Universal algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Ausgabe: | 2. ed. with updates |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 586 S. |
ISBN: | 9780387774862 9780387774879 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035085810 | ||
003 | DE-604 | ||
005 | 20081103 | ||
007 | t | ||
008 | 081007s2008 |||| 00||| eng d | ||
020 | |a 9780387774862 |9 978-0-387-77486-2 | ||
020 | |a 9780387774879 |9 978-0-387-77487-9 | ||
035 | |a (OCoLC)227032600 | ||
035 | |a (DE-599)DNB987258680 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-355 |a DE-11 | ||
050 | 0 | |a QA251 | |
082 | 0 | |a 512 |2 22 | |
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Grätzer, George |d 1936- |e Verfasser |0 (DE-588)10907873X |4 aut | |
245 | 1 | 0 | |a Universal algebra |c George Grätzer |
250 | |a 2. ed. with updates | ||
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XVIII, 586 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Algebra, Universal | |
650 | 0 | 7 | |a Universelle Algebra |0 (DE-588)4061777-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Universelle Algebra |0 (DE-588)4061777-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016753993&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016753993 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138040419942400 |
---|---|
adam_text | CONTENTS
PAGE
Table of Notation
xvii
CHAPTER
0.
BASIC CONCEPTS
§1.
Sets and Relations
1
§2.
Mappings and Operations
3
§3.
Algebras and Relational Systems
7
§4.
Partially Ordered Sets
10
§5.
Structure of Mappings and Equivalence Relations
17
§6.
Ideals and Semilattices
19
Exercises
27
CHAPTER
1.
SUBALGEBBAS AND HOMOMOBPHISMS
§7.
Basic Concepts
33
§8.
Polynomial Symbols and Polynomial Algebras
37
§9.
Structure of Subalgebras
45
§10.
Structure of Congruence Relations
50
§11.
The Homomorphism Theorem and Some Isomorphism
Theorems
57
§12.
Homomorphisms
62
Exercises
70
Probhms
76
CHAPTEB
2.
FABTIAL ALGEBRAS
§13.
Basic Notions
79
§14.
Polynomial Symbols over a Partial Algebra
84
§15.
Extension of Congruence Relations
91
§16.
Subalgebras and Homomorphisms of Partial Algebras
96
§17.
The Characterization Theorem of Congruence Lattices:
Preliminary Considerations
100
§18.
The Characterization Theorem of Congruence Lattices
109
Exercises
113
Probhms
116
CONTENTS
CHAPTER
3.
CONSTRUCTIONS
OF
ALGEBRAS
§19.
Direct Products
118
§20.
Subdireet Products of Algebras
122
§21.
Direct and Inverse Limits of Algebras
128
§22.
Products Associated with the Direct Product
139
§23.
Operators on Classes of Algebras
152
Exercises
153
Problems
160
CHAPTER
4.
FREE ALGEBRAS
§24.
Definition and Basic Properties
162
§25.
Construction of Free Algebras
166
§26.
Identities and Free Algebras
169
§27.
Equational Completeness and Identities of Finite Algebras
173
§28.
Free Algebras Generated by Partial Algebras
180
§29.
Free Products of Algebras
183
§30.
Word Problem
186
Exercises
189
Problems
194
CHAPTER
5.
INDEPENDENCE
§31.
Independence and Bases
196
§32.
Independence in Special Classes of Algebras
201
§33.
Some Invariants of Finite Algebras
205
§34.
The System of Independent Sets of an Algebra
209
§35.
Generalizations of the Notion of Independence
212
Exercises
216
Problems
222
CHAPTER
6.
ELEMENTS
OB
MODEL THEORY
§36.
Structures and the First Order Logic
223
§37.
Satisfiability and the Case of Boolean Set Algebras
227
P8.
Elementary Equivalence and Elementary Extensions
234
§39.
Prime Products
239
§40.
Prime Powers
246
§41.
Two Algebraic Characterizations of Elementary Equivalence
248
§42.
Elementary and Axiomatic Classes
255
Exercises
262
Problems
269
CHAPTER
7.
ELEMENTARY PROPERTIES OF ALGEBRAIC CONSTRUCTIONS
§43.
Extensions and Substructures
270
§44.
Generalized Atomic Sets of Formulas
275
CONTENTS
то
§45.
Chain Unions and Homomorphisms
278
§46.
Direct Products
283
§47.
Direct Products {Continued)
287
§48.
Subdirect
Products
293
Exercises
295
Problems
299
CHAPTER
8.
FREE
Σ
-STRUCTURES
§49.
Σ
-Inverses
and
Σ
-Substruetures
300
§50.
Σ
-Homomorphisms
and Slender
Σ
-Substructures
305
§51.
Free
Σ
-Structures
and the Uniqueness Theorem
307
§52.
On the Family of Free
Σ
-Structures
311
§53.
On the Existence of Free
Σ
-Structures
315
§54.
Strong Free
Σ
-Structures
and the Inverse Preserving Property
322
Exercises
326
Problems
328
APPENDIX
1.
GENERAL SURVEY
§55.
A Survey by Sections
331
§56.
Related Structures
335
§57.
Miscellany
338
APPENDIX
2.
THE PROBLEMS
§58.
Solutions and Partial Solutions of
46
Problems
342
APPENDIX
3.
CONGRUENCE VARIETIES
by Bjarni
Jonsson
§59.
Algebras and Their Congruence Lattices
348
§60.
Mal eev Classes
351
§61.
Congruence Varieties
360
§62.
Congruence Distributivity and Finite Bases
373
APPENDIX
4.
EQUATIONAL LOGIC
by Walter Taylor
§63.
Equationally Defined Classes
378
§64.
Equational Theories
380
§65.
Equivalent Varieties
381
§66.
Bases and Generic Algebras
383
§67.
Finitely Based Theories
385
§68.
One-Based Theories
387
§69. Irredundant
Bases
389
§70.
The Lattice of Equational Theories
389
§71.
Some Further Invariants of the Equivalence Class of a Variety
392
§72.
Mal eev Conditions and Congruence Identities
398
mi CONTENTS
APPENDIX
б.
PRIMALITY:
THE INFLUENCE OF BOOLEAN ALGEBBAS
IN UNIVERSAL ALGEBBA
by Robert W. Quackenbush
§73.
Introduction
401
§74.
Primal Algebras
402
§75.
Quasi-Primal Algebras
403
§76.
Arithmetical Algebras
405
§77.
Para-Primal Algebras
406
§78.
Dual-Discriminator Algebras
408
§79.
Functional Completeness
409
§80.
Representation Theory
410
§81.
Congruences
411
§82.
Injeetivity and Projectivity
412
§83.
Further References and Comments
416
APPENDIX
6.
EQUATIONAL COMPACTNESS
by
Günter
H.
Wenzel
§84.
Equational and Atomic Compactness—First Examples
417
§85.
Related Compactness Concepts and Characterizations
420
§86.
Connections with A
425
§87.
The Mycielski Question: Chromatic Numbers and Topology
428
§88.
Minimum Compactness
432
§89.
Compactification of Algebras
435
§90.
Application to Equational Classes of Algebras
441
§91.
Concluding Remarks
444
§92.
Some Problems
446
APPENDIX
7.
THE INDEPENDENCE PROOF
by
G·.
Grätzer
and W.
A. Lampe
§93.
Statement of the Main Results
448
§94.
Preliminaries
449
§95.
Cls-Expansions and Free Extensions
451
§96.
Cls-Expansions with Two Orbits
457
§97.
Three More Constructions
469
§98.
Proof of the Main Theorem 47I
Bibliography
475
Adăitional
Bibliography
595
Index
665
Epilogue 583
|
adam_txt |
CONTENTS
PAGE
Table of Notation
xvii
CHAPTER
0.
BASIC CONCEPTS
§1.
Sets and Relations
1
§2.
Mappings and Operations
3
§3.
Algebras and Relational Systems
7
§4.
Partially Ordered Sets
10
§5.
Structure of Mappings and Equivalence Relations
17
§6.
Ideals and Semilattices
19
Exercises
27
CHAPTER
1.
SUBALGEBBAS AND HOMOMOBPHISMS
§7.
Basic Concepts
33
§8.
Polynomial Symbols and Polynomial Algebras
37
§9.
Structure of Subalgebras
45
§10.
Structure of Congruence Relations
50
§11.
The Homomorphism Theorem and Some Isomorphism
Theorems
57
§12.
Homomorphisms
62
Exercises
70
Probhms
76
CHAPTEB
2.
FABTIAL ALGEBRAS
§13.
Basic Notions
79
§14.
Polynomial Symbols over a Partial Algebra
84
§15.
Extension of Congruence Relations
91
§16.
Subalgebras and Homomorphisms of Partial Algebras
96
§17.
The Characterization Theorem of Congruence Lattices:
Preliminary Considerations
100
§18.
The Characterization Theorem of Congruence Lattices
109
Exercises
113
Probhms
116
CONTENTS
CHAPTER
3.
CONSTRUCTIONS
OF
ALGEBRAS
§19.
Direct Products
118
§20.
Subdireet Products of Algebras
122
§21.
Direct and Inverse Limits of Algebras
128
§22.
Products Associated with the Direct Product
139
§23.
Operators on Classes of Algebras
152
Exercises
153
Problems
160
CHAPTER
4.
FREE ALGEBRAS
§24.
Definition and Basic Properties
162
§25.
Construction of Free Algebras
166
§26.
Identities and Free Algebras
169
§27.
Equational Completeness and Identities of Finite Algebras
173
§28.
Free Algebras Generated by Partial Algebras
180
§29.
Free Products of Algebras
183
§30.
Word Problem
186
Exercises
189
Problems
194
CHAPTER
5.
INDEPENDENCE
§31.
Independence and Bases
196
§32.
Independence in Special Classes of Algebras
201
§33.
Some Invariants of Finite Algebras
205
§34.
The System of Independent Sets of an Algebra
209
§35.
Generalizations of the Notion of Independence
212
Exercises
216
Problems
222
CHAPTER
6.
ELEMENTS
OB'
MODEL THEORY
§36.
Structures and the First Order Logic
223
§37.
Satisfiability and the Case of Boolean Set Algebras
227
P8.
Elementary Equivalence and Elementary Extensions
234
§39.
Prime Products
239
§40.
Prime Powers
246
§41.
Two Algebraic Characterizations of Elementary Equivalence
248
§42.
Elementary and Axiomatic Classes
255
Exercises
262
Problems
269
CHAPTER
7.
ELEMENTARY PROPERTIES OF ALGEBRAIC CONSTRUCTIONS
§43.
Extensions and Substructures
270
§44.
Generalized Atomic Sets of Formulas
275
CONTENTS
то
§45.
Chain Unions and Homomorphisms
278
§46.
Direct Products
283
§47.
Direct Products {Continued)
287
§48.
Subdirect
Products
293
Exercises
295
Problems
299
CHAPTER
8.
FREE
Σ
-STRUCTURES
§49.
Σ
-Inverses
and
Σ
-Substruetures
300
§50.
Σ
-Homomorphisms
and Slender
Σ
-Substructures
305
§51.
Free
Σ
-Structures
and the Uniqueness Theorem
307
§52.
On the Family of Free
Σ
-Structures
311
§53.
On the Existence of Free
Σ
-Structures
315
§54.
Strong Free
Σ
-Structures
and the Inverse Preserving Property
322
Exercises
326
Problems
328
APPENDIX
1.
GENERAL SURVEY
§55.
A Survey by Sections
331
§56.
Related Structures
335
§57.
Miscellany
338
APPENDIX
2.
THE PROBLEMS
§58.
Solutions and Partial Solutions of
46
Problems
342
APPENDIX
3.
CONGRUENCE VARIETIES
by Bjarni
Jonsson
§59.
Algebras and Their Congruence Lattices
348
§60.
Mal'eev Classes
351
§61.
Congruence Varieties
360
§62.
Congruence Distributivity and Finite Bases
373
APPENDIX
4.
EQUATIONAL LOGIC
by Walter Taylor
§63.
Equationally Defined Classes
378
§64.
Equational Theories
380
§65.
Equivalent Varieties
381
§66.
Bases and Generic Algebras
383
§67.
Finitely Based Theories
385
§68.
One-Based Theories
387
§69. Irredundant
Bases
389
§70.
The Lattice of Equational Theories
389
§71.
Some Further Invariants of the Equivalence Class of a Variety
392
§72.
Mal'eev Conditions and Congruence Identities
398
mi CONTENTS
APPENDIX
б.
PRIMALITY:
THE INFLUENCE OF BOOLEAN ALGEBBAS
IN UNIVERSAL ALGEBBA
by Robert W. Quackenbush
§73.
Introduction
401
§74.
Primal Algebras
402
§75.
Quasi-Primal Algebras
403
§76.
Arithmetical Algebras
405
§77.
Para-Primal Algebras
406
§78.
Dual-Discriminator Algebras
408
§79.
Functional Completeness
409
§80.
Representation Theory
410
§81.
Congruences
411
§82.
Injeetivity and Projectivity
412
§83.
Further References and Comments
416
APPENDIX
6.
EQUATIONAL COMPACTNESS
by
Günter
H.
Wenzel
§84.
Equational and Atomic Compactness—First Examples
417
§85.
Related Compactness Concepts and Characterizations
420
§86.
Connections with \A\
425
§87.
The Mycielski Question: Chromatic Numbers and Topology
428
§88.
Minimum Compactness
432
§89.
Compactification of Algebras
435
§90.
Application to Equational Classes of Algebras
441
§91.
Concluding Remarks
444
§92.
Some Problems
446
APPENDIX
7.
THE INDEPENDENCE PROOF
by
G·.
Grätzer
and W.
A. Lampe
§93.
Statement of the Main Results
448
§94.
Preliminaries
449
§95.
Cls-Expansions and Free Extensions
451
§96.
Cls-Expansions with Two Orbits
457
§97.
Three More Constructions
469
§98.
Proof of the Main Theorem 47I
Bibliography
475
Adăitional
Bibliography
595
Index
665
Epilogue 583 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Grätzer, George 1936- |
author_GND | (DE-588)10907873X |
author_facet | Grätzer, George 1936- |
author_role | aut |
author_sort | Grätzer, George 1936- |
author_variant | g g gg |
building | Verbundindex |
bvnumber | BV035085810 |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251 |
callnumber-search | QA251 |
callnumber-sort | QA 3251 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 200 SK 230 |
ctrlnum | (OCoLC)227032600 (DE-599)DNB987258680 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. with updates |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01596nam a2200433zc 4500</leader><controlfield tag="001">BV035085810</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081103 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081007s2008 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387774862</subfield><subfield code="9">978-0-387-77486-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387774879</subfield><subfield code="9">978-0-387-77487-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227032600</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987258680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grätzer, George</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)10907873X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Universal algebra</subfield><subfield code="c">George Grätzer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed. with updates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 586 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Universal</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016753993&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016753993</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV035085810 |
illustrated | Not Illustrated |
index_date | 2024-07-02T22:08:52Z |
indexdate | 2024-07-09T21:21:52Z |
institution | BVB |
isbn | 9780387774862 9780387774879 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016753993 |
oclc_num | 227032600 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-11 |
physical | XVIII, 586 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Grätzer, George 1936- Verfasser (DE-588)10907873X aut Universal algebra George Grätzer 2. ed. with updates New York, NY Springer 2008 XVIII, 586 S. txt rdacontent n rdamedia nc rdacarrier Algebra, Universal Universelle Algebra (DE-588)4061777-4 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Universelle Algebra (DE-588)4061777-4 s DE-604 Algebra (DE-588)4001156-2 s 1\p DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016753993&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Grätzer, George 1936- Universal algebra Algebra, Universal Universelle Algebra (DE-588)4061777-4 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4061777-4 (DE-588)4001156-2 |
title | Universal algebra |
title_auth | Universal algebra |
title_exact_search | Universal algebra |
title_exact_search_txtP | Universal algebra |
title_full | Universal algebra George Grätzer |
title_fullStr | Universal algebra George Grätzer |
title_full_unstemmed | Universal algebra George Grätzer |
title_short | Universal algebra |
title_sort | universal algebra |
topic | Algebra, Universal Universelle Algebra (DE-588)4061777-4 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Algebra, Universal Universelle Algebra Algebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016753993&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gratzergeorge universalalgebra |