Catalan's conjecture:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Springer
2008
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | IX, 124 S. 10 schw.-w. Fotos 235 mm x 155 mm |
ISBN: | 9781848001848 9781848001855 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035080384 | ||
003 | DE-604 | ||
005 | 20230821 | ||
007 | t | ||
008 | 081001s2008 gw o||| |||| 00||| eng d | ||
015 | |a 08,N05,1194 |2 dnb | ||
016 | 7 | |a 987107631 |2 DE-101 | |
020 | |a 9781848001848 |c Pb. : ca. EUR 40.35 (freier Pr.), ca. sfr 66.00 (freier Pr.) |9 978-1-8480-0184-8 | ||
020 | |a 9781848001855 |9 978-1-8480-0185-5 | ||
024 | 3 | |a 9781848001848 | |
028 | 5 | 2 | |a 12223275 |
035 | |a (OCoLC)225446818 | ||
035 | |a (DE-599)DNB987107631 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-703 |a DE-355 |a DE-188 |a DE-11 |a DE-706 | ||
050 | 0 | |a QA241 | |
082 | 0 | |a 512.72 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Schoof, René |e Verfasser |4 aut | |
245 | 1 | 0 | |a Catalan's conjecture |c René Schoof |
264 | 1 | |a London |b Springer |c 2008 | |
300 | |a IX, 124 S. |b 10 schw.-w. Fotos |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
600 | 1 | 4 | |a Catalan, Eugène Charles <1814-1894> |
600 | 1 | 4 | |a Mihăilescu, Preda |
650 | 4 | |a Number theory | |
650 | 4 | |a Roots, Numerical | |
650 | 0 | 7 | |a Catalan-Vermutung |0 (DE-588)4369060-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Catalan-Vermutung |0 (DE-588)4369060-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016748634&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016748634&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016748634 |
Datensatz im Suchindex
_version_ | 1804138032291381248 |
---|---|
adam_text | Contents
1
Introduction
................................................... 1
2
The Case
q =
2 ............................................... 9
3
The Case
p
= 2 ............................................... 13
4
The
Nontrivial
Solution
......................................... 17
5
Runge s Method
................................................ 21
6
Casseis
theorem
............................................... 33
7
An Obstruction Group
.......................................... 41
8
Small
p
or
q
.................................................... 47
9
The Stickelberger Ideal
......................................... 55
10
The Double Wieferich Criterion
.................................. 65
11
The Minus Argument
........................................... 69
12
The Plus Argument I
........................................... 77
13 Semisimple
Group Rings
........................................ 85
14
The Plus Argument II
........................................... 91
15
The Density Theorem
........................................... 95
16
Thaine s Theorem
..............................................107
Appendix. Euler s Theorem
..........................................117
Index
.............................................................123
Catalan s Conjecture
Eugène
Charles Catalan made his famous conjecture
-
that
8
and
9
are the only two
consecutive perfect powers of natural numbers
-
in
1844
in a letter to the editor of
Crelle s mathematical journal. One hundred and fifty-eight years later,
Preda
Mihăilescu
proved it.
Catalan s Conjecture presents this spectacular result in a way that is accessible to the
advanced undergraduate. The first few sections of the book require little more than a
basic mathematical background and some knowledge of elementary number theory,
while later sections involve Galois theory, algebraic number theory and a small
amount of commutative algebra. The prerequisites, such as the basic facts from the
arithmetic of cyclotomic fields, are all discussed within the text.
The author dissects both
Mihăilescu s
proof and the earlier work it made use of,
taking great care to select streamlined and transparent versions of the arguments and
to keep the text self-contained. Only in the proof of Thaine s theorem is a little class
field theory used; it is hoped that this application will motivate the interested reader
to study the theory further.
Beautifully clear and concise, this book will appeal not only to specialists in number
theory but to anyone interested in seeing the application
of the ideas of algebraic number theory to a famous
mathematical problem.
|
adam_txt |
Contents
1
Introduction
. 1
2
The Case
"q =
2". 9
3
The Case
"p
= 2". 13
4
The
Nontrivial
Solution
. 17
5
Runge's Method
. 21
6
Casseis'
theorem
. 33
7
An Obstruction Group
. 41
8
Small
p
or
q
. 47
9
The Stickelberger Ideal
. 55
10
The Double Wieferich Criterion
. 65
11
The Minus Argument
. 69
12
The Plus Argument I
. 77
13 Semisimple
Group Rings
. 85
14
The Plus Argument II
. 91
15
The Density Theorem
. 95
16
Thaine's Theorem
.107
Appendix. Euler's Theorem
.117
Index
.123
Catalan's Conjecture
Eugène
Charles Catalan made his famous conjecture
-
that
8
and
9
are the only two
consecutive perfect powers of natural numbers
-
in
1844
in a letter to the editor of
Crelle's mathematical journal. One hundred and fifty-eight years later,
Preda
Mihăilescu
proved it.
Catalan's Conjecture presents this spectacular result in a way that is accessible to the
advanced undergraduate. The first few sections of the book require little more than a
basic mathematical background and some knowledge of elementary number theory,
while later sections involve Galois theory, algebraic number theory and a small
amount of commutative algebra. The prerequisites, such as the basic facts from the
arithmetic of cyclotomic fields, are all discussed within the text.
The author dissects both
Mihăilescu's
proof and the earlier work it made use of,
taking great care to select streamlined and transparent versions of the arguments and
to keep the text self-contained. Only in the proof of Thaine's theorem is a little class
field theory used; it is hoped that this application will motivate the interested reader
to study the theory further.
Beautifully clear and concise, this book will appeal not only to specialists in number
theory but to anyone interested in seeing the application
of the ideas of algebraic number theory to a famous
mathematical problem. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schoof, René |
author_facet | Schoof, René |
author_role | aut |
author_sort | Schoof, René |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV035080384 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)225446818 (DE-599)DNB987107631 |
dewey-full | 512.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.72 |
dewey-search | 512.72 |
dewey-sort | 3512.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01954nam a2200493 c 4500</leader><controlfield tag="001">BV035080384</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230821 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081001s2008 gw o||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N05,1194</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987107631</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848001848</subfield><subfield code="c">Pb. : ca. EUR 40.35 (freier Pr.), ca. sfr 66.00 (freier Pr.)</subfield><subfield code="9">978-1-8480-0184-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848001855</subfield><subfield code="9">978-1-8480-0185-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781848001848</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12223275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)225446818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987107631</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schoof, René</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Catalan's conjecture</subfield><subfield code="c">René Schoof</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 124 S.</subfield><subfield code="b">10 schw.-w. Fotos</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Catalan, Eugène Charles <1814-1894></subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Mihăilescu, Preda</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roots, Numerical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Catalan-Vermutung</subfield><subfield code="0">(DE-588)4369060-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Catalan-Vermutung</subfield><subfield code="0">(DE-588)4369060-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016748634&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016748634&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016748634</subfield></datafield></record></collection> |
id | DE-604.BV035080384 |
illustrated | Illustrated |
index_date | 2024-07-02T22:06:53Z |
indexdate | 2024-07-09T21:21:44Z |
institution | BVB |
isbn | 9781848001848 9781848001855 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016748634 |
oclc_num | 225446818 |
open_access_boolean | |
owner | DE-20 DE-703 DE-355 DE-BY-UBR DE-188 DE-11 DE-706 |
owner_facet | DE-20 DE-703 DE-355 DE-BY-UBR DE-188 DE-11 DE-706 |
physical | IX, 124 S. 10 schw.-w. Fotos 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Schoof, René Verfasser aut Catalan's conjecture René Schoof London Springer 2008 IX, 124 S. 10 schw.-w. Fotos 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Universitext Catalan, Eugène Charles <1814-1894> Mihăilescu, Preda Number theory Roots, Numerical Catalan-Vermutung (DE-588)4369060-9 gnd rswk-swf Catalan-Vermutung (DE-588)4369060-9 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016748634&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016748634&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Schoof, René Catalan's conjecture Catalan, Eugène Charles <1814-1894> Mihăilescu, Preda Number theory Roots, Numerical Catalan-Vermutung (DE-588)4369060-9 gnd |
subject_GND | (DE-588)4369060-9 |
title | Catalan's conjecture |
title_auth | Catalan's conjecture |
title_exact_search | Catalan's conjecture |
title_exact_search_txtP | Catalan's conjecture |
title_full | Catalan's conjecture René Schoof |
title_fullStr | Catalan's conjecture René Schoof |
title_full_unstemmed | Catalan's conjecture René Schoof |
title_short | Catalan's conjecture |
title_sort | catalan s conjecture |
topic | Catalan, Eugène Charles <1814-1894> Mihăilescu, Preda Number theory Roots, Numerical Catalan-Vermutung (DE-588)4369060-9 gnd |
topic_facet | Catalan, Eugène Charles <1814-1894> Mihăilescu, Preda Number theory Roots, Numerical Catalan-Vermutung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016748634&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016748634&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schoofrene catalansconjecture |