Graph theory: a problem oriented approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Washington, DC
Math. Assoc. of America
2008
|
Schriftenreihe: | MAA textbooks
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 205 S. graph. Darst. |
ISBN: | 9780883857533 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035079028 | ||
003 | DE-604 | ||
005 | 20081204 | ||
007 | t | ||
008 | 081001s2008 d||| |||| 00||| eng d | ||
020 | |a 9780883857533 |9 978-0-88385-753-3 | ||
035 | |a (OCoLC)254670196 | ||
035 | |a (DE-599)BVBBV035079028 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-20 |a DE-824 | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Marcus, Daniel A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Graph theory |b a problem oriented approach |c Daniel A. Marcus |
264 | 1 | |a Washington, DC |b Math. Assoc. of America |c 2008 | |
300 | |a XVI, 205 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a MAA textbooks | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016747303&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016747303 |
Datensatz im Suchindex
_version_ | 1804138030483636224 |
---|---|
adam_text | Contents
Preface
ix
Introduction:
Problems
of Graph Theory
. 1
Path Problems
.................................. 1
Coloring Problems
................................ 2
Isomorphic Graphs
................................ 4
Planar Graphs
................................... 4
DisjointPaths
................................... 5
Shortest Paths
................................... 6
...
and More
.................................... 7
A Basic Concepts
9
Equivalent Graphs
................................ 9
Multigraphs
.................................... 10
Directed Graphs and Mixed Graphs
....................... 11
Complete Graphs
................................. 11
Cycle Graphs
................................... 11
Paths in a Graph
................................. 11
Open and Closed Paths; Cycles
......................... 12
Subgraphs
..................................... 13
The Complement of a Graph
........................... 13
Degrees of Vertices
................................ 13
The Degree Sequence of a Graph
......................... 14
Regular Graphs
.................................. 15
Connected and Disconnected Graphs
...................... 15
Components of a Graph
............................. 15
More Problems
.................................. 16
В
Isomorphic Graphs
21
More Problems
................................... 23
xiii
XIV
Graph Theory
С
Bipartite Graphs 25
Complete Bipartite Graphs
............................ 26
Bipartite Graphs and Matrices
.......................... 26
Cycles in a Bipartite Graph
............................ 27
Cycle Theorem for Bipartite Graphs
.......................
27
Proof of the Cycle Theorem
........................... 28
More Problems
.................................. 29
D
Trees and Forests 31
Pruning a Tree
.................................. 32
Directed Trees
.................................. 33
Spanning Trees
.................................. 34
Counting Spanning Trees
............................. 34
Codewords for Trees: Prufer s Method
...................... 35
More Problems
.................................. 36
E
Spanning Tree Algorithms
41
Constructing Spanning Trees
........................... 41
Weighted Graphs
................................. 41
Minimal Spanning Trees
............................. 42
Prim s Algorithm
................................. 42
Tables for Prim s Algorithm
........................... 43
The Reduction Algorithm
............................ 43
Spanning Trees and Shortest Paths
........................ 44
Minimal Paths in a Weighted Graph
....................... 45
Minimal Path Algorithm, first attempt
..................... . 45
Minimal Path Algorithm, revised
......................... 46
Tables for
Dijkstra s
Algorithm
......................... 46
Minimal Paths in a Directed Graph
....................... 48
Negative Weights
................................. 48
More Problems
.................................. 51
F
Euler
Paths
57
The
Königsberg
Bridge Problem
......................... 57
Euler
Paths in Directed Graphs and Directed Multigraphs
............ 59
Application of
Euler
Paths: State diagrams,
DeBruijn sequences, and rotating wheels
................. 60
More Problems
.................................. 61
G
Hamilton Paths and Cycles
65
Some Negative Tests
............................... 65
Positive Tests for Hamilton Cycles
........................ 67
Some Proofs
................................... 70
More Problems
.................................. 73
H
Planar Graphs
77
Regions Formed by a Plane Diagram
...................... 78
Proof that K5 is Non-Planar, Using Euler s Formula
.............. 80
Contents xv
Non-Planar Graphs and Kuratowski s Theorem
................. 81
More Problems
. . . ,.............................. 83
I Independence and Covering
85
The Independence Numbers of a Graph
..................... 85
A Graph Game
.................................. 88
Covering Sets and Covering Numbers
...................... 89
More Problems
.................................. 91
J
Connections and Obstructions
95
Internally Disjoint Paths
............................. 95
Edge-Disjoint Paths
............................... 95
Path Connection Numbers
............................ 96
Blocking Sets
................................... 96
^-Connected Graphs
............................... 98
Vertex Cut Sets and Vertex Cut Numbers
.................... 99
More Problems
.................................. 100
К
Vertex Coloring
103
The Vertex Coloring Number of a Graph
.................... 103
Vertex Coloring Theorems
............................ 104
Map Coloring
................................... 110
More Problems
..................................
Ill
L
Edge Coloring
119
The Edge Coloring Number of a Graph
..................... 119
Edge Coloring of Complete Graphs
....................... 120
Edge Coloring of Bipartite Graphs
........................ 122
Edge Color Switch
................................ 122
Proof of Edge Coloring Theorem
#3....................... 123
Application of Edge Coloring: the Scheduling Problem
............. 124
More Problems
.................................. 124
M
Matching Theory for Bipartite Graphs
131
The
Max/Min
Principle
.............................. 132
Proof of the
König-Egervary
Theorem
..................... 133
The Colored Digraph Construction
........................ 133
Matching Extension Algorithm
......................... 135
Proof of the Colored Digraph Theorem
..................... 135
Matrix Interpretation of the
König-Egervary
Theorem
............. 136
Hall s Theorem and Its Consequences
...................... 138
More Problems
.................................. 139
N
Applications of Matching Theory
143
Sets and Representatives
............................. 143
Latin Squares
................................... 144
Permutation Matrices
............................... 145
xvi
Graph Theory
The Optimal Assignment Problem
........................ 146
More Problems
.................................. 149
О
Cycle-Free Digraphs
153
Chains and Antichains
.............................. 153
Chain Decompositions
.............................. 154
Proof of Dilworth s Theorem
........................... 156
More Problems
.................................. 158
Ρ
Network Flow Theory
161
Flows in a Network
................................ 161
Cuts and Capacities
................................ 169
More Problems
.................................. 172
Q
Flow Problems with Lower Bounds
175
The Supply and Demand Problem
........................ 175
More Problems
.................................. 184
Answers to Selected Problems
187
Index
201
About the Author
205
|
adam_txt |
Contents
Preface
ix
Introduction:
Problems
of Graph Theory
. 1
Path Problems
. 1
Coloring Problems
. 2
Isomorphic Graphs
. 4
Planar Graphs
. 4
DisjointPaths
. 5
Shortest Paths
. 6
.
and More
. 7
A Basic Concepts
9
Equivalent Graphs
. 9
Multigraphs
. 10
Directed Graphs and Mixed Graphs
. 11
Complete Graphs
. 11
Cycle Graphs
. 11
Paths in a Graph
. 11
Open and Closed Paths; Cycles
. 12
Subgraphs
. 13
The Complement of a Graph
. 13
Degrees of Vertices
. 13
The Degree Sequence of a Graph
. 14
Regular Graphs
. 15
Connected and Disconnected Graphs
. 15
Components of a Graph
. 15
More Problems
. 16
В
Isomorphic Graphs
21
More Problems
. 23
xiii
XIV
Graph Theory
С
Bipartite Graphs 25
Complete Bipartite Graphs
. 26
Bipartite Graphs and Matrices
. 26
Cycles in a Bipartite Graph
. 27
Cycle Theorem for Bipartite Graphs
.
27
Proof of the Cycle Theorem
. 28
More Problems
. 29
D
Trees and Forests 31
Pruning a Tree
. 32
Directed Trees
. 33
Spanning Trees
. 34
Counting Spanning Trees
. 34
Codewords for Trees: Prufer's Method
. 35
More Problems
. 36
E
Spanning Tree Algorithms
41
Constructing Spanning Trees
. 41
Weighted Graphs
. 41
Minimal Spanning Trees
. 42
Prim's Algorithm
. 42
Tables for Prim's Algorithm
. 43
The Reduction Algorithm
. 43
Spanning Trees and Shortest Paths
. 44
Minimal Paths in a Weighted Graph
. 45
Minimal Path Algorithm, first attempt
. . 45
Minimal Path Algorithm, revised
. 46
Tables for
Dijkstra's
Algorithm
. 46
Minimal Paths in a Directed Graph
. 48
Negative Weights
. 48
More Problems
. 51
F
Euler
Paths
57
The
Königsberg
Bridge Problem
. 57
Euler
Paths in Directed Graphs and Directed Multigraphs
. 59
Application of
Euler
Paths: State diagrams,
DeBruijn sequences, and rotating wheels
. 60
More Problems
. 61
G
Hamilton Paths and Cycles
65
Some Negative Tests
. 65
Positive Tests for Hamilton Cycles
. 67
Some Proofs
. 70
More Problems
. 73
H
Planar Graphs
77
Regions Formed by a Plane Diagram
. 78
Proof that K5 is Non-Planar, Using Euler's Formula
. 80
Contents xv
Non-Planar Graphs and Kuratowski's Theorem
. 81
More Problems
. . . ,. 83
I Independence and Covering
85
The Independence Numbers of a Graph
. 85
A Graph Game
. 88
Covering Sets and Covering Numbers
. 89
More Problems
. 91
J
Connections and Obstructions
95
Internally Disjoint Paths
. 95
Edge-Disjoint Paths
. 95
Path Connection Numbers
. 96
Blocking Sets
. 96
^-Connected Graphs
. 98
Vertex Cut Sets and Vertex Cut Numbers
. 99
More Problems
. 100
К
Vertex Coloring
103
The Vertex Coloring Number of a Graph
. 103
Vertex Coloring Theorems
. 104
Map Coloring
. 110
More Problems
.
Ill
L
Edge Coloring
119
The Edge Coloring Number of a Graph
. 119
Edge Coloring of Complete Graphs
. 120
Edge Coloring of Bipartite Graphs
. 122
Edge Color Switch
. 122
Proof of Edge Coloring Theorem
#3. 123
Application of Edge Coloring: the Scheduling Problem
. 124
More Problems
. 124
M
Matching Theory for Bipartite Graphs
131
The
Max/Min
Principle
. 132
Proof of the
König-Egervary
Theorem
. 133
The Colored Digraph Construction
. 133
Matching Extension Algorithm
. 135
Proof of the Colored Digraph Theorem
. 135
Matrix Interpretation of the
König-Egervary
Theorem
. 136
Hall's Theorem and Its Consequences
. 138
More Problems
. 139
N
Applications of Matching Theory
143
Sets and Representatives
. 143
Latin Squares
. 144
Permutation Matrices
. 145
xvi
Graph Theory
The Optimal Assignment Problem
. 146
More Problems
. 149
О
Cycle-Free Digraphs
153
Chains and Antichains
. 153
Chain Decompositions
. 154
Proof of Dilworth's Theorem
. 156
More Problems
. 158
Ρ
Network Flow Theory
161
Flows in a Network
. 161
Cuts and Capacities
. 169
More Problems
. 172
Q
Flow Problems with Lower Bounds
175
The Supply and Demand Problem
. 175
More Problems
. 184
Answers to Selected Problems
187
Index
201
About the Author
205 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Marcus, Daniel A. |
author_facet | Marcus, Daniel A. |
author_role | aut |
author_sort | Marcus, Daniel A. |
author_variant | d a m da dam |
building | Verbundindex |
bvnumber | BV035079028 |
classification_rvk | SK 890 |
ctrlnum | (OCoLC)254670196 (DE-599)BVBBV035079028 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01226nam a2200325 c 4500</leader><controlfield tag="001">BV035079028</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081204 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081001s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883857533</subfield><subfield code="9">978-0-88385-753-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254670196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035079028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marcus, Daniel A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph theory</subfield><subfield code="b">a problem oriented approach</subfield><subfield code="c">Daniel A. Marcus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, DC</subfield><subfield code="b">Math. Assoc. of America</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 205 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">MAA textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016747303&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016747303</subfield></datafield></record></collection> |
id | DE-604.BV035079028 |
illustrated | Illustrated |
index_date | 2024-07-02T22:06:29Z |
indexdate | 2024-07-09T21:21:42Z |
institution | BVB |
isbn | 9780883857533 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016747303 |
oclc_num | 254670196 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-824 |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-824 |
physical | XVI, 205 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Math. Assoc. of America |
record_format | marc |
series2 | MAA textbooks |
spelling | Marcus, Daniel A. Verfasser aut Graph theory a problem oriented approach Daniel A. Marcus Washington, DC Math. Assoc. of America 2008 XVI, 205 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier MAA textbooks Graphentheorie (DE-588)4113782-6 gnd rswk-swf Graphentheorie (DE-588)4113782-6 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016747303&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Marcus, Daniel A. Graph theory a problem oriented approach Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4113782-6 |
title | Graph theory a problem oriented approach |
title_auth | Graph theory a problem oriented approach |
title_exact_search | Graph theory a problem oriented approach |
title_exact_search_txtP | Graph theory a problem oriented approach |
title_full | Graph theory a problem oriented approach Daniel A. Marcus |
title_fullStr | Graph theory a problem oriented approach Daniel A. Marcus |
title_full_unstemmed | Graph theory a problem oriented approach Daniel A. Marcus |
title_short | Graph theory |
title_sort | graph theory a problem oriented approach |
title_sub | a problem oriented approach |
topic | Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Graphentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016747303&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT marcusdaniela graphtheoryaproblemorientedapproach |