A course in computational number theory:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
[2008]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 367 S. Ill., graph. Darst. |
ISBN: | 9780470412152 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035076823 | ||
003 | DE-604 | ||
005 | 20090317 | ||
007 | t | ||
008 | 080930s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780470412152 |9 978-0-470-41215-2 | ||
035 | |a (OCoLC)261197757 | ||
035 | |a (DE-599)BVBBV035076823 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 | ||
082 | 0 | |a 512.70285 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a ST 600 |0 (DE-625)143681: |2 rvk | ||
084 | |a MAT 100f |2 stub | ||
100 | 1 | |a Bressoud, David M. |d 1950- |e Verfasser |0 (DE-588)136747221 |4 aut | |
245 | 1 | 0 | |a A course in computational number theory |c David Bressoud ; Stan Wagon |
264 | 1 | |a Hoboken, NJ |b Wiley |c [2008] | |
300 | |a XII, 367 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Number theory |x Data processing | |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wagon, Stan |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016745129&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016745129 |
Datensatz im Suchindex
_version_ | 1804138027305402369 |
---|---|
adam_text | Contents
Preface
v
Notation xi
Chapter
1.
Fundamentals
1
1.0
Introduction
............................................................................................ 1
1.1
A Famous Sequence of Numbers
.......................................................... 2
1.2
The Euclidean Algorithm
........................................................................ 6
The Oldest Algorithm
Reversing the Euclidean Algorithm
The Extended GCD Algorithm
The Fundamental Theorem of Arithmetic
Two Applications
1.3
Modular Arithmetic
................................................................................. 25
1.4
Fast Powers
............................................................................................. 30
A Fast Algorithm for Exponentiation
Powers of Matrices,
Big
-О
Notation
Chapter
2.
Congruences, Equations, and Powers
41
2.0
Introduction
............................................................................................ 41
2.1
Solving Linear Congruences
................................................................... 41
Linear Diophantine Equations in Two Varmbies
Linear Equations in Several Variables
Linear Congruences
The Conductor
An Important Quadratic Congruence
2.2
The Chinese Remainder Theorem
.......................................................... 49
VIU
CONTENTS
2.3
PowerMod Patterns
................................................................................ 55
Fermaťs
Little Theorem
More Patterns in Powers
2.4
Pseudoprimes
......................................................................................... 59
Using the
Pseudoprime Test
Chapter
3.
Euler s
φ
Function
65
3.0
Introduction
............................................................................................ 65
3.1
Euler s
φ
Function
................................................................................... 65
3.2
Perfect Numbers and Their Relatives
.................................................... 72
The Sum of Divisors Function
Perfect Numbers
Amicable, Abundant, and Deficient Numbers
3.3
Euler s Theorem
...................................................................................... 81
3.4
Primitive Roots for Primes
....................................................................... 84
The Order of an Integer
Primes Have Primitive Roots
Repeating Decimals
3.5
Primitive Roots for Composites
.............................................................. 90
3.6
The Universal Exponent
.......................................................................... 93
Universal Exponents
Power Towers
The Form of Carmichael Numbers
Chapter
4.
Prime Numbers
99
4.0
Introduction
............................................................................................ 99
4.1
The Number of Primes
............................................................................ 100
We ll Never Run Out of Primes
The Sieve of Eratosthenes
Chebyshev s Theorem and Bertrand s Postulate
4.2
Prime Testing and Certification
.............................................................. 114
Strong
Pseudoprimes
Industrial-Grade Primes
Prime Certification Via Primitive Roots
An Improvement
Pratt Certificates
4.3
Refinements and Other Directions
......................................................... 131
Other
Pri
ma lity
Tests
Strong Liars Are Scarce
Finding the nth Prime
4.4
A Dozen Prime Mysteries
........................................................................ 141
CONTENTS
ЇХ
Chapter
5.
Some Applications
145
5.0
Introduction
............................................................................................ 145
5.1
Coding Secrets
....................................................................................... 145
Tossing a Coin into a Well
The RSA Cryptosystem
Digital Signatures
5.2
The Yao Millionaire Problem
.................................................................. 155
5.3
Check Digits
............................................................................................ 158
Basic Check Digit Schemes
A Perfect Check Digit Method
Beyond Perfection: Correcting Errors
5.4
Factoring Algorithms
.............................................................................. 167
Trial Division
Fermat s Algorithm
Pollard Rho
Pollard p-1
The Current Scene
Chapter
6.
Quadratic Residues
179
6.0
Introduction
............................................................................................ 179
6.1
Pépin sTest
............................................................................................ 179
Quadratic Residues
Pépin s Test
Primes Congruent to
1
(Mod
4)
6.2
Proof of Quadratic Reciprocity
............................................................... 185
Gauss s Lemma
Proof of Quadratic Reciprocity
Jacobi s Extension
An Application to Factoring
6.3
Quadratic Equations
............................................................................... 194
Chapter
7.
Continued Fractions
201
7.0
Introduction
............................................................................................ 201
7.1
Finite Continued Fractions
..................................................................... 202
7.2
Infinite Continued Fractions
................................................................... 207
7.3
Periodic Continued Fractions
................................................................. 213
7.4
Pell s Equation
........................................................................................ 227
7.5
Archimedes and the Sun God s Cattle
................................................... 232
Wurm s Version: Using Rectangular Bulls
The Real Cattle Problem
7.6
Factoring via Continued Fractions
.......................................................... 238
X
CONTENTS
Chapter
8.
Prime Testing with Lucas Sequences
247
8.0
Introduction
............................................................................................ 247
8.1
Divisibility Properties of Lucas Sequences
.............................................. 248
8.2
Prime Tests Using Lucas Sequences
....................................................... 259
Lucas Certification
The Lucas-Lehmer Algorithm Explained
Lucas
Pseudoprimes
Strong Quadratic
Pseudoprimes
Primality Testing s Holy Grail
Chapter
9.
Prime
Imaginarles
and Imaginary Primes
279
9.0
Introduction
............................................................................................ 279
9.1
Sums of Two Squares
............................................................................. 279
Primes
The General Problem
How Many Ways
Number Theory and Salt
9.2
The Gaussian Integers
............................................................................ 302
Complex Number Theory
Gaussian Primes
The Moat Problem
The Gaussian Zoo
9.3
Higher Reciprocity
.................................................................................. 325
Appendix
A. Mathematica
Basics
333
A.0 Introduction
............................................................................................ 333
A.1 Plotting
................................................................................................... 335
A.2 Typesetting
............................................................................................ 338
Sending Files By E-Mail
A.3 Types of Functions
................................................................................. 341
A.4 Lists
........................................................................................................ 343
A.5 Programs
................................................................................................ 345
A.6 Solving Equations
................................................................................... 347
A.7 Symbolic Algebra
................................................................................... 349
Appendix B. Lucas Certificates Exist
351
References
355
Index of Mathomatica Objects
359
Subject Index
363
|
adam_txt |
Contents
Preface
v
Notation xi
Chapter
1.
Fundamentals
1
1.0
Introduction
. 1
1.1
A Famous Sequence of Numbers
. 2
1.2
The Euclidean Algorithm
. 6
The Oldest Algorithm
Reversing the Euclidean Algorithm
The Extended GCD Algorithm
The Fundamental Theorem of Arithmetic
Two Applications
1.3
Modular Arithmetic
. 25
1.4
Fast Powers
. 30
A Fast Algorithm for Exponentiation
Powers of Matrices,
Big
-О
Notation
Chapter
2.
Congruences, Equations, and Powers
41
2.0
Introduction
. 41
2.1
Solving Linear Congruences
. 41
Linear Diophantine Equations in Two Varmbies
Linear Equations in Several Variables
Linear Congruences
The Conductor
An Important Quadratic Congruence
2.2
The Chinese Remainder Theorem
. 49
VIU
CONTENTS
2.3
PowerMod Patterns
. 55
Fermaťs
Little Theorem
More Patterns in Powers
2.4
Pseudoprimes
. 59
Using the
Pseudoprime Test
Chapter
3.
Euler's
φ
Function
65
3.0
Introduction
. 65
3.1
Euler's
φ
Function
. 65
3.2
Perfect Numbers and Their Relatives
. 72
The Sum of Divisors Function
Perfect Numbers
Amicable, Abundant, and Deficient Numbers
3.3
Euler's Theorem
. 81
3.4
Primitive Roots for Primes
. 84
The Order of an Integer
Primes Have Primitive Roots
Repeating Decimals
3.5
Primitive Roots for Composites
. 90
3.6
The Universal Exponent
. 93
Universal Exponents
Power Towers
The Form of Carmichael Numbers
Chapter
4.
Prime Numbers
99
4.0
Introduction
. 99
4.1
The Number of Primes
. 100
We'll Never Run Out of Primes
The Sieve of Eratosthenes
Chebyshev's Theorem and Bertrand's Postulate
4.2
Prime Testing and Certification
. 114
Strong
Pseudoprimes
Industrial-Grade Primes
Prime Certification Via Primitive Roots
An Improvement
Pratt Certificates
4.3
Refinements and Other Directions
. 131
Other
Pri
ma lity
Tests
Strong Liars Are Scarce
Finding the nth Prime
4.4
A Dozen Prime Mysteries
. 141
CONTENTS
ЇХ
Chapter
5.
Some Applications
145
5.0
Introduction
. 145
5.1
Coding Secrets
. 145
Tossing a Coin into a Well
The RSA Cryptosystem
Digital Signatures
5.2
The Yao Millionaire Problem
. 155
5.3
Check Digits
. 158
Basic Check Digit Schemes
A Perfect Check Digit Method
Beyond Perfection: Correcting Errors
5.4
Factoring Algorithms
. 167
Trial Division
Fermat's Algorithm
Pollard Rho
Pollard p-1
The Current Scene
Chapter
6.
Quadratic Residues
179
6.0
Introduction
. 179
6.1
Pépin'sTest
. 179
Quadratic Residues
Pépin's Test
Primes Congruent to
1
(Mod
4)
6.2
Proof of Quadratic Reciprocity
. 185
Gauss's Lemma
Proof of Quadratic Reciprocity
Jacobi's Extension
An Application to Factoring
6.3
Quadratic Equations
. 194
Chapter
7.
Continued Fractions
201
7.0
Introduction
. 201
7.1
Finite Continued Fractions
. 202
7.2
Infinite Continued Fractions
. 207
7.3
Periodic Continued Fractions
. 213
7.4
Pell's Equation
. 227
7.5
Archimedes and the Sun God's Cattle
. 232
Wurm's Version: Using Rectangular Bulls
The Real Cattle Problem
7.6
Factoring via Continued Fractions
. 238
X
CONTENTS
Chapter
8.
Prime Testing with Lucas Sequences
247
8.0
Introduction
. 247
8.1
Divisibility Properties of Lucas Sequences
. 248
8.2
Prime Tests Using Lucas Sequences
. 259
Lucas Certification
The Lucas-Lehmer Algorithm Explained
Lucas
Pseudoprimes
Strong Quadratic
Pseudoprimes
Primality Testing's Holy Grail
Chapter
9.
Prime
Imaginarles
and Imaginary Primes
279
9.0
Introduction
. 279
9.1
Sums of Two Squares
. 279
Primes
The General Problem
How Many Ways
Number Theory and Salt
9.2
The Gaussian Integers
. 302
Complex Number Theory
Gaussian Primes
The Moat Problem
The Gaussian Zoo
9.3
Higher Reciprocity
. 325
Appendix
A. Mathematica
Basics
333
A.0 Introduction
. 333
A.1 Plotting
. 335
A.2 Typesetting
. 338
Sending Files By E-Mail
A.3 Types of Functions
. 341
A.4 Lists
. 343
A.5 Programs
. 345
A.6 Solving Equations
. 347
A.7 Symbolic Algebra
. 349
Appendix B. Lucas Certificates Exist
351
References
355
Index of Mathomatica Objects
359
Subject Index
363 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bressoud, David M. 1950- Wagon, Stan |
author_GND | (DE-588)136747221 |
author_facet | Bressoud, David M. 1950- Wagon, Stan |
author_role | aut aut |
author_sort | Bressoud, David M. 1950- |
author_variant | d m b dm dmb s w sw |
building | Verbundindex |
bvnumber | BV035076823 |
classification_rvk | SK 180 ST 600 |
classification_tum | MAT 100f |
ctrlnum | (OCoLC)261197757 (DE-599)BVBBV035076823 |
dewey-full | 512.70285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.70285 |
dewey-search | 512.70285 |
dewey-sort | 3512.70285 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01564nam a2200409 c 4500</leader><controlfield tag="001">BV035076823</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090317 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080930s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470412152</subfield><subfield code="9">978-0-470-41215-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)261197757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035076823</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.70285</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 100f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bressoud, David M.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136747221</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A course in computational number theory</subfield><subfield code="c">David Bressoud ; Stan Wagon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2008]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 367 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wagon, Stan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016745129&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016745129</subfield></datafield></record></collection> |
id | DE-604.BV035076823 |
illustrated | Illustrated |
index_date | 2024-07-02T22:05:52Z |
indexdate | 2024-07-09T21:21:39Z |
institution | BVB |
isbn | 9780470412152 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016745129 |
oclc_num | 261197757 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
physical | XII, 367 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Bressoud, David M. 1950- Verfasser (DE-588)136747221 aut A course in computational number theory David Bressoud ; Stan Wagon Hoboken, NJ Wiley [2008] XII, 367 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Datenverarbeitung Number theory Data processing Computeralgebra (DE-588)4010449-7 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s Computeralgebra (DE-588)4010449-7 s DE-604 Wagon, Stan Verfasser aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016745129&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bressoud, David M. 1950- Wagon, Stan A course in computational number theory Datenverarbeitung Number theory Data processing Computeralgebra (DE-588)4010449-7 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4010449-7 (DE-588)4067277-3 |
title | A course in computational number theory |
title_auth | A course in computational number theory |
title_exact_search | A course in computational number theory |
title_exact_search_txtP | A course in computational number theory |
title_full | A course in computational number theory David Bressoud ; Stan Wagon |
title_fullStr | A course in computational number theory David Bressoud ; Stan Wagon |
title_full_unstemmed | A course in computational number theory David Bressoud ; Stan Wagon |
title_short | A course in computational number theory |
title_sort | a course in computational number theory |
topic | Datenverarbeitung Number theory Data processing Computeralgebra (DE-588)4010449-7 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Datenverarbeitung Number theory Data processing Computeralgebra Zahlentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016745129&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bressouddavidm acourseincomputationalnumbertheory AT wagonstan acourseincomputationalnumbertheory |