Computability and randomness:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford Univ. Press
2009
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Oxford logic guides
51 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 433 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035074290 | ||
003 | DE-604 | ||
005 | 20120510 | ||
007 | t | ||
008 | 080929s2009 |||| 00||| eng d | ||
015 | |a GBA875323 |2 dnb | ||
020 | |z 9780199230761 |9 978-0-19-923076-1 | ||
020 | |z 0199230765 |9 0-19-923076-5 | ||
035 | |a (OCoLC)228497899 | ||
035 | |a (DE-599)BVBBV035074290 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-634 |a DE-11 |a DE-20 |a DE-706 |a DE-29 |a DE-188 | ||
050 | 0 | |a QA267.7 | |
082 | 0 | |a 511.34 |2 22 | |
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
084 | |a 5,1 |2 ssgn | ||
100 | 1 | |a Nies, André |e Verfasser |0 (DE-588)113308426 |4 aut | |
245 | 1 | 0 | |a Computability and randomness |c André Nies |
250 | |a 1. publ. | ||
264 | 1 | |a Oxford |b Oxford Univ. Press |c 2009 | |
300 | |a XV, 433 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Oxford logic guides |v 51 | |
650 | 4 | |a Numbers, Random | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Numbers, Random | |
650 | 0 | 7 | |a Zufallszahlen |0 (DE-588)4124968-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zufallszahlen |0 (DE-588)4124968-9 |D s |
689 | 0 | 1 | |a Berechnungskomplexität |0 (DE-588)4134751-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Oxford logic guides |v 51 |w (DE-604)BV000013997 |9 51 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742636&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016742636 |
Datensatz im Suchindex
_version_ | 1804138023893336064 |
---|---|
adam_text | Contents
The complexity of sets
1
1.1
The basic concepts
3
Partial computable functions
3
Computably enumerable sets
6
Indices and approximations
7
1.2
Relative computational complexity of sets
8
Many-one reducibility
8
Turing reducibility
9
Relativization and the jump operator
10
Strings over
{0.1} 12
Approximating the functionals
Ф,.,
and the use principle
13
Weak truth-table reducibility and truth-table reducibility
14
Degree structures
16
1.3
Sets of natural numbers
16
1.4
Descriptive complexity of sets
18
Δ*2
sets and the Shoenfield Limit Lemma
18
Sets and functions that are
»-ce.
or cj-c.e.
19
Degree structures on particular classes
* 20
The arithmetical hierarchy
21
1.5
Absolute computational complexity of sets
24
Sets that are low,,
26
Computably dominated sets
27
Sets that are high,,
28
1.6
Post s problem
29
Turing incomparable
Δί,
-sets
30
Simple sets
31
A e.e. set that is neither computable nor Turing complete
32
Is there a natural solution to Post s problem?
34
Turing incomparable
ce.
sets
35
1.7
Properties of
ce.
sets
37
Each incomputable
ce.
wtt-degrec contains a simple set
38
Hypersimple
sets
39
Promptly simple sets
40
Minimal pairs and promptly simple sets
41
Creative sets
* 43
1.8
Cantor space
45
Open sets
47
Binary trees and closed sets
47
Representing open sets
48
Contents
Compactness and clopen sets
48
The correspondence between subsets of
N
and real numbers
49
Effectivity notions for real numbers
50
Effectivity notions for classes of sets
52
Examples of
Π?
classes
55
Isolated points and perfect sets
56
The Low Basis Theorem
56
The basis theorem for computably dominated sets
59
Weakly l-generic sets
61
l-generic
sets
63
The arithmetical hierarchy of classes
64
Comparing Cantor space with Baire space
67
1.9
Measure and probability
68
Outer measures
68
Measures
69
Uniform measure and null classes
70
Uniform measure of arithmetical classes
71
Probability theory
73
The descriptive complexity of strings
74
Comparing the growth rate of functions
75
2.1
The plain descriptive complexity
С
75
Machines and descriptions
75
The counting condition, and incompressible strings
77
Invariance,
continuity, and growth of
С
79
Algorithmic properties of
С
81
2.2
The prefix-free complexity
Л
82
Drawbacks of
С
83
Prefix-free machines
83
The Machine Existence Theorem and a characterization of A
86
The Coding Theorem !)1
2.3
Conditional descriptive complexity
92
Basics
92
An expression for K(.r.y)
* 93
2.4
Relating
С
and A
94
Basic interactions
94
Solovay s equations
* 95
2.5
Incompressibility and randomness for strings
97
Comparing incompressibility notions
98
Randomness properties of strings
99
Martin-Löf
randomness and its variants
102
3.1
A mathematical definition of randomness for sets
102
Martin-Löf
tests and their variants
104
Schnorr s
Іііеопчп
and universal
Martin-Löf
tests
105
Contents xi
The initial
segment approach
105
3.2 Martin-Löf
randomness
106
The test concept
106
A universal
Martin-Löf
test
107
Characterization of MLR via the initial segment complexity
107
Examples of
Martin-Löf
random sets
108
Facts about ML-random sets
109
Left-c.e. ML-random reals and Solovay reducibility
113
Randomness on reals, and randomness for bases other than
2 115
A nonempty
Пј
subclass of MLR has ML-random measure
* 116
3.3 Martin-Löf
randomness and reduction procedures
117
Each set is weak truth-table reducible to a ML-random set
117
Autoreducibility and indifferent sets
* 119
3.4 Martin-Löf
randomness relative to an oracle
120
Relativizing
С
and A
121
Basics of relative ML-randonmess
122
Symmetry of relative
Martin-Löf
randomness
122
Computational complexity, and relative randomness
124
The halting probability
Ω
relative to an oracle
* 125
3.5
Notions weaker than ML-randomness
127
Weak randomness
128
Schnorr
randomness
129
Computable measure machines
131
3.6
Notions stronger than ML-randomness
133
Weak 2-randomness
134
2-randonmess and initial segment complexity
136
2-randomness and being low for
Ω
140
Demut
h
randomness
* 141
4
Diagonally noncomputable functions
144
4.1
D.n.c. functions and sets of d.
u.c.
degree
145
Basics on d.n.c. functions and fixed point freeness
145
The initial segment complexity of sets of d.n.c. degree
147
A completeness criterion for
ce.
sets
148
4.2
Injury-free constructions of
ce.
sets
150
Each
Λ
set of d.n.c. degree bounds a promptly simple set
151
Variants of
Kučera s
Theorem
152
An injury-free proof of the
Friedberg Muchnik
Theorem
* 154
4.3
Strengthening the notion of a d.n.c. function
155
Sets of PA degree
1Г)(І
Martin-Löf
random sets of PA degree
157
Turing degrees of
Martin-Löf
random sets
* 15!)
Relating //-randomness and higher fixed point frceness
ІШ
xii Contents
5 Lowness
properties and A -triviality
163
5.1
Equivalent
lowness
properties
165
Being low for A
105
Lowness for ML-randomness
167
When many oracles compute a set
168
Bases for ML-randomness
170
Lowness for weak 2-randomness
174
5.2
A -trivial sets
176
Basics on A -trivial sets
176
A -trivial sets are Aj
177
The number of sets that are A -trivial for a constant
b
* 179
Closure properties of K,
181
C-trivial sets
182
Replacing the constant by a slowly growing function
* 183
5.3
The cost function method
184
The basics of cost functions
186
A cost function criterion for A -triviality
188
Cost functions and injury-free solutions to Post s problem
189
Construction of a promptly simple Turing lower bound
190
A -trivial sets and
Σ ι
-induction
* 192
Avoiding to be Turing reducible to a given low c.e. set
193
Necessity of the cost function method for c.e. A -trivial sets
195
Listing the (j- -cc.) A -trivial sets with constants
196
Adaptive cost functions
198
5.4
Each
A-trivial
set is low for A
200
Introduction to the proof
201
The formal proof of Theorem
5.4.1 210
5.5
Properties of the class of A -trivial sets
215
A Main Lemma derived from the golden run method
215
The standard cost function characterizes the A -trivial sets
217
The number of changes
* 219
Ω- 1
for A -trivial
.4 221
Each A -trivial set is low for weak 2-randomnes.s
223
5.6
The weak
reduci
bili ty
associated with Low(MLR)
224
Preordcrings coinciding with ¿.R-redueibility
226
A stronger result under the extra hypothesis that A <j- B
228
The size of lower and upper cones for
<ля
* 230
Operators obtained by relativizing classes
231
Studying <lr by applying the operator
К
232
Comparing the operators
S ¡.r
and
К
* 233
Uniformly almost everywhere dominating sets
234
0
<lh C if an«! only if
С
is uniformly a.e. dominating
235
Contents xiii
Some advanced computability theory
238
6.1
Enumerating Turing functionals
239
Basics and a first example
239
C.e. oracles, markers, and a further example
240
6.2
Promptly simple degrees and low cuppability
242
C.e. sets of promptly simple degree
243
A c.e. degree is promptly simple iff it is low cuppable
244
6.3
C.e. operators and highness properties
247
The basics of c.e. operators
247
Pseudojump inversion
249
Applications of pseudojump inversion
251
Inversion of a c.e. operator via a ML-random set
253
Separation of highness properties
256
Minimal pairs and highness properties
* 258
Randomness and betting strategies
259
7.1
Martingales
260
Formalizing the concept of a betting strategy
260
Supermartingales
261
Some basics on supennartingales
262
Sets on which a supermartingale fails
263
Characterizing null classes by martingales
264
7.2
C.e. supennartingales and ML-randomness
264
Computably enumerable
supermartingales
265
Characterizing ML-randonmess via c.e. supermartingales
265
Universal c.e. supermartingales
266
The degree of nonrandoniness in .ML-random sets
+ 266
7.3
Computable supennartingales
26S
Schnorr
randomness and
martingales
26S
Preliminaries on computable martingales
270
7.4
How to build a coniputably random set
271
Three preliminary Theorems: outline
2
1
2
Partial computable martingales
273
A template for building
a comprit
ably random set
271
Computably random sets and initial segment complexity
275
The case of a partial computably random set
277
7.5
Each high degree contains a computably random set
279
Martingales that dominate -~9
Each high c.e. degree contains a coniputablv random
left-c.e. set
■><>
A computably random set that is not partial computably
ι
>Sl
random
-
A >rrictly computably random set in each high degree 2M5
A strict
lv Schnorr
random set in each high degree 2s5
Contents
7.6
Varying the concept of a betting strategy
288
Basics of selection rules
288
Stochasticity
288
Stochasticity and initial segment complexity
289
Nonmonotonic betting strategies
294
Muchnik s splitting technique
295
Kolmogorov-Loveland randomness
297
Classes of computational complexity
301
8.1
The class Low(H)
303
The Low(O) basis theorem
303
Being weakly low for
К
305
2-randomness and strong incompressibilitVK-
308
Each computably dominated set in
Low(ň)
is computable
309
A related result on computably dominated sets in GLi
311
8.2
Traceability
312
C.e. traceable sets and array computable sets
313
Computably traceable sets
316
Lowness for computable measure machines
318
Facile sets as an analog of the
^ -trivial
sets
* 319
8.3
Lowness for randomness notions
321
Lowness for
С
-null classes
322
The class Low(MLR. SR)
323
Classes that coincide with Low(SR)
326
Low(MLR. CR) coincides with being low for
К
328
8.4
Jump traceability
336
Basics of jump traceability. and existence theorems
336
Jump traceability and descriptive string complexity
338
The weak reducibility associated with jump traceability
339
Jump traceability and superlowness are equivalent for c.e. sets
341
More on weak reducibilities
343
Strong jump traceability
343
Strong superlowness
* 346
8.5
Subclasses of the
iť-trivial
sets
348
Some A -trivial c.e. set is not strongly jump traceable
348
Strongly jump traceable c.e. sets and benign cost functions
351
The diamond operator
356
8.6
Summary and discussion
361
A diagram of downward closed properties
361
Computational complexity versus randomness
363
Some updates
364
Higher computability and randomness
365
9.1
Preliminaries on higher computability theory
366
II] and other relations
366
Contents xv
Well-orders and computable ordinals
367
Representing
П}
relations by well-orders
367
П}
classes and the uniform measure
369
Reducibilities
370
A set theoretical view
371
9.2
Analogs of
Martin-Löf
randomness and K-triviality
372
П}
Machines and prefix-free complexity
373
A version of
Martin-Löf
randomness based on
П}
sets
376
An analog of A -triviality
376
Lowness for nJ-ML-randomness
377
9.3
Δ
{-randomness and
Π
}
-randomness
378
Notions that coincide with
Δ|
-randomness
37Í)
More on n}-randonmess
380
9.4
Lowness properties in higher computability theory
381
Hyp-dominated sets
381
Traceability
382
Solutions to the exercises
385
Solutions to Chapter
1 385
Solutions to Chapter
2 389
Solutions to Chapter
3 391
Solutions to Chapter
4 393
Solutions to Chapter
5 395
Solutions to Chapter
6 399
Solutions to Chapter
7 400
Solutions to Chapter
8 402
Solutions to Chapter
9 408
References H
Notation Index
-Ч^
Index 12;5
|
adam_txt |
Contents
The complexity of sets
1
1.1
The basic concepts
3
Partial computable functions
3
Computably enumerable sets
6
Indices and approximations
7
1.2
Relative computational complexity of sets
8
Many-one reducibility
8
Turing reducibility
9
Relativization and the jump operator
10
Strings over
{0.1} 12
Approximating the functionals
Ф,.,
and the use principle
13
Weak truth-table reducibility and truth-table reducibility
14
Degree structures
16
1.3
Sets of natural numbers
16
1.4
Descriptive complexity of sets
18
Δ*2
sets and the Shoenfield Limit Lemma
18
Sets and functions that are
»-ce.
or cj-c.e.
19
Degree structures on particular classes
* 20
The arithmetical hierarchy
21
1.5
Absolute computational complexity of sets
24
Sets that are low,,
26
Computably dominated sets
27
Sets that are high,,
28
1.6
Post's problem
29
Turing incomparable
Δί,'
-sets
30
Simple sets
31
A e.e. set that is neither computable nor Turing complete
32
Is there a natural solution to Post's problem?
34
Turing incomparable
ce.
sets
35
1.7
Properties of
ce.
sets
37
Each incomputable
ce.
wtt-degrec contains a simple set
38
Hypersimple
sets
39
Promptly simple sets
40
Minimal pairs and promptly simple sets
41
Creative sets
* 43
1.8
Cantor space
45
Open sets
47
Binary trees and closed sets
47
Representing open sets
48
Contents
Compactness and clopen sets
48
The correspondence between subsets of
N
and real numbers
49
Effectivity notions for real numbers
50
Effectivity notions for classes of sets
52
Examples of
Π?
classes
55
Isolated points and perfect sets
56
The Low Basis Theorem
56
The basis theorem for computably dominated sets
59
Weakly l-generic sets
61
l-generic
sets
63
The arithmetical hierarchy of classes
64
Comparing Cantor space with Baire space
67
1.9
Measure and probability
68
Outer measures
68
Measures
69
Uniform measure and null classes
70
Uniform measure of arithmetical classes
71
Probability theory
73
The descriptive complexity of strings
74
Comparing the growth rate of functions
75
2.1
The plain descriptive complexity
С
75
Machines and descriptions
75
The counting condition, and incompressible strings
77
Invariance,
continuity, and growth of
С
79
Algorithmic properties of
С
81
2.2
The prefix-free complexity
Л
82
Drawbacks of
С
83
Prefix-free machines
83
The Machine Existence Theorem and a characterization of A"
86
The Coding Theorem !)1
2.3
Conditional descriptive complexity
92
Basics
92
An expression for K(.r.y)
* 93
2.4
Relating
С
and A'
94
Basic interactions
94
Solovay's equations
* 95
2.5
Incompressibility and randomness for strings
97
Comparing incompressibility notions
98
Randomness properties of strings
99
Martin-Löf
randomness and its variants
102
3.1
A mathematical definition of randomness for sets
102
Martin-Löf
tests and their variants
104
Schnorr's
Іііеопчп
and universal
Martin-Löf
tests
105
Contents xi
The initial
segment approach
105
3.2 Martin-Löf
randomness
106
The test concept
106
A universal
Martin-Löf
test
107
Characterization of MLR via the initial segment complexity
107
Examples of
Martin-Löf
random sets
108
Facts about ML-random sets
109
Left-c.e. ML-random reals and Solovay reducibility
113
Randomness on reals, and randomness for bases other than
2 115
A nonempty
Пј
subclass of MLR has ML-random measure
* 116
3.3 Martin-Löf
randomness and reduction procedures
117
Each set is weak truth-table reducible to a ML-random set
117
Autoreducibility and indifferent sets
* 119
3.4 Martin-Löf
randomness relative to an oracle
120
Relativizing
С
and A"
121
Basics of relative ML-randonmess
122
Symmetry of relative
Martin-Löf
randomness
122
Computational complexity, and relative randomness
124
The halting probability
Ω
relative to an oracle
* 125
3.5
Notions weaker than ML-randomness
127
Weak randomness
128
Schnorr
randomness
129
Computable measure machines
131
3.6
Notions stronger than ML-randomness
133
Weak 2-randomness
134
2-randonmess and initial segment complexity
136
2-randomness and being low for
Ω
140
Demut
h
randomness
* 141
4
Diagonally noncomputable functions
144
4.1
D.n.c. functions and sets of d.
u.c.
degree
145
Basics on d.n.c. functions and fixed point freeness
145
The initial segment complexity of sets of d.n.c. degree
147
A completeness criterion for
ce.
sets
148
4.2
Injury-free constructions of
ce.
sets
150
Each
Λ"
set of d.n.c. degree bounds a promptly simple set
151
Variants of
Kučera's
Theorem
152
An injury-free proof of the
Friedberg Muchnik
Theorem
* 154
4.3
Strengthening the notion of a d.n.c. function
155
Sets of PA degree
1Г)(І
Martin-Löf
random sets of PA degree
157
Turing degrees of
Martin-Löf
random sets
* 15!)
Relating //-randomness and higher fixed point frceness
ІШ
xii Contents
5 Lowness
properties and A'-triviality
163
5.1
Equivalent
lowness
properties
165
Being low for A'
105
Lowness for ML-randomness
167
When many oracles compute a set
168
Bases for ML-randomness
170
Lowness for weak 2-randomness
174
5.2
A'-trivial sets
176
Basics on A'-trivial sets
176
A'-trivial sets are Aj
177
The number of sets that are A'-trivial for a constant
b
* 179
Closure properties of K,
181
C-trivial sets
182
Replacing the constant by a slowly growing function
* 183
5.3
The cost function method
184
The basics of cost functions
186
A cost function criterion for A'-triviality
188
Cost functions and injury-free solutions to Post's problem
189
Construction of a promptly simple Turing lower bound
190
A'-trivial sets and
Σ ι
-induction
* 192
Avoiding to be Turing reducible to a given low c.e. set
193
Necessity of the cost function method for c.e. A'-trivial sets
195
Listing the (j-'-cc.) A'-trivial sets with constants
196
Adaptive cost functions
198
5.4
Each
A-trivial
set is low for A'
200
Introduction to the proof
201
The formal proof of Theorem
5.4.1 210
5.5
Properties of the class of A'-trivial sets
215
A Main Lemma derived from the golden run method
215
The standard cost function characterizes the A'-trivial sets
217
The number of changes
* 219
Ω-"1
for A'-trivial
.4 221
Each A'-trivial set is low for weak 2-randomnes.s
223
5.6
The weak
reduci
bili ty
associated with Low(MLR)
224
Preordcrings coinciding with ¿.R-redueibility
226
A stronger result under the extra hypothesis that A <j- B'
228
The size of lower and upper cones for
<ля
* 230
Operators obtained by relativizing classes
231
Studying <lr by applying the operator
К
232
Comparing the operators
S ¡.r
and
К
* 233
Uniformly almost everywhere dominating sets
234
0'
<lh C' if an«! only if
С
is uniformly a.e. dominating
235
Contents xiii
Some advanced computability theory
238
6.1
Enumerating Turing functionals
239
Basics and a first example
239
C.e. oracles, markers, and a further example
240
6.2
Promptly simple degrees and low cuppability
242
C.e. sets of promptly simple degree
243
A c.e. degree is promptly simple iff it is low cuppable
244
6.3
C.e. operators and highness properties
247
The basics of c.e. operators
247
Pseudojump inversion
249
Applications of pseudojump inversion
251
Inversion of a c.e. operator via a ML-random set
253
Separation of highness properties
256
Minimal pairs and highness properties
* 258
Randomness and betting strategies
259
7.1
Martingales
260
Formalizing the concept of a betting strategy
260
Supermartingales
261
Some basics on supennartingales
262
Sets on which a supermartingale fails
263
Characterizing null classes by martingales
264
7.2
C.e. supennartingales and ML-randomness
264
Computably enumerable
supermartingales
265
Characterizing ML-randonmess via c.e. supermartingales
265
Universal c.e. supermartingales
266
The degree of nonrandoniness in .ML-random sets
+ 266
7.3
Computable supennartingales
26S
Schnorr
randomness and
martingales
26S
Preliminaries on computable martingales
270
7.4
How to build a coniputably random set
271
Three preliminary Theorems: outline
'2
1
'2
Partial computable martingales
273
A template for building
a comprit
ably random set
271
Computably random sets and initial segment complexity
275
The case of a partial computably random set
277
7.5
Each high degree contains a computably random set
279
Martingales that dominate -~9
Each high c.e. degree contains a coniputablv random
left-c.e. set
" ■><>
A computably random set that is not partial computably
ι
'
'>Sl
random
- '
A >rrictly computably random set in each high degree 2M5
A strict
lv Schnorr
random set in each high degree 2s5
Contents
7.6
Varying the concept of a betting strategy
288
Basics of selection rules
288
Stochasticity
288
Stochasticity and initial segment complexity
289
Nonmonotonic betting strategies
294
Muchnik's splitting technique
295
Kolmogorov-Loveland randomness
297
Classes of computational complexity
301
8.1
The class Low(H)
303
The Low(O) basis theorem
303
Being weakly low for
К
305
2-randomness and strong incompressibilitVK-
308
Each computably dominated set in
Low(ň)
is computable
309
A related result on computably dominated sets in GLi
311
8.2
Traceability
312
C.e. traceable sets and array computable sets
313
Computably traceable sets
316
Lowness for computable measure machines
318
Facile sets as an analog of the
^"-trivial
sets
* 319
8.3
Lowness for randomness notions
321
Lowness for
С
-null classes
322
The class Low(MLR. SR)
323
Classes that coincide with Low(SR)
326
Low(MLR. CR) coincides with being low for
К
328
8.4
Jump traceability
336
Basics of jump traceability. and existence theorems
336
Jump traceability and descriptive string complexity
338
The weak reducibility associated with jump traceability
339
Jump traceability and superlowness are equivalent for c.e. sets
341
More on weak reducibilities
343
Strong jump traceability
343
Strong superlowness
* 346
8.5
Subclasses of the
iť-trivial
sets
348
Some A'-trivial c.e. set is not strongly jump traceable
348
Strongly jump traceable c.e. sets and benign cost functions
351
The diamond operator
356
8.6
Summary and discussion
361
A diagram of downward closed properties
361
Computational complexity versus randomness
363
Some updates
364
Higher computability and randomness
365
9.1
Preliminaries on higher computability theory
366
II] and other relations
366
Contents xv
Well-orders and computable ordinals
367
Representing
П}
relations by well-orders
367
П}
classes and the uniform measure
369
Reducibilities
370
A set theoretical view
371
9.2
Analogs of
Martin-Löf
randomness and K-triviality
372
П}
Machines and prefix-free complexity
373
A version of
Martin-Löf
randomness based on
П}
sets
376
An analog of A'-triviality
376
Lowness for nJ-ML-randomness
377
9.3
Δ
{-randomness and
Π
}
-randomness
378
Notions that coincide with
Δ|
-randomness
37Í)
More on n}-randonmess
380
9.4
Lowness properties in higher computability theory
381
Hyp-dominated sets
381
Traceability
382
Solutions to the exercises
385
Solutions to Chapter
1 385
Solutions to Chapter
2 389
Solutions to Chapter
3 391
Solutions to Chapter
4 393
Solutions to Chapter
5 395
Solutions to Chapter
6 399
Solutions to Chapter
7 400
Solutions to Chapter
8 402
Solutions to Chapter
9 408
References H"
Notation Index
-Ч^
Index 12;5 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Nies, André |
author_GND | (DE-588)113308426 |
author_facet | Nies, André |
author_role | aut |
author_sort | Nies, André |
author_variant | a n an |
building | Verbundindex |
bvnumber | BV035074290 |
callnumber-first | Q - Science |
callnumber-label | QA267 |
callnumber-raw | QA267.7 |
callnumber-search | QA267.7 |
callnumber-sort | QA 3267.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2600 ST 134 |
ctrlnum | (OCoLC)228497899 (DE-599)BVBBV035074290 |
dewey-full | 511.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.34 |
dewey-search | 511.34 |
dewey-sort | 3511.34 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik Philosophie |
discipline_str_mv | Informatik Mathematik Philosophie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01803nam a2200493 cb4500</leader><controlfield tag="001">BV035074290</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120510 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080929s2009 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA875323</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199230761</subfield><subfield code="9">978-0-19-923076-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199230765</subfield><subfield code="9">0-19-923076-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)228497899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035074290</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA267.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.34</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nies, André</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113308426</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computability and randomness</subfield><subfield code="c">André Nies</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 433 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford logic guides</subfield><subfield code="v">51</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Random</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Random</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallszahlen</subfield><subfield code="0">(DE-588)4124968-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zufallszahlen</subfield><subfield code="0">(DE-588)4124968-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford logic guides</subfield><subfield code="v">51</subfield><subfield code="w">(DE-604)BV000013997</subfield><subfield code="9">51</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742636&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016742636</subfield></datafield></record></collection> |
id | DE-604.BV035074290 |
illustrated | Not Illustrated |
index_date | 2024-07-02T22:05:03Z |
indexdate | 2024-07-09T21:21:36Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016742636 |
oclc_num | 228497899 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-634 DE-11 DE-20 DE-706 DE-29 DE-188 |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-634 DE-11 DE-20 DE-706 DE-29 DE-188 |
physical | XV, 433 S. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Oxford Univ. Press |
record_format | marc |
series | Oxford logic guides |
series2 | Oxford logic guides |
spelling | Nies, André Verfasser (DE-588)113308426 aut Computability and randomness André Nies 1. publ. Oxford Oxford Univ. Press 2009 XV, 433 S. txt rdacontent n rdamedia nc rdacarrier Oxford logic guides 51 Numbers, Random Computational complexity Zufallszahlen (DE-588)4124968-9 gnd rswk-swf Berechnungskomplexität (DE-588)4134751-1 gnd rswk-swf Zufallszahlen (DE-588)4124968-9 s Berechnungskomplexität (DE-588)4134751-1 s DE-604 Oxford logic guides 51 (DE-604)BV000013997 51 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742636&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nies, André Computability and randomness Oxford logic guides Numbers, Random Computational complexity Zufallszahlen (DE-588)4124968-9 gnd Berechnungskomplexität (DE-588)4134751-1 gnd |
subject_GND | (DE-588)4124968-9 (DE-588)4134751-1 |
title | Computability and randomness |
title_auth | Computability and randomness |
title_exact_search | Computability and randomness |
title_exact_search_txtP | Computability and randomness |
title_full | Computability and randomness André Nies |
title_fullStr | Computability and randomness André Nies |
title_full_unstemmed | Computability and randomness André Nies |
title_short | Computability and randomness |
title_sort | computability and randomness |
topic | Numbers, Random Computational complexity Zufallszahlen (DE-588)4124968-9 gnd Berechnungskomplexität (DE-588)4134751-1 gnd |
topic_facet | Numbers, Random Computational complexity Zufallszahlen Berechnungskomplexität |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742636&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000013997 |
work_keys_str_mv | AT niesandre computabilityandrandomness |