQUATION, 1747 264 10.2 FOUNDATIONS OF THE CALCULUS 27 1 10.2.1 BERKELEY
AND THE ANALYST, 1734 272 10.2.2 MACLAURIN S RESPONSE TO BERKELEY, 1742
274 10.2.3 EULER AND INFINITELY SMALL QUANTITIES, 1755 276 10.2.4
LAGRANGE S ATTEMPT TO AVOID THE INFINITELY SMALL, 1797 281 11 LIMITS AND
CONTINUITY 291 11.1 LIMITS 291 11.1.1 WALLIS S LESS THAN ANY
ASSIGNABLE , 1656 291 11.1.2 NEWTON S FIRST AND LAST RATIOS, 1687 292 1
1.1.3 MACLAURIN S DEFINITION OF A LIMIT, 1742 295 11.1.4 D ALEMBERT S
DEFINITION OF A LIMIT, 1765 297 11.1.5 CAUCHY S DEFINITION OF A LIMIT,
1821 298 11.2 CONTINUITY 301 11.2.1 WALLIS AND SMOOTH CURVES, 1656 301
11.2.2 EULER S DEFINITION OF CONTINUITY, 1748 302 CONTENTS 11.2.3
LAGRANGE S ARBITRARILY SMALL INTERVALS, 1797 304 11.2.4 BOLZANO S
DEFINITION OF CONTINUITY, 1817 306 11.2.5 CAUCHY S DEFINITION OF
CONTINUITY, 1821 312 11.2.6 CAUCHV AND THE INTERMEDIATE VALUE THEOREM,
1821 316 12 SOLVING EQUATIONS 325 12.1 CUBICS AND QUARTICS 325 12.1.1
CARDANO AND THE ARS MAGNA, 1545 325 12.2 FROM CARDANO TO LAGRANGE 330
12.2.1 HARRIOT AND THE STRUCTURE OF POLYNOMIALS, C. 1600 331 12.2.2
HUDDE S RULE, 1657 333 12.2.3 TSCHIRNHAUS TRANSFORMATIONS, 1683 335
12.2.4 LAGRANGE AND REDUCED EQUATIONS, 1771 339 12.3 HIGHER DEGREE
EQUATIONS 348 12.3.1 LAGRANGE S THEOREM, 1771 348 12.3.2 AFTERMATH: THE
UNSOLVABILITY OF QUINTICS 350 13 GROUPS, FIELDS, IDEALS, AND RINGS 353
13.1 GROUPS 353 13.1.1 CAUCHY S EARLY WORK ON PERMUTATIONS, 1815 354
13.1.2 THE PREMIER MEMOIRE OF GALOIS, 1831 361 13.1.3 CAUCHY S RETURN TO
PERMUTATIONS, 1845 366 13.1.4 CAYLEY S CONTRIBUTION TO GROUP THEORY,
1854 374 13.2 FIELDS, IDEALS, AND RINGS 378 13.2.1 GALOIS FIELDS , 1830
378 13.2.2 KUMMERAND IDEA! NUMBERS, 1847 381 13.2.3 DEDEKINDON FIELDS
OFFINITE DEGREE, 1877 386 13.2.4 DEDEKIND S DEFINITION OF IDEALS, 1877
391 14 DERIVATIVES AND INTEGRALS 397 14.1 DERIVATIVES 397 14.1.1
LANDEN S ALGEBRAIC PRINCIPLE, 1758 397 14.1.2 LAGRANGE S DERIVED
FUNCTIONS, 1797 401 14.1.3 AMPERE S THEORY OF DERIVED FUNCTIONS, 1806
406 14.1.4 CAUCHY ON DERIVED FUNCTIONS, 1823 415 14.1.5 THE MEAN VALUE
THEOREM, ANDE,5 NOTATION, 1823 421 14.2 INTEGRATION OF REAL-VALUED
FUNCTIONS 425 14.2.1 EULER S INLRODUCTION TO INTEGRATION, 1768 425
14.2.2 CAUCHY S DEFINITE INTEGRAL, 1823 434 14.2.3 CAUCHY AND THE
FUNDAMENTAL THEOREM OF CALCULUS, 1823 444 14.2.4 RIEMANN INTEGRATION,
1854 446 14.2.5 LEBESGUEINTEGRATION, 1902 453 15 COMPLEX ANALYSIS 459
15.1 THE COMPLEX PLANE 459 15.1.1 WALLIS S REPRESENTATIONS, 1685 459
15.1.2 ARGAND S REPRESENTATION, 1806 462 CONTENTS XI 15.2 INTEGRATION OF
COMPLEX FUNCTIONS 468 15.2.1 JOHANN BERNOULLI S TRANSFORMATIONS, 1702
468 15.2.2 CAUCHYON DEFINITE COMPLEX INTEGRALS, 1814 472 15.2.3 THE
CALCULUS OF RESIDUES, 1826 480 15.2.4 CAUCHY S INTEGRAL FORMULAS, 1831
486 15.2.5 THE CAUCHY-RIEMANN EQUATIONS, 1851 491 16 CONVERGENCE AND
COMPLETENESS 495 16.1 CAUCHY SEQUENCES 495 16.1.1 BOLZANO AND CAUCHY
SEQUENCES , 1817 495 16.1.2 CAUCHY S TREATMENT OF SEQUENCES AND SERIES,
1821 500 16.1.3 ABEL SPROOF OF THEBINOMIAL THEOREM, 1826 515 16.2
UNIFORM CONVERGENCE 524 16.2.1 CAUCHY S ERRONEOUS THEOREM, 1821 524
16.2.2 STOKES AND INFINITELY SLOW CONVERGENCE, 1847 527 16.3
COMPLETENESS OF THE REAL NUMBERS 529 16.3.1 BOLZANO AND GREATEST LOWER
BOUNDS, 1817 529 16.3.2 DEDEKIND S DEHNITION OF REAL NUMBERS, 1858 534
16.3.3 CANTOR S DEFINITION OF REAL NUMBERS, 1872 542 17 LINEAR ALGEBRA
547 17.1 LINEAR EQUATIONS AND DETERMINANTS 548 17.1.1 AN EARLY EUROPEAN
EXAMPLE, 1559 548 17.1.2 RULES FOR SOLVING THREE OR FOUR EQUATIONS, 1748
552 17.1.3 VANDERMONDE S ELIMINATION THEORY, 1772 554 17.1.4 CAUCHY S
DEFINITION OF DETERMINANT, 1815 563 17.2 EIGENVALUE PROBLEMS 570 17.2.1
EULER S QUADRATIC SURFACES, 1748 570 17.2.2 LAPLACE S SYMMETRIE SYSTEM,
1787 573 17.2.3 CAUCHY S THEOREMS OF 1829 579 17.3 MATRICES 586 17.3.1
GAUSS AND LINEAR TRANSFORMATIONS, 1801 586 17.3.2 CAYLEY S THEORY OF
MATRICES, 1858 588 17.3.3 FROBENIUS AND BILINEAR FORMS, 1878 592 17.4
VECTORS AND VECTOR SPACES 598 1 7.4. 1 GRASSMANN AND VECTOR SPACES, 1862
598 18 FOUNDATIONS 605 18.1 FOUNDATIONS OF GEOMETRY 605 18.1.1 HILBERT S
AXIOMATIZATION OF GEOMETRY, 1899 607 18.2 FOUNDATIONS OFARITHMETIC 613
18.2.1 CANTOR S COUNTABILITY PROOFS, 1874 614 18.2.2 DEDEKIND S
DEFINITION OF NATURAL NUMBERS, 1888 622 PEOPLE, INSTITUTIONS, AND
JOURNALS 627 BIBLIOGRAPHY 635 INDEX 649
|
adam_txt |
CONTENTS ACKNOWLEDGEMENTS XIII INTRODUCTION XV BEGINNINGS I 1.1
BEGINNINGS OF ARITHMETIC 2 1.1.1 LARGE NUMBER CALCULATIONS, C. 1800 BC 2
1.1.2 SACROBOSCO'S ALGORISMUS, C. 1230 AD 4 1.2 BEGINNINGS OF GEOMETRY 8
1.2.1 EUCUED'S DEFINITIONS, C. 250 BC 9 1.2.2 EUCLID'S CONSTRUCTION OF
PROPORTIONALS, C. 250 BC 12 1.2.3 ARCHIMEDES ON CIRCLE MEASUREMENT, C.
250 BC 14 1.2.4 APOLLONIUS' CONICS, C. 185 BC 16 1.3 BEGINNINGS OFA
THEORY OF NUMBERS 19 1.3.1 EUCLID'S DEFINITIONS OF NUMBER, C. 250 BC 19
1.3.2 EUCLID'S PROOF OF THE INFINITY OF PRIMES, C. 250 BC 23 1.3.3 THE
ARITHMETICA OF DIOPHANTUS, (AFTER 150 AD) 24 1 .4 BEGINNINGS OF ALGEBRA
26 1.4.1 COMPLETING THE SQUARE, C. 1800 BC 26 1.4.2 AL-KHWAERIZML'S
A!-JABR, C. 825 AD 29 FRESHIDEAS 33 2.1 IMPROVEMENTS IN CALCULATION 34
2.1.1 STEVIN'S DECIMAL FRACTIONS, 1585 34 2.1.2 NAPIER'S LOGARITHMS,
1614 39 2.2 IMPROVEMENTS IN NOTATION 43 2.2.1 HARRIOT'S NOTATION, C.
1600 44 2.2.2 DESCARTES'NOTATION, 1637 46 2.3 ANALYTIC GEOMETRY 47 2.3.1
VIETE'S INTRODUCTION TO THE ANALYTIC ART, 1591 47 2.3.2 FERMAT AND
ANALYTIC GEOMETRY, 1636 50 2.3.3 DESCARTES AND ANALYTIC GEOMETRY, 1637
54 2.4 INDIVISIBLES 62 2.4.1 CAVALIERI'S THEORY OF INDIVISIBLES, 1635 62
2.4.2 WALLIS AND HOBBES ON INDIVISIBLES, 1656 66 VLLL CONTENTS 3
FORESHADOWINGS OF CALCULUS 71 3.1 METHODS FOR TANGENTS 72 3.1.1 FERMAT'S
TANGENT METHOD, 1629 72 3.1.2 DESCARTES'TANGENT METHOD, 1637 74 3.2
METHODS OF QUADRATURE 78 3.2.1 FERMAT'S QUADRATURE OF HIGHER HYPERBOLAS,
EARLY 1640S 78 3.2.2 BROUNCKER AND THE RECTANGULAR HYPERBOLA, C. 1655 84
3.2.3 WALLIS' USE OF INDIVISIBLES, 1656 89 3.2.4 MERCATOR AND THE
RECTANGULAR HYPERBOLA, 1668 95 3.3 A METHOD OFCUBATURE 100 3.3.1
TORRICELLI'S INFINITE SOLID, 1644 100 3.4 A METHOD OF RECTIFICATION 102
3.4.1 NEUE AND THE SEMICUBICAL PARABOLA, 1657 102 4 THE CALCULUS OF
NEWTON AND OF LEIBNIZ 105 4.1 THE CALCULUS OF NEWTON 105 4.1.1 THE
CHRONOLOGY OF NEWTON'S CALCULUS 105 4.1.2 NEWTON'S TREATISE ON FLUXIONS
AND SERIES, 1671 107 4.1.3 NEWTON'S FIRST PUBLICATIONOF HIS CALCULUS,
1704 114 4.2 THE CALCULUS OF LEIBNIZ 119 4.2.1 LEIBNIZ'S FIRST
PUBLICATION OF HIS CALCULUS, 1684 120 5 THE MATHEMATICS OF NATURE:
NEWTON'S PRINCIPIA 133 5.1 NEWTON'S PRINCIPIA, BOOK I 135 5.1.1
THEAXIOMS 135 5.1.2 ULTIMATE RATIOS 139 5.1.3 PROPERTIES OF SMALL ANGLES
142 5.1.4 MOTION UNDER A CENTRIPETAL FORCE 144 5.1.5 QUANTITATIVE
MEASURES OF CENTRIPETAL FORCE 147 5.1.6 THE INVERSE SQUARE LAW FOR A
PARABOLA 150 6 EARLY NUMBER THEORY 155 6.1 PERFECT NUMBERS 155 6.1.1
EUCLID'S THEOREM ON PERFECT NUMBERS, C. 250 BC 155 6.1.2 MERSENNE
PRIMES, 1644 157 6.1.3 FERMAT'S LITTLE THEOREM, 1640 159 6.2 'PELLV
EQUATION 162 6.2.1 FERMAT'S CHALLENGE AND BROUNCKER'S RESPONSE, 1657 162
6.3 FERMAT'S FINAL CHALLENGE 165 7 EARLY PROBABILITY 167 7.1 THE
MATHEMATICS OF GAMBLING 167 7.1.1 PASCAL'S CORRESPONDENCE WITH FERMAT,
1654 167 7.1.2 JACOB BERNOULLI'S ARS CONJECTANDI, 1713 170 7.1.3 DE
MOIVRE'S CALCULATION OF CONFIDENCE, 1738 176 7.2 MATHEMATICAL
PROBABILITY THEORY 180 7.2.1 BAYES'THEOREM, 1763 180 7.2.2 LAPLACE AND
AN APPLICATION OF PROBABILITY, 1812 182 8 POWER SERIES 189 8.1
DISCOVERIES OF POWER SERIES 190 8.1.1 NEWTON AND THE GENERAL BINOMIAL
THEOREM, 1664-1665 190 8.1.2 NEWTON'S 'DE ANALYSI', 1669 193 8.1.3
NEWTON'S SETTERS TO LEIBNIZ, 1676 196 8.1.4 GREGORY'S BINOMIAL
EXPANSION, 1670 198 8.2 TAYLOR SERIES 201 8.2.1 TAYLOR'S INCREMENT
METHOD, 1715 201 8.2.2 MACLAURIN'S SERIES, 1742 206 8.2.3 FUNCTIONS AS
INFINITE SERIES, 1748 208 8.3 CONVERGENCE OF SERIES 209 8.3.1
D'ALEMBERT'S RATIO TEST, 1761 210 8.3.2 LAGRANGE AND THE REMAINDER TERM,
1 797 215 8.4 FOURIER SERIES 223 8.4.1 FOURIER'S DERIVATION OF HIS
COEFFICIENTS, 1822 223 9 FUNCTIONS 229 9.1 EARLY DEFINITIONS OF
FUNCTIONS 229 9.1.1 JOHANN BERNOULLI'S DEFINITION OF FUNCTION, 1718 229
9.1.2 EULER'S DEFINITION OF A FUNCTION (1), 1748 233 9.1.3 EULER'S
DEFINITION OF A FUNCTION (2), 1755 238 9.2 LOGARITHMIC AND CIRCULAR
FUNCTIONS 244 9.2.1 A NEW DEFINITION OF LOGARITHMS, 1748 244 9.2.2
SERIES FOR SINE AND COSINE, 1748 250 9.2.3 EULER'S UNINCATION OF
ELEMENTARY FUNCTIONS, 1748 253 9.3 NINETEENTH-CENTURY DEFINITIONS OF
FUNCTION 254 9.3.1 A DEFINITION FROM DEDEKIND, 1888 256 10 MAKING
CALCULUS WORK 259 10.1 USES OF CALCULUS 260 10.1.1 [ACOB BERNOULLI'S
CURVEOF UNIFORM DESCENT, 1690 260 10.1.2 D'ALEMBERT AND THE WAVE
EQUATION, 1747 264 10.2 FOUNDATIONS OF THE CALCULUS 27 1 10.2.1 BERKELEY
AND THE ANALYST, 1734 272 10.2.2 MACLAURIN'S RESPONSE TO BERKELEY, 1742
274 10.2.3 EULER AND INFINITELY SMALL QUANTITIES, 1755 276 10.2.4
LAGRANGE'S ATTEMPT TO AVOID THE INFINITELY SMALL, 1797 281 11 LIMITS AND
CONTINUITY 291 11.1 LIMITS 291 11.1.1 WALLIS'S'LESS THAN ANY
ASSIGNABLE', 1656 291 11.1.2 NEWTON'S FIRST AND LAST RATIOS, 1687 292 1
1.1.3 MACLAURIN'S DEFINITION OF A LIMIT, 1742 295 11.1.4 D'ALEMBERT'S
DEFINITION OF A LIMIT, 1765 297 11.1.5 CAUCHY'S DEFINITION OF A LIMIT,
1821 298 11.2 CONTINUITY 301 11.2.1 WALLIS AND SMOOTH CURVES, 1656 301
11.2.2 EULER'S DEFINITION OF CONTINUITY, 1748 302 CONTENTS 11.2.3
LAGRANGE'S ARBITRARILY SMALL INTERVALS, 1797 304 11.2.4 BOLZANO'S
DEFINITION OF CONTINUITY, 1817 306 11.2.5 CAUCHY'S DEFINITION OF
CONTINUITY, 1821 312 11.2.6 CAUCHV AND THE INTERMEDIATE VALUE THEOREM,
1821 316 12 SOLVING EQUATIONS 325 12.1 CUBICS AND QUARTICS 325 12.1.1
CARDANO AND THE ARS MAGNA, 1545 325 12.2 FROM CARDANO TO LAGRANGE 330
12.2.1 HARRIOT AND THE STRUCTURE OF POLYNOMIALS, C. 1600 331 12.2.2
HUDDE'S RULE, 1657 333 12.2.3 TSCHIRNHAUS TRANSFORMATIONS, 1683 335
12.2.4 LAGRANGE AND REDUCED EQUATIONS, 1771 339 12.3 HIGHER DEGREE
EQUATIONS 348 12.3.1 LAGRANGE'S THEOREM, 1771 348 12.3.2 AFTERMATH: THE
UNSOLVABILITY OF QUINTICS 350 13 GROUPS, FIELDS, IDEALS, AND RINGS 353
13.1 GROUPS 353 13.1.1 CAUCHY'S EARLY WORK ON PERMUTATIONS, 1815 354
13.1.2 THE PREMIER MEMOIRE OF GALOIS, 1831 361 13.1.3 CAUCHY'S RETURN TO
PERMUTATIONS, 1845 366 13.1.4 CAYLEY'S CONTRIBUTION TO GROUP THEORY,
1854 374 13.2 FIELDS, IDEALS, AND RINGS 378 13.2.1 'GALOIS FIELDS', 1830
378 13.2.2 KUMMERAND IDEA! NUMBERS, 1847 381 13.2.3 DEDEKINDON FIELDS
OFFINITE DEGREE, 1877 386 13.2.4 DEDEKIND'S DEFINITION OF IDEALS, 1877
391 14 DERIVATIVES AND INTEGRALS 397 14.1 DERIVATIVES 397 14.1.1
LANDEN'S ALGEBRAIC PRINCIPLE, 1758 397 14.1.2 LAGRANGE'S DERIVED
FUNCTIONS, 1797 401 14.1.3 AMPERE'S THEORY OF DERIVED FUNCTIONS, 1806
406 14.1.4 CAUCHY ON DERIVED FUNCTIONS, 1823 415 14.1.5 THE MEAN VALUE
THEOREM, ANDE,5 NOTATION, 1823 421 14.2 INTEGRATION OF REAL-VALUED
FUNCTIONS 425 14.2.1 EULER'S INLRODUCTION TO INTEGRATION, 1768 425
14.2.2 CAUCHY'S DEFINITE INTEGRAL, 1823 434 14.2.3 CAUCHY AND THE
FUNDAMENTAL THEOREM OF CALCULUS, 1823 444 14.2.4 RIEMANN INTEGRATION,
1854 446 14.2.5 LEBESGUEINTEGRATION, 1902 453 15 COMPLEX ANALYSIS 459
15.1 THE COMPLEX PLANE 459 15.1.1 WALLIS'S REPRESENTATIONS, 1685 459
15.1.2 ARGAND'S REPRESENTATION, 1806 462 CONTENTS XI 15.2 INTEGRATION OF
COMPLEX FUNCTIONS 468 15.2.1 JOHANN BERNOULLI'S TRANSFORMATIONS, 1702
468 15.2.2 CAUCHYON DEFINITE COMPLEX INTEGRALS, 1814 472 15.2.3 THE
CALCULUS OF RESIDUES, 1826 480 15.2.4 CAUCHY'S INTEGRAL FORMULAS, 1831
486 15.2.5 THE CAUCHY-RIEMANN EQUATIONS, 1851 491 16 CONVERGENCE AND
COMPLETENESS 495 16.1 CAUCHY SEQUENCES 495 16.1.1 BOLZANO AND'CAUCHY
SEQUENCES', 1817 495 16.1.2 CAUCHY'S TREATMENT OF SEQUENCES AND SERIES,
1821 500 16.1.3 ABEL'SPROOF OF THEBINOMIAL THEOREM, 1826 515 16.2
UNIFORM CONVERGENCE 524 16.2.1 CAUCHY'S ERRONEOUS THEOREM, 1821 524
16.2.2 STOKES AND 'INFINITELY SLOW' CONVERGENCE, 1847 527 16.3
COMPLETENESS OF THE REAL NUMBERS 529 16.3.1 BOLZANO AND GREATEST LOWER
BOUNDS, 1817 529 16.3.2 DEDEKIND'S DEHNITION OF REAL NUMBERS, 1858 534
16.3.3 CANTOR'S DEFINITION OF REAL NUMBERS, 1872 542 17 LINEAR ALGEBRA
547 17.1 LINEAR EQUATIONS AND DETERMINANTS 548 17.1.1 AN EARLY EUROPEAN
EXAMPLE, 1559 548 17.1.2 RULES FOR SOLVING THREE OR FOUR EQUATIONS, 1748
552 17.1.3 VANDERMONDE'S ELIMINATION THEORY, 1772 554 17.1.4 CAUCHY'S
DEFINITION OF DETERMINANT, 1815 563 17.2 EIGENVALUE PROBLEMS 570 17.2.1
EULER'S QUADRATIC SURFACES, 1748 570 17.2.2 LAPLACE'S SYMMETRIE SYSTEM,
1787 573 17.2.3 CAUCHY'S THEOREMS OF 1829 579 17.3 MATRICES 586 17.3.1
GAUSS AND LINEAR TRANSFORMATIONS, 1801 586 17.3.2 CAYLEY'S THEORY OF
MATRICES, 1858 588 17.3.3 FROBENIUS AND BILINEAR FORMS, 1878 592 17.4
VECTORS AND VECTOR SPACES 598 1 7.4. 1 GRASSMANN AND VECTOR SPACES, 1862
598 18 FOUNDATIONS 605 18.1 FOUNDATIONS OF GEOMETRY 605 18.1.1 HILBERT'S
AXIOMATIZATION OF GEOMETRY, 1899 607 18.2 FOUNDATIONS OFARITHMETIC 613
18.2.1 CANTOR'S COUNTABILITY PROOFS, 1874 614 18.2.2 DEDEKIND'S
DEFINITION OF NATURAL NUMBERS, 1888 622 PEOPLE, INSTITUTIONS, AND
JOURNALS 627 BIBLIOGRAPHY 635 INDEX 649 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Stedall, Jacqueline A. |
author_GND | (DE-588)1019195649 |
author_facet | Stedall, Jacqueline A. |
author_role | aut |
author_sort | Stedall, Jacqueline A. |
author_variant | j a s ja jas |
building | Verbundindex |
bvnumber | BV035087584 |
callnumber-first | Q - Science |
callnumber-label | QA21 |
callnumber-raw | QA21 |
callnumber-search | QA21 |
callnumber-sort | QA 221 |
callnumber-subject | QA - Mathematics |
classification_rvk | SG 553 |
ctrlnum | (OCoLC)248980897 (DE-599)BVBBV035087584 |
dewey-full | 510.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.9 |
dewey-search | 510.9 |
dewey-sort | 3510.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 1. publ. |
era | Geschichte 1800 v. Chr.-1902 gnd |
era_facet | Geschichte 1800 v. Chr.-1902 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01743nam a2200481 c 4500</leader><controlfield tag="001">BV035087584</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121112 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081007s2008 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA759542</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199226900</subfield><subfield code="9">978-0-19-922690-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248980897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035087584</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.9</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 553</subfield><subfield code="0">(DE-625)143061:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stedall, Jacqueline A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1019195649</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics emerging</subfield><subfield code="b">a sourcebook 1540 - 1900</subfield><subfield code="c">Jacqueline Stedall</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 653 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [636]-648) and index</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1800 v. Chr.-1902</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / History</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / Sources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="x">History</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4135952-5</subfield><subfield code="a">Quelle</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1800 v. Chr.-1902</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016755748&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016755748</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">509</subfield><subfield code="e">22/bsb</subfield></datafield></record></collection> |
genre | (DE-588)4135952-5 Quelle gnd-content |
genre_facet | Quelle |
id | DE-604.BV035087584 |
illustrated | Illustrated |
index_date | 2024-07-02T22:09:27Z |
indexdate | 2024-07-09T21:21:54Z |
institution | BVB |
isbn | 9780199226900 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016755748 |
oclc_num | 248980897 |
open_access_boolean | |
owner | DE-12 DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-12 DE-19 DE-BY-UBM DE-11 |
physical | xxi, 653 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Stedall, Jacqueline A. Verfasser (DE-588)1019195649 aut Mathematics emerging a sourcebook 1540 - 1900 Jacqueline Stedall 1. publ. Oxford [u.a.] Oxford Univ. Press 2008 xxi, 653 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references (p. [636]-648) and index Geschichte 1800 v. Chr.-1902 gnd rswk-swf Mathematics / History Mathematics / Sources Geschichte Mathematik Mathematics History Mathematik (DE-588)4037944-9 gnd rswk-swf (DE-588)4135952-5 Quelle gnd-content Mathematik (DE-588)4037944-9 s Geschichte 1800 v. Chr.-1902 z b DE-604 OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016755748&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Stedall, Jacqueline A. Mathematics emerging a sourcebook 1540 - 1900 Mathematics / History Mathematics / Sources Geschichte Mathematik Mathematics History Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4135952-5 |
title | Mathematics emerging a sourcebook 1540 - 1900 |
title_auth | Mathematics emerging a sourcebook 1540 - 1900 |
title_exact_search | Mathematics emerging a sourcebook 1540 - 1900 |
title_exact_search_txtP | Mathematics emerging a sourcebook 1540 - 1900 |
title_full | Mathematics emerging a sourcebook 1540 - 1900 Jacqueline Stedall |
title_fullStr | Mathematics emerging a sourcebook 1540 - 1900 Jacqueline Stedall |
title_full_unstemmed | Mathematics emerging a sourcebook 1540 - 1900 Jacqueline Stedall |
title_short | Mathematics emerging |
title_sort | mathematics emerging a sourcebook 1540 1900 |
title_sub | a sourcebook 1540 - 1900 |
topic | Mathematics / History Mathematics / Sources Geschichte Mathematik Mathematics History Mathematik (DE-588)4037944-9 gnd |
topic_facet | Mathematics / History Mathematics / Sources Geschichte Mathematik Mathematics History Quelle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016755748&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stedalljacquelinea mathematicsemergingasourcebook15401900 |