Microrobotics: methods and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press
2010
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XIX, 436 S. Ill., graph. Darst. |
ISBN: | 9781420061956 142006195X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035073861 | ||
003 | DE-604 | ||
005 | 20100510 | ||
007 | t | ||
008 | 080929s2010 ad|| |||| 00||| eng d | ||
015 | |a GBA885957 |2 dnb | ||
020 | |a 9781420061956 |9 978-1-4200-6195-6 | ||
020 | |a 142006195X |9 1-4200-6195-X | ||
035 | |a (OCoLC)318292813 | ||
035 | |a (DE-599)HBZHT016270636 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-92 |a DE-11 | ||
082 | 0 | |a 629.892 |2 22 | |
084 | |a ZQ 6250 |0 (DE-625)158184: |2 rvk | ||
100 | 1 | |a Bellouard, Yves |e Verfasser |4 aut | |
245 | 1 | 0 | |a Microrobotics |b methods and applications |c Yves Bellouard |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press |c 2010 | |
300 | |a XIX, 436 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Robotics | |
650 | 4 | |a Microfabrication | |
650 | 4 | |a Microfabrication | |
650 | 4 | |a Robotics | |
650 | 0 | 7 | |a Robotik |0 (DE-588)4261462-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrosystemtechnik |0 (DE-588)4221617-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Robotik |0 (DE-588)4261462-4 |D s |
689 | 0 | 1 | |a Mikrosystemtechnik |0 (DE-588)4221617-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742215&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742215&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016742215 |
Datensatz im Suchindex
_version_ | 1804138023288307712 |
---|---|
adam_text | Contents
Preface
..................................................................................................................xvii
Author
...................................................................................................................xix
1.
Introduction
.....................................................................................................1
1.1
What Is Microrobotics?
.........................................................................1
1.2
The Microworld
.....................................................................................3
1.3 Microrobots
for What?
.........................................................................5
1.3.1 Microrobots in
Medicine: Exploring the Human
Body
...........................................................................................6
1.3.2
Assembling Heterogeneous Components
............................6
1.3.3
Materials Sciences
—
Exploring New Frontiers
in Research
................................................................................7
1.3.4
Mobile
Microrobots.................................................................8
1.4
What Are the Science and Technology behind Microrobotics?
......10
1.4.1
Structure of the Book
.............................................................11
1.4.2
Overview of Chapters
...........................................................11
Part I Prerequisites
2.
Fundamental Concepts of Linear Elasticity
............................................15
2.1
Mechanics of Materials in the Context of Microrobotics
..............15
2.1.1
Introduction
............................................................................15
2.1.2
Typical Material Behavior Response to a Load
.................15
2.1.3
Material Structures across Scales
........................................17
2.1.4
Strength of Materials for Microrobotics
.............................19
2.2
Concept of Stress
.................................................................................19
2.3
Concept of Deformation: Strain
........................................................21
2.3.1
Single-Axis Tensile End Shear Strain
..................................21
2.3.2
Plane Strain
.............................................................................22
2.3.3
Three-Dimensional Case and Strain Tensor
......................24
2.3.4
Practical Implementation
......................................................24
2.4
Elasticity: Hooke s Law
......................................................................25
2.4.1
Linear Elastic Model
..............................................................25
2.4.2
Generalization of Hooke s Law
............................................27
2.4.3
Effect of Temperature: Illustration
for the Two-Dimensional Case
.............................................28
2.5
Properties of Plane Area: Second Moment of Inertia
....................29
vi
Contents
2.6 Element
of Beam Theory
....................................................................30
2.6.1
Elastica.....................................................................................
30
2.6.2
Stress State in a Beam during Bending
...............................31
2.6.3
Fundamental Equations for Bending: Simple Beam
Theory
......................................................................................33
2.7
Torsion
..................................................................................................35
2.7.1
Loading Case Description
....................................................35
2.8
Yield Criteria
........................................................................................37
2.8.1
Tresca
and
von
Mises
Criteria
..............................................37
2.8.1.1
Tresca
Criteria
.........................................................37
2.8.1.2 von
Mises
Criteria
..................................................38
2.8.2
Ductile versus Brittle Materials
...........................................38
References and Further Readings
...............................................................39
Exercises
..........................................................................................................40
3.
Fundamental Concepts of Kinematics
.....................................................43
3.1
Problem Definition
..............................................................................43
3.2
Basics Tools for Kinematic Analysis
.................................................46
3.2.1
Introduction: Notations Used in This Book
.......................46
3.2.1.1
Vectors
......................................................................46
3.2.1.2
Coordinate Frame
...................................................46
3.2.1.3
Rigid Body
...............................................................46
3.2.1.4
Velocity Vector
........................................................47
3.2.1.5
Angular Velocities (Noted
ω)
...............................47
3.2.1.6
Force Vectors
...........................................................47
3.2.2
Rigid Body
..............................................................................48
3.2.3
Spatial Orientation of a Solid Body Relative
to a Coordinate Frame
...........................................................48
3.2.4
Rotation Matrices
...................................................................49
3.2.5
Euler
Angles
...........................................................................50
3.2.6
Essential Properties of Rotation Matrices
..........................52
3.3
Kinematics
............................................................................................52
3.3.1
Definition
................................................................................52
3.3.2
Spatial Vectors Using Wrenches and Screw
Notations
.................................................................................53
3.3.3
Spatial Velocity (Called Twist)
.............................................56
3.4
Kinetics
.................................................................................................58
3.4.1
Force Spatial Vector Representation (Wrench)
..................58
3.5
Kinetics and Dynamics
......................................................................59
3.5.1
Introduction
............................................................................59
3.5.2
Moment of Inertia
..................................................................59
3.6
Linear and Angular Momentum
......................................................61
3.6.1
Kinetic Energy
........................................................................62
3.7
Equations of Motion
...........................................................................63
Contents
vii
3.7.1
Newton s and Euler s Laws
...................................................63
3.7.2
Newton s Third Axiom
.........................................................64
3.8 Lagrange
Formalism
...........................................................................64
3.8.1
Virtual Work Principle and the d Alembert Principle
......64
3.8.2 Lagrange
Equations
...............................................................65
3.9
Illustrative Example: The Double Pendulum
..................................65
3.9.1
Description
..............................................................................65
3.9.2
Lagrangian of the System
.....................................................68
3.9.3
Equation of Motion Using Newton-Euler
..........................71
3.10
Analysis of Multibody Systems
........................................................74
3.10.1
Introduction
............................................................................74
3.10.2
Parametric Representation of a Mechanism
......................76
3.10.3
Joints
........................................................................................77
3.10.4
Graphical Representation of a Mechanism
........................77
3.10.5
Mobility of a Mechanism
......................................................80
3.10.6
The
Chebyshev-Grübler-Kutzbach
Formula
....................81
3.10.7
Mobility Analysis: Illustrative Examples
...........................82
3.11
Forward Kinematics (Geometrical Model)
......................................86
3.11.1
Methods Based on
3
χ
3
Matrices
.........................................86
3.11.2
Methods Based on
4
χ
4
Matrices (Homogeneous
Matrices)
..................................................................................87
3.11.3
Discussion about Forward Kinematics
...............................89
3.12
Direct Kinematics: Jacobian of a Robot
............................................89
3.12.1
Definition
................................................................................89
3.12.2
Practical Implementation
......................................................90
3.12.3
Mechanism with Loops: Parallel Mechanism
...................95
3.13
Inverse Kinematics
..............................................................................97
References
.....................................................................................................100
Further Readings
..........................................................................................100
Exercises
........................................................................................................101
Part II Core Technology
4.
Applied Physics for Microrobotics
.........................................................113
4.1
Scaling Effects
....................................................................................113
4.1.1
Introduction
..........................................................................113
4.1.2
Scaling Laws
.........................................................................114
4.1.3
Scaling Effect on Surface and Volume
..............................114
4.1.4
Effects on Various Physical Properties
.............................115
4.1.4.1
Mass
.......................................................................115
4.1.4.2
Moment of Inertia
.................................................115
4.1.4.3
Spring Force and Oscillating
Frequency
..............................................................116
viu
Contents
4.1.5 Illustration
of Scaling Effects on Electrical
Properties
..............................................................................116
4.1.5.1
Electrical Properties
.............................................116
4.1.5.2
Inductance
.............................................................117
4.1.6
Scaling Effect on Fluids
......................................................117
4.1.7
Scaling Effect on Physical Forces
.......................................118
4.1.7.1
Gravitational Forces
.............................................118
4.1.7.2
Electromagnetic Forces
........................................119
4.2
An Introduction to the Physics of Adhesion
.................................121
4.2.1
Types of Contact
...................................................................121
4.2.2
Illustration of Adhesion Force Measurements
Using Atomic Force Microscopy
........................................122
4.2.3
Modeling of the Contact Regions
......................................126
4.2.3.1
Hertz Model
..........................................................126
4.2.3.2
Sneddon Model
.....................................................127
4.2.4
Modeling of the Contact Regions Taking
into Account Surface Forces
...............................................128
4.2.4.1
Bradley Model
.......................................................128
4.2.4.2 Derjaguin-Müller-Toporov
(DMT)
Theory
....................................................................128
4.2.4.3
Johnson-Kendall-Roberts Theory
.....................129
4.2.4.4
Maugis Theory
......................................................129
4.2.5
Comparison/Domain of Validity
......................................130
4.2.6
Nature of Adhesion Forces
.................................................131
4.2.6.1
Capillary Forces
....................................................131
4.2.6.2
Electrostatic Forces
...............................................133
4.2.6.3
Van
der Waals
Forces
...........................................134
4.2.7
Comparison between Adhesion Forces
............................135
4.3
Material Structure and Properties: Crystal
and Symmetry
...................................................................................136
4.3.1
Introduction: Rationale for This Section
in a Microrobotics Book
......................................................136
4.3.2
Materials Come in Different Structures
...........................137
4.3.2.1
Amorphous
...........................................................137
4.3.2.2
Crystalline
.............................................................137
4.3.2.3
Polycrystalline
......................................................138
4.3.2.4
Glass Materials
.....................................................138
4.3.2.5
The Concept of Phase in Materials
Science
....................................................................138
4.3.2.6
Nanoscale Structures as Forms of Atomic
Layers
.....................................................................138
4.3.3
An Introduction to the Concept of Tensors
in Physics
...............................................................................139
4.3.3.1
The Dummy Suffix Notation
..............................140
4.3.3.2
Transformations
...................................................141
Contents ix
4.3.4 Matrix Notation....................................................................143
4.3.4.1
Strain, Stress, and Stiffness Tensors
in Matrix Notations
..............................................143
4.3.4.2
Change of Coordinate Frame
.............................144
4.3.5
Miller Indices and Their Use to Describe
Geometrical Entities Related to Crystals
..........................145
4.3.6
Illustration of the Use of Miller Indices: The Crystal
Structure of Silicon
..............................................................147
4.3.7
The Effect of Crystal Symmetry on Physical
Properties of Crystals
..........................................................150
4.3.8
Illustration: Magnitude of a Physical Property
in a Given Direction
............................................................150
References
.....................................................................................................153
Exercises
........................................................................................................155
5.
Flexures
.........................................................................................................159
5.1
Introduction
.......................................................................................160
5.1.1
Scaling Effect
........................................................................160
5.1.2
Definition of a Flexure
........................................................160
5.1.3
Why Use Flexures?
..............................................................162
5.1.4
Examples of Flexures
...........................................................163
5.1.4.1
Early Example of Flexures
..................................163
5.1.4.2
The CD/DVD Player Flexure (Low-Cost
Flexure)
..................................................................163
5.1.4.3
Illustration of Flexures Used in MEMS
Devices
...................................................................163
5.2
Historical Perspective
.......................................................................166
5.3
Mathematical Formalism: Generalized Stiffness Matrix
............166
5.3.1
Problem Definition
..............................................................166
5.3.2
Deformation Twist
...............................................................167
5.3.3
Generalized Stiffness Matrix
.............................................168
5.3.4
Coordinates Transform to Express the Stiffness
Matrix at Any Arbitrary Point
...........................................169
5.3.5
Overall Mechanism of Stiffness: Stiffness
at the End-Effector
...............................................................170
5.3.6
Methodology to Analyze Flexure Stiffness
.....................173
5.4
Elemental Flexures (Building Blocks): Design
Methodology
......................................................................................173
5.4.1
Introduction
..........................................................................173
5.4.2
Bending Mode
......................................................................173
5.4.3
Torsion Mode
........................................................................174
5.5
Elemental Flexures: Cantilever Beam
............................................174
5.5.1
Stiffness Matrix for the Cantilever Beam
.........................176
5.5.1.1
Principal Stiffness
................................................176
5.5.1.2
Kinematics Model
................................................179
Contents
5.5.1.3 Illustration
of the Use of the Stiffness
Matrix Transport Formula
..................................180
5.5.1.4
Position of the Center of Rotation
......................183
5.5.2
Range Motion
.......................................................................183
5.5.2.1
Effect of
Compressive
Load: Mechanical
Instability
...............................................................184
5.5.2.2
Effect of Combined Loads Applied
on a Cantilever
......................................................184
5.6
Notch Hinge
.......................................................................................186
5.6.1
Stiffness along the Other Axis
...........................................187
5.7
Cross Pivot
.........................................................................................187
5.7.1
Cross-Strip Flexure (Assembled Cross Pivot)
..................188
5.7.2
Monolithic Cross Pivot
........................................................191
5.8
System Based on Flexures: Design Methodology
........................194
5.8.1
From Building Blocks to a System
.....................................194
5.8.2
Designing Steps
....................................................................195
5.9
Flexure Systems
.................................................................................196
5.9.1
Linear Guidance Systems
...................................................196
5.9.1.1
Two-Beam Guidance: Leaf-Spring
Guidance
................................................................196
5.9.1.2
Compensated Linear Guidance
..........................199
5.9.2
Remote Center of Rotation Device
....................................200
5.9.3
Motion Amplifications: Lever Principles
..........................203
5.9.3.1
Upscaling Motions
...............................................203
5.9.3.2
Downscaling Motions
.........................................204
5.9.4
Flexures Made Out of Unconventional Material
.............205
5.9.4.1
Shape Memory Alloys Flexures
.........................205
5.9.4.2
Flexures Made Out of Fused Silica Glass
.........206
5.9.4.3
Flexures Made Out of Single Crystals
(Silicon)
..................................................................207
References
.....................................................................................................208
General Books on the Topic That Have Been Published Recently
........209
Exercises
........................................................................................................210
Reference
.......................................................................................................215
6.
Actuators
.......................................................................................................217
6.1
Introduction
.......................................................................................217
6.2
Design Principles of Actuators
........................................................218
6.2.1
Introduction
..........................................................................218
6.2.2
Amplification of Motion
......................................................219
6.2.2.1
Bimorph Assembly
...............................................219
6.2.2.2
In-Plane Motion Amplification
...........................220
6.3
Electrostatic Actuators
.....................................................................223
6.4
Thermal-Based Actuators
................................................................229
6.4.1
Thermal Expansion as a Means to Produce Motion
.......229
Contents xi
6.4.2
Thermal Bimorph (Bilayer Structures).............................
230
6.4.2.1 Expression
of the Beam Curvature for a
Bimorph as a Function of the Temperature
Difference
..............................................................231
6.4.2.2
Maximum Stress Found in the Beam
................231
6.4.2.3
Stoney Equation: Thin Films/Substrate
Bimorph
.................................................................231
6.4.3
Monolithic Thermal Expansion Actuators
.......................232
6.5
Shape Memory Alloys
......................................................................234
6.5.1
Introduction: Phenomenological Description
.................234
6.5.2
Phase Transformation: Stress/Temperature
Diagram
.................................................................................237
6.5.3
Shape Memory Effect
..........................................................240
6.5.4
SMA Microactuators: Design Principles
..........................241
6.5.4.1
Bias Spring
.............................................................241
6.5.5
Antagonistic Design
............................................................244
6.5.6
SMABimorphs
.....................................................................245
6.5.7
Monolithic Designs
..............................................................247
6.5.7.1
Two-Way Shape Memory Effect
.........................248
6.5.7.2
Monolithic Actuators through Partial
Annealing
..............................................................250
6.5.7.3
Design Principles of SMA Actuators:
Summary
...............................................................253
6.6
Piezoelectric Actuators
.....................................................................254
6.6.1
The Direct Piezoelectric Effect
...........................................254
6.6.2
The Converse Piezoelectric Effect
.....................................256
6.6.3
Piezocrystals and Symmetry
.............................................257
6.6.4
Constitutive Equations of Piezoelectric Actuators
.........258
6.6.5
Polling Process
.....................................................................259
6.6.6
Characteristic Behavior of Piezoactuators
.......................260
6.6.6.1
Strain Response as a Function of Applied
Voltage: The Butterfly Curve
...........................260
6.6.6.2
Hysteresis and Creeping Behavior
....................261
6.6.6.3
Energy Conversion (Coupling Efficiency)
........262
6.6.6.4
Energy Loss in the Material
................................263
6.6.7
Piezoelectric Actuators/Design Principles
......................264
6.6.7.1
Concept of Blocking Force
..................................264
6.6.7.2
Effect of a Load
.....................................................266
6.6.7.3
Amplification Principles Used
for Piezoactuator Technology
.............................266
6.6.8
Piezoelectric Motors: Various Principles
..........................269
6.6.8.1
Ultrasonic Motors
.................................................269
6.6.8.2
Stick-and-Slip Piezoactuators
.............................271
6.6.8.3
Impact-Drive Mechanism
...................................272
6.6.8.4
InchWorm® Construction Principle
...................273
xii
Contents
6.7
Actuators: Other Principles
.............................................................274
6.7.1
Magnetostrictive
..................................................................274
6.7.2
Magnetic Shape Memory Alloys
.......................................274
References
.....................................................................................................275
Further Readings
.........................................................................................276
Exercises
........................................................................................................280
7.
Sensors
..........................................................................................................283
7.1
Sensors in Microrobotics
..................................................................283
7.1.1
Introduction
..........................................................................283
7.1.2
Sensors Terminology
...........................................................284
7.1.2.1
Noise
......................................................................284
7.1.2.2
Accuracy
................................................................284
7.1.2.3
Precision
................................................................284
7.1.2.4
Standard Sample Deviation of a Random
Variable
..................................................................285
7.1.2.5
Standard Errors
....................................................286
7.1.2.6
Resolution
..............................................................286
7.1.2.7
Hysteresis
..............................................................286
7.1.2.8
Nonlinearity
..........................................................287
7.1.2.9
Bandwidth
.............................................................287
7.2
Sensing Technologies for Displacements
......................................287
7.2.1
Introduction
..........................................................................287
7.3
Electromagnetic Sensors
..................................................................288
7.3.1
Inductive Sensors
.................................................................288
7.3.1.1
LVDT: Working Principle
....................................288
7.3.1.2
Eddy Current-Based Sensor
...............................289
7.3.2
Capacitive
Sensors
...............................................................290
7.3.3
Resistive Elements
...............................................................291
7.4
Optical-Based Displacement Sensors
.............................................293
7.4.1
Beam-Tracking Methods: Position Sensing Devices
.......294
7.4.1.1
Four-Quadrant Detectors (Discrete PSDs)
.......294
7.4.1.2
Continuous PSDs
..................................................295
7.4.1.3
Laser
Triangulation
Setup
..................................296
7.4.2
Sensors Based on Light Intensity Modulation:
Shadow-Projection Sensors
................................................297
7.4.3
Displacement Sensors Based on Optical Phase
Difference: Interferometers
................................................298
7.4.4
Waveguides Coupling
.........................................................301
7.5
Motion Tracking with Microscopes
...............................................304
7.5.1
Pattern Recognition Techniques
........................................305
7.5.2
Optical Microscope
..............................................................307
7.5.2.1
Working Principle of a Microscope:
A Simplified Description
.....................................307
7.5.2.2
Description That Incorporates
the Waviness of Light
..........................................309
Contents xiii
7.5.2.3
Field of View of a Microscope
............................311
7.5.2.4
Depth of Field
.......................................................312
7.5.3
Scanning Electron Microscope
..........................................313
References
.....................................................................................................318
Part III Implementation, Applications, and Future
Prospects
8.
Implementation: Integration and Fabrication Aspects
.......................321
8.1
Introduction
.......................................................................................321
8.1.1
Scope of This Chapter
.........................................................321
8.1.2
Manufacturing Requirements
for
Microrobots.....................................................................321
8.2
An Overview of
Microfabrication
Principles
................................324
8.2.1
Introduction
..........................................................................324
8.2.2
Surface Micromachining and Lithography-Based
Processes
...............................................................................324
8.2.3
High-Aspect Ratio Micromachining
(Electro-Discharge Machining, Laser,
DRIE,
etc.)
...........326
8.2.3.1
Deep-Reactive Ion Etching
..................................327
8.2.3.2 LIGA
and
UV-LIGA (SU-8).................................327
8.2.3.3
Electro-Discharge Machining
............................329
8.2.3.4
Laser Micromachining
........................................331
8.2.3.5
Photoetchable Glass
.............................................337
8.2.3.6
Other Processes for
Micropart:
Water-Jet
Machining, Ultrasonic Machining,
Fine Stamping, and Sandblasting
......................337
8.3
Design Selection Criteria
.................................................................339
8.3.1
A Qualitative Comparison of Micromachining
Processes
...............................................................................340
8.3.2
Actuators and Micromachining Processes
......................341
8.3.3
Flexures Micromachining
..................................................342
8.3.4
Packaging/Integration Aspects
.........................................342
References
.....................................................................................................343
9.
State of the Art and Future Directions in Microrobotics
...................345
9.1
Introduction
.......................................................................................345
9.2
Applications in Medicine
.................................................................346
9.2.1
Mini-Invasive Surgery
.........................................................346
9.2.2
Surgical Tools: Active
Endoscopes
....................................346
9.2.3
Smart Pills
.............................................................................348
9.2.4
Microrobotics for Cell Biology
...........................................350
9.2.5
Other Illustrations on the Use of Microrobotic
Tools in Biology
....................................................................351
x¡v
Contents
9.3
Microrobotics/Nanorobotics
for
Materials Science
Study..........
352
9.4
Tools for Microassembly: Microgripper Technologies
Overview
............................................................................................354
9.4.1
Introduction: From
Gripper
to Microgripper
..................356
9.4.2 Grippers
with Moving Parts Using New Actuator
Technologies
.........................................................................358
9.4.2.1
Piezoelectric Microgrippers
................................358
9.4.2.2
Electrostatic-Actuated Microgrippers
...............359
9.4.2.3
Bimorph
.................................................................361
9.4.2.4
Thermal Expansion
..............................................362
9.4.2.5
Asymmetrical Thermal Microgrippers
.............363
9.4.2.6
Shape Memory Alloys
.........................................364
9.4.2.7
Electropneumatic- and Electrohydraulic-
Actuating
Grippers: FMA
Microgrippers
.........367
9.4.3
Fluidic
Grippers
Vacuum Technologies
...........................369
9.4.3.1
Water Drop
Gripper:
Gripping with
Capillary Forces
....................................................370
9.4.3.2
Ice
Gripper:
Eureka MICROGRIP Project
.........372
9.4.4
Manipulation by Modulating Contact Adhesions
..........373
9.4.5
Noncontact
Grippers
and Transportation Systems:
Laser Trap
Gripper
..............................................................375
9.4.5.1
Dielectrophoretic and Electrostatic
Transportation Systems
.......................................377
9.4.5.2
Ultrasonic Standing Wave Field
Transportation System
.........................................378
9.4.6
Microassembly Platforms and Manipulators
..................379
9.4.7
Microassembly Case Study
................................................385
9.4.7.1
Illustration
1:
Fiber-Endoscopes Assembly
......385
9.4.7.2
Illustration
2: Leica
Assembly of
TRIMO-SMD: Illustration of the Concept
of Task-Oriented Assembly
.................................387
9.4.8
Toward Self-Assembly
.........................................................389
9.5
Autonomous or Semiautonomous
Microrobots...........................391
9.5.1
Miniature Robots for Collaborative Robotics Studies
.... 391
9.5.2
Remote Actuation Microrobotics (Untether Robot)
........393
References
.............................................................................................................394
Appendix A: Illustration of Student Projects
...........................................401
A.I Topics
..................................................................................................401
АЛЛ
Topic
1:
Microgripper for Vertically Mounted Pins
........401
A.l.l.l Description
............................................................401
A.I.
1.2
Questions
...............................................................401
A.1.2 Topic
2:
Monolithic Slit Mechanism
..................................401
A.l.2.1 Description
............................................................401
A.l.2.2 Questions
...............................................................402
Contents xv
A.1.3
Topic
3:
Χ-Υ-θ
Planar Robot
..............................................402
A.l.3.1 Description
............................................................402
A.l.3.2 Questions
...............................................................402
A.
1.4
Topic
4:
Gripper
with Self-Aligning Compliant
Mechanism
...........................................................................402
A.l.4.1 Description
............................................................402
A.l.4.2 Task
.........................................................................402
A.l.4.3 Questions
...............................................................403
A.1.5 Topic
5:
θ-φ-Ζ
Robot for Positioning
................................403
A.l.5.1 Description
............................................................403
A.l.5.2 Questions
...............................................................403
A.2 Project Rules and Assessment Method
..........................................403
Appendix B: Types of Joints in Mechanism
..............................................405
B.I Free and Fully Constrained Object
................................................405
B.2 Five Degrees-of-Freedom Joints
......................................................405
B.3 Four Degrees-of-Freedom Joints
.....................................................406
B.4 Three Degrees-of-Freedom Joints
...................................................407
B.5 Two Degrees-of-Freedom Joints
......................................................408
B.6 One Degree-of-Freedom Joints
........................................................409
Appendix C: Elementary Flexure Joints: Stiffness Matrix
....................411
C.I Cantilever Beams
..............................................................................411
C.I.I Parameterization
..................................................................411
C.1.2 Stiffness Matrix at the Center of Symmetry
....................411
C.1.3 Loading Case
........................................................................411
C.2 Notch Hinge (with Circular Profile)
...............................................411
C.2.1 Parameterization
..................................................................411
C.2.2 Stiffness Matrix
....................................................................413
C.2.3 Loading Case
........................................................................413
C.3 Cross Pivot
.........................................................................................413
C.4 The Cartwheel Hinge
......................................................................415
C.5 Double Beam
......................................................................................416
C.6 Linear Guidance
...............................................................................418
C.6.1 Leaf Spring
............................................................................418
C.6.2 Linear Guidance with Four Elemental Hinges:
General Case
........................................................................418
Appendix D: Material Properties Tables
...................................................421
D.I Properties of Materials
.....................................................................421
D.2 Actuating Materials
..........................................................................422
References
.....................................................................................................424
Index
.....................................................................................................................425
Engineering/Materials
MICROROBOTICS
Methods
Applications
by Yves Bellouard
From conception to realization, Microrobotics: Methods and Applications
covers all aspects of miniaturized systems that physically interact and
manipulate objects at the
microscale.
It provides a solid understanding of
this multidisciplinary field, which combines areas of materials science,
mechanical engineering, and applied physics.
Requiring no formal prerequisites, the book begins by introducing basic
results from the strength of materials, mechanics, and applied physics. After
forming this foundation, the author describes various flexure systems,
actuators, and sensors as well as fabrication techniques relevant for
microrobots.
He then explores applications of microrobotics in medicine,
materials science, and other areas. Numerous exercises encourage hands-
on appreciation of the content.
Focusing on design-oriented multidisciplinary activities, this text describes
how to implement various methods for solving microrobotics problems and
designing mechanical systems at the
microscale.
With a broad overview of
the current state of the art from research and industry perspectives, the
book envisions the future of microrobotics and explores its potential
contributions to technology.
FEATURES
•
Presents a multidisciplinary, design-oriented approach that integrates
important concepts of applied physics with engineering
•
Discusses actuators and sensing technologies that are applicable
to a broad array of microsystems
•
Provides an overview of emerging applications, along with the current
status of the field from both research and industrial points of view
•
Offers ancillary material on a companion Web site
CRC
Press
Taylor
&
Francis Croup
iforma business
6000
Broken Sound Parkway, NW
Suite
300,
Boca Raton, FL
33487
270
Madison Avenue
New York, NY
10016
2
Pork Square, Milton Park
Abingdon, Oxon
ОХЫ
4RN, UK
|
adam_txt |
Contents
Preface
.xvii
Author
.xix
1.
Introduction
.1
1.1
What Is Microrobotics?
.1
1.2
The Microworld
.3
1.3 Microrobots
for What?
.5
1.3.1 Microrobots in
Medicine: Exploring the Human
Body
.6
1.3.2
Assembling Heterogeneous Components
.6
1.3.3
Materials Sciences
—
Exploring New Frontiers
in Research
.7
1.3.4
Mobile
Microrobots.8
1.4
What Are the Science and Technology behind Microrobotics?
.10
1.4.1
Structure of the Book
.11
1.4.2
Overview of Chapters
.11
Part I Prerequisites
2.
Fundamental Concepts of Linear Elasticity
.15
2.1
Mechanics of Materials in the Context of Microrobotics
.15
2.1.1
Introduction
.15
2.1.2
Typical Material Behavior Response to a Load
.15
2.1.3
Material Structures across Scales
.17
2.1.4
Strength of Materials for Microrobotics
.19
2.2
Concept of Stress
.19
2.3
Concept of Deformation: Strain
.21
2.3.1
Single-Axis Tensile End Shear Strain
.21
2.3.2
Plane Strain
.22
2.3.3
Three-Dimensional Case and Strain Tensor
.24
2.3.4
Practical Implementation
.24
2.4
Elasticity: Hooke's Law
.25
2.4.1
Linear Elastic Model
.25
2.4.2
Generalization of Hooke's Law
.27
2.4.3
Effect of Temperature: Illustration
for the Two-Dimensional Case
.28
2.5
Properties of Plane Area: Second Moment of Inertia
.29
vi
Contents
2.6 Element
of Beam Theory
.30
2.6.1
Elastica.
30
2.6.2
Stress State in a Beam during Bending
.31
2.6.3
Fundamental Equations for Bending: Simple Beam
Theory
.33
2.7
Torsion
.35
2.7.1
Loading Case Description
.35
2.8
Yield Criteria
.37
2.8.1
Tresca
and
von
Mises
Criteria
.37
2.8.1.1
Tresca
Criteria
.37
2.8.1.2 von
Mises
Criteria
.38
2.8.2
Ductile versus Brittle Materials
.38
References and Further Readings
.39
Exercises
.40
3.
Fundamental Concepts of Kinematics
.43
3.1
Problem Definition
.43
3.2
Basics Tools for Kinematic Analysis
.46
3.2.1
Introduction: Notations Used in This Book
.46
3.2.1.1
Vectors
.46
3.2.1.2
Coordinate Frame
.46
3.2.1.3
Rigid Body
.46
3.2.1.4
Velocity Vector
.47
3.2.1.5
Angular Velocities (Noted
ω)
.47
3.2.1.6
Force Vectors
.47
3.2.2
Rigid Body
.48
3.2.3
Spatial Orientation of a Solid Body Relative
to a Coordinate Frame
.48
3.2.4
Rotation Matrices
.49
3.2.5
Euler
Angles
.50
3.2.6
Essential Properties of Rotation Matrices
.52
3.3
Kinematics
.52
3.3.1
Definition
.52
3.3.2
Spatial Vectors Using Wrenches and Screw
Notations
.53
3.3.3
Spatial Velocity (Called Twist)
.56
3.4
Kinetics
.58
3.4.1
Force Spatial Vector Representation (Wrench)
.58
3.5
Kinetics and Dynamics
.59
3.5.1
Introduction
.59
3.5.2
Moment of Inertia
.59
3.6
Linear and Angular Momentum
.61
3.6.1
Kinetic Energy
.62
3.7
Equations of Motion
.63
Contents
vii
3.7.1
Newton's and Euler's Laws
.63
3.7.2
Newton's Third Axiom
.64
3.8 Lagrange
Formalism
.64
3.8.1
Virtual Work Principle and the d'Alembert Principle
.64
3.8.2 Lagrange
Equations
.65
3.9
Illustrative Example: The Double Pendulum
.65
3.9.1
Description
.65
3.9.2
Lagrangian of the System
.68
3.9.3
Equation of Motion Using Newton-Euler
.71
3.10
Analysis of Multibody Systems
.74
3.10.1
Introduction
.74
3.10.2
Parametric Representation of a Mechanism
.76
3.10.3
Joints
.77
3.10.4
Graphical Representation of a Mechanism
.77
3.10.5
Mobility of a Mechanism
.80
3.10.6
The
Chebyshev-Grübler-Kutzbach
Formula
.81
3.10.7
Mobility Analysis: Illustrative Examples
.82
3.11
Forward Kinematics (Geometrical Model)
.86
3.11.1
Methods Based on
3
χ
3
Matrices
.86
3.11.2
Methods Based on
4
χ
4
Matrices (Homogeneous
Matrices)
.87
3.11.3
Discussion about Forward Kinematics
.89
3.12
Direct Kinematics: Jacobian of a Robot
.89
3.12.1
Definition
.89
3.12.2
Practical Implementation
.90
3.12.3
Mechanism with Loops: Parallel Mechanism
.95
3.13
Inverse Kinematics
.97
References
.100
Further Readings
.100
Exercises
.101
Part II Core Technology
4.
Applied Physics for Microrobotics
.113
4.1
Scaling Effects
.113
4.1.1
Introduction
.113
4.1.2
Scaling Laws
.114
4.1.3
Scaling Effect on Surface and Volume
.114
4.1.4
Effects on Various Physical Properties
.115
4.1.4.1
Mass
.115
4.1.4.2
Moment of Inertia
.115
4.1.4.3
Spring Force and Oscillating
Frequency
.116
viu
Contents
4.1.5 Illustration
of Scaling Effects on Electrical
Properties
.116
4.1.5.1
Electrical Properties
.116
4.1.5.2
Inductance
.117
4.1.6
Scaling Effect on Fluids
.117
4.1.7
Scaling Effect on Physical Forces
.118
4.1.7.1
Gravitational Forces
.118
4.1.7.2
Electromagnetic Forces
.119
4.2
An Introduction to the Physics of Adhesion
.121
4.2.1
Types of Contact
.121
4.2.2
Illustration of Adhesion Force Measurements
Using Atomic Force Microscopy
.122
4.2.3
Modeling of the Contact Regions
.126
4.2.3.1
Hertz Model
.126
4.2.3.2
Sneddon Model
.127
4.2.4
Modeling of the Contact Regions Taking
into Account Surface Forces
.128
4.2.4.1
Bradley Model
.128
4.2.4.2 Derjaguin-Müller-Toporov
(DMT)
Theory
.128
4.2.4.3
Johnson-Kendall-Roberts Theory
.129
4.2.4.4
Maugis Theory
.129
4.2.5
Comparison/Domain of Validity
.130
4.2.6
Nature of Adhesion Forces
.131
4.2.6.1
Capillary Forces
.131
4.2.6.2
Electrostatic Forces
.133
4.2.6.3
Van
der Waals
Forces
.134
4.2.7
Comparison between Adhesion Forces
.135
4.3
Material Structure and Properties: Crystal
and Symmetry
.136
4.3.1
Introduction: Rationale for This Section
in a Microrobotics Book
.136
4.3.2
Materials Come in Different Structures
.137
4.3.2.1
Amorphous
.137
4.3.2.2
Crystalline
.137
4.3.2.3
Polycrystalline
.138
4.3.2.4
Glass Materials
.138
4.3.2.5
The Concept of Phase in Materials
Science
.138
4.3.2.6
Nanoscale Structures as Forms of Atomic
Layers
.138
4.3.3
An Introduction to the Concept of Tensors
in Physics
.139
4.3.3.1
The Dummy Suffix Notation
.140
4.3.3.2
Transformations
.141
Contents ix
4.3.4 Matrix Notation.143
4.3.4.1
Strain, Stress, and Stiffness Tensors
in Matrix Notations
.143
4.3.4.2
Change of Coordinate Frame
.144
4.3.5
Miller Indices and Their Use to Describe
Geometrical Entities Related to Crystals
.145
4.3.6
Illustration of the Use of Miller Indices: The Crystal
Structure of Silicon
.147
4.3.7
The Effect of Crystal Symmetry on Physical
Properties of Crystals
.150
4.3.8
Illustration: Magnitude of a Physical Property
in a Given Direction
.150
References
.153
Exercises
.155
5.
Flexures
.159
5.1
Introduction
.160
5.1.1
Scaling Effect
.160
5.1.2
Definition of a Flexure
.160
5.1.3
Why Use Flexures?
.162
5.1.4
Examples of Flexures
.163
5.1.4.1
Early Example of Flexures
.163
5.1.4.2
The CD/DVD Player Flexure (Low-Cost
Flexure)
.163
5.1.4.3
Illustration of Flexures Used in MEMS
Devices
.163
5.2
Historical Perspective
.166
5.3
Mathematical Formalism: Generalized Stiffness Matrix
.166
5.3.1
Problem Definition
.166
5.3.2
Deformation Twist
.167
5.3.3
Generalized Stiffness Matrix
.168
5.3.4
Coordinates Transform to Express the Stiffness
Matrix at Any Arbitrary Point
.169
5.3.5
Overall Mechanism of Stiffness: Stiffness
at the End-Effector
.170
5.3.6
Methodology to Analyze Flexure Stiffness
.173
5.4
Elemental Flexures (Building Blocks): Design
Methodology
.173
5.4.1
Introduction
.173
5.4.2
Bending Mode
.173
5.4.3
Torsion Mode
.174
5.5
Elemental Flexures: Cantilever Beam
.174
5.5.1
Stiffness Matrix for the Cantilever Beam
.176
5.5.1.1
Principal Stiffness
.176
5.5.1.2
Kinematics Model
.179
Contents
5.5.1.3 Illustration
of the Use of the Stiffness
Matrix Transport Formula
.180
5.5.1.4
Position of the Center of Rotation
.183
5.5.2
Range Motion
.183
5.5.2.1
Effect of
Compressive
Load: Mechanical
Instability
.184
5.5.2.2
Effect of Combined Loads Applied
on a Cantilever
.184
5.6
Notch Hinge
.186
5.6.1
Stiffness along the Other Axis
.187
5.7
Cross Pivot
.187
5.7.1
Cross-Strip Flexure (Assembled Cross Pivot)
.188
5.7.2
Monolithic Cross Pivot
.191
5.8
System Based on Flexures: Design Methodology
.194
5.8.1
From Building Blocks to a System
.194
5.8.2
Designing Steps
.195
5.9
Flexure Systems
.196
5.9.1
Linear Guidance Systems
.196
5.9.1.1
Two-Beam Guidance: Leaf-Spring
Guidance
.196
5.9.1.2
Compensated Linear Guidance
.199
5.9.2
Remote Center of Rotation Device
.200
5.9.3
Motion Amplifications: Lever Principles
.203
5.9.3.1
Upscaling Motions
.203
5.9.3.2
Downscaling Motions
.204
5.9.4
Flexures Made Out of Unconventional Material
.205
5.9.4.1
Shape Memory Alloys Flexures
.205
5.9.4.2
Flexures Made Out of Fused Silica Glass
.206
5.9.4.3
Flexures Made Out of Single Crystals
(Silicon)
.207
References
.208
General Books on the Topic That Have Been Published Recently
.209
Exercises
.210
Reference
.215
6.
Actuators
.217
6.1
Introduction
.217
6.2
Design Principles of Actuators
.218
6.2.1
Introduction
.218
6.2.2
Amplification of Motion
.219
6.2.2.1
Bimorph Assembly
.219
6.2.2.2
In-Plane Motion Amplification
.220
6.3
Electrostatic Actuators
.223
6.4
Thermal-Based Actuators
.229
6.4.1
Thermal Expansion as a Means to Produce Motion
.229
Contents xi
6.4.2
Thermal Bimorph (Bilayer Structures).
230
6.4.2.1 Expression
of the Beam Curvature for a
Bimorph as a Function of the Temperature
Difference
.231
6.4.2.2
Maximum Stress Found in the Beam
.231
6.4.2.3
Stoney Equation: Thin Films/Substrate
Bimorph
.231
6.4.3
Monolithic Thermal Expansion Actuators
.232
6.5
Shape Memory Alloys
.234
6.5.1
Introduction: Phenomenological Description
.234
6.5.2
Phase Transformation: Stress/Temperature
Diagram
.237
6.5.3
Shape Memory Effect
.240
6.5.4
SMA Microactuators: Design Principles
.241
6.5.4.1
Bias Spring
.241
6.5.5
Antagonistic Design
.244
6.5.6
SMABimorphs
.245
6.5.7
Monolithic Designs
.247
6.5.7.1
Two-Way Shape Memory Effect
.248
6.5.7.2
Monolithic Actuators through Partial
Annealing
.250
6.5.7.3
Design Principles of SMA Actuators:
Summary
.253
6.6
Piezoelectric Actuators
.254
6.6.1
The Direct Piezoelectric Effect
.254
6.6.2
The Converse Piezoelectric Effect
.256
6.6.3
Piezocrystals and Symmetry
.257
6.6.4
Constitutive Equations of Piezoelectric Actuators
.258
6.6.5
Polling Process
.259
6.6.6
Characteristic Behavior of Piezoactuators
.260
6.6.6.1
Strain Response as a Function of Applied
Voltage: "The Butterfly Curve"
.260
6.6.6.2
Hysteresis and Creeping Behavior
.261
6.6.6.3
Energy Conversion (Coupling Efficiency)
.262
6.6.6.4
Energy Loss in the Material
.263
6.6.7
Piezoelectric Actuators/Design Principles
.264
6.6.7.1
Concept of Blocking Force
.264
6.6.7.2
Effect of a Load
.266
6.6.7.3
Amplification Principles Used
for Piezoactuator Technology
.266
6.6.8
Piezoelectric Motors: Various Principles
.269
6.6.8.1
Ultrasonic Motors
.269
6.6.8.2
Stick-and-Slip Piezoactuators
.271
6.6.8.3
Impact-Drive Mechanism
.272
6.6.8.4
InchWorm® Construction Principle
.273
xii
Contents
6.7
Actuators: Other Principles
.274
6.7.1
Magnetostrictive
.274
6.7.2
Magnetic Shape Memory Alloys
.274
References
.275
Further Readings
.276
Exercises
.280
7.
Sensors
.283
7.1
Sensors in Microrobotics
.283
7.1.1
Introduction
.283
7.1.2
Sensors Terminology
.284
7.1.2.1
Noise
.284
7.1.2.2
Accuracy
.284
7.1.2.3
Precision
.284
7.1.2.4
Standard Sample Deviation of a Random
Variable
.285
7.1.2.5
Standard Errors
.286
7.1.2.6
Resolution
.286
7.1.2.7
Hysteresis
.286
7.1.2.8
Nonlinearity
.287
7.1.2.9
Bandwidth
.287
7.2
Sensing Technologies for Displacements
.287
7.2.1
Introduction
.287
7.3
Electromagnetic Sensors
.288
7.3.1
Inductive Sensors
.288
7.3.1.1
LVDT: Working Principle
.288
7.3.1.2
Eddy Current-Based Sensor
.289
7.3.2
Capacitive
Sensors
.290
7.3.3
Resistive Elements
.291
7.4
Optical-Based Displacement Sensors
.293
7.4.1
Beam-Tracking Methods: Position Sensing Devices
.294
7.4.1.1
Four-Quadrant Detectors (Discrete PSDs)
.294
7.4.1.2
Continuous PSDs
.295
7.4.1.3
Laser
Triangulation
Setup
.296
7.4.2
Sensors Based on Light Intensity Modulation:
Shadow-Projection Sensors
.297
7.4.3
Displacement Sensors Based on Optical Phase
Difference: Interferometers
.298
7.4.4
Waveguides Coupling
.301
7.5
Motion Tracking with Microscopes
.304
7.5.1
Pattern Recognition Techniques
.305
7.5.2
Optical Microscope
.307
7.5.2.1
Working Principle of a Microscope:
A Simplified Description
.307
7.5.2.2
Description That Incorporates
the Waviness of Light
.309
Contents xiii
7.5.2.3
Field of View of a Microscope
.311
7.5.2.4
Depth of Field
.312
7.5.3
Scanning Electron Microscope
.313
References
.318
Part III Implementation, Applications, and Future
Prospects
8.
Implementation: Integration and Fabrication Aspects
.321
8.1
Introduction
.321
8.1.1
Scope of This Chapter
.321
8.1.2
Manufacturing Requirements
for
Microrobots.321
8.2
An Overview of
Microfabrication
Principles
.324
8.2.1
Introduction
.324
8.2.2
Surface Micromachining and Lithography-Based
Processes
.324
8.2.3
High-Aspect Ratio Micromachining
(Electro-Discharge Machining, Laser,
DRIE,
etc.)
.326
8.2.3.1
Deep-Reactive Ion Etching
.327
8.2.3.2 LIGA
and
UV-LIGA (SU-8).327
8.2.3.3
Electro-Discharge Machining
.329
8.2.3.4
Laser Micromachining
.331
8.2.3.5
Photoetchable Glass
.337
8.2.3.6
Other Processes for
Micropart:
Water-Jet
Machining, Ultrasonic Machining,
Fine Stamping, and Sandblasting
.337
8.3
Design Selection Criteria
.339
8.3.1
A Qualitative Comparison of Micromachining
Processes
.340
8.3.2
Actuators and Micromachining Processes
.341
8.3.3
Flexures Micromachining
.342
8.3.4
Packaging/Integration Aspects
.342
References
.343
9.
State of the Art and Future Directions in Microrobotics
.345
9.1
Introduction
.345
9.2
Applications in Medicine
.346
9.2.1
Mini-Invasive Surgery
.346
9.2.2
Surgical Tools: Active
Endoscopes
.346
9.2.3
Smart Pills
.348
9.2.4
Microrobotics for Cell Biology
.350
9.2.5
Other Illustrations on the Use of Microrobotic
Tools in Biology
.351
x¡v
Contents
9.3
Microrobotics/Nanorobotics
for
Materials Science
Study.
352
9.4
Tools for Microassembly: Microgripper Technologies
Overview
.354
9.4.1
Introduction: From
Gripper
to Microgripper
.356
9.4.2 Grippers
with Moving Parts Using New Actuator
Technologies
.358
9.4.2.1
Piezoelectric Microgrippers
.358
9.4.2.2
Electrostatic-Actuated Microgrippers
.359
9.4.2.3
Bimorph
.361
9.4.2.4
Thermal Expansion
.362
9.4.2.5
Asymmetrical Thermal Microgrippers
.363
9.4.2.6
Shape Memory Alloys
.364
9.4.2.7
Electropneumatic- and Electrohydraulic-
Actuating
Grippers: FMA
Microgrippers
.367
9.4.3
Fluidic
Grippers
Vacuum Technologies
.369
9.4.3.1
Water Drop
Gripper:
Gripping with
Capillary Forces
.370
9.4.3.2
Ice
Gripper:
Eureka MICROGRIP Project
.372
9.4.4
Manipulation by Modulating Contact Adhesions
.373
9.4.5
Noncontact
Grippers
and Transportation Systems:
Laser Trap
Gripper
.375
9.4.5.1
Dielectrophoretic and Electrostatic
Transportation Systems
.377
9.4.5.2
Ultrasonic Standing Wave Field
Transportation System
.378
9.4.6
Microassembly Platforms and Manipulators
.379
9.4.7
Microassembly Case Study
.385
9.4.7.1
Illustration
1:
Fiber-Endoscopes Assembly
.385
9.4.7.2
Illustration
2: Leica
Assembly of
TRIMO-SMD: Illustration of the Concept
of Task-Oriented Assembly
.387
9.4.8
Toward Self-Assembly
.389
9.5
Autonomous or Semiautonomous
Microrobots.391
9.5.1
Miniature Robots for Collaborative Robotics Studies
. 391
9.5.2
Remote Actuation Microrobotics (Untether Robot)
.393
References
.394
Appendix A: Illustration of Student Projects
.401
A.I Topics
.401
АЛЛ
Topic
1:
Microgripper for Vertically Mounted Pins
.401
A.l.l.l Description
.401
A.I.
1.2
Questions
.401
A.1.2 Topic
2:
Monolithic Slit Mechanism
.401
A.l.2.1 Description
.401
A.l.2.2 Questions
.402
Contents xv
A.1.3
Topic
3:
Χ-Υ-θ
Planar Robot
.402
A.l.3.1 Description
.402
A.l.3.2 Questions
.402
A.
1.4
Topic
4:
Gripper
with Self-Aligning Compliant
Mechanism
.402
A.l.4.1 Description
.402
A.l.4.2 Task
.402
A.l.4.3 Questions
.403
A.1.5 Topic
5:
θ-φ-Ζ
Robot for Positioning
.403
A.l.5.1 Description
.403
A.l.5.2 Questions
.403
A.2 Project Rules and Assessment Method
.403
Appendix B: Types of Joints in Mechanism
.405
B.I Free and Fully Constrained Object
.405
B.2 Five Degrees-of-Freedom Joints
.405
B.3 Four Degrees-of-Freedom Joints
.406
B.4 Three Degrees-of-Freedom Joints
.407
B.5 Two Degrees-of-Freedom Joints
.408
B.6 One Degree-of-Freedom Joints
.409
Appendix C: Elementary Flexure Joints: Stiffness Matrix
.411
C.I Cantilever Beams
.411
C.I.I Parameterization
.411
C.1.2 Stiffness Matrix at the Center of Symmetry
.411
C.1.3 Loading Case
.411
C.2 Notch Hinge (with Circular Profile)
.411
C.2.1 Parameterization
.411
C.2.2 Stiffness Matrix
.413
C.2.3 Loading Case
.413
C.3 Cross Pivot
.413
C.4 The Cartwheel Hinge
.415
C.5 Double Beam
.416
C.6 Linear Guidance
.418
C.6.1 Leaf Spring
.418
C.6.2 Linear Guidance with Four Elemental Hinges:
General Case
.418
Appendix D: Material Properties Tables
.421
D.I Properties of Materials
.421
D.2 Actuating Materials
.422
References
.424
Index
.425
Engineering/Materials
MICROROBOTICS
Methods
Applications
by Yves Bellouard
From conception to realization, Microrobotics: Methods and Applications
covers all aspects of miniaturized systems that physically interact and
manipulate objects at the
microscale.
It provides a solid understanding of
this multidisciplinary field, which combines areas of materials science,
mechanical engineering, and applied physics.
Requiring no formal prerequisites, the book begins by introducing basic
results from the strength of materials, mechanics, and applied physics. After
forming this foundation, the author describes various flexure systems,
actuators, and sensors as well as fabrication techniques relevant for
microrobots.
He then explores applications of microrobotics in medicine,
materials science, and other areas. Numerous exercises encourage hands-
on appreciation of the content.
Focusing on design-oriented multidisciplinary activities, this text describes
how to implement various methods for solving microrobotics problems and
designing mechanical systems at the
microscale.
With a broad overview of
the current state of the art from research and industry perspectives, the
book envisions the future of microrobotics and explores its potential
contributions to technology.
FEATURES
•
Presents a multidisciplinary, design-oriented approach that integrates
important concepts of applied physics with engineering
•
Discusses actuators and sensing technologies that are applicable
to a broad array of microsystems
•
Provides an overview of emerging applications, along with the current
status of the field from both research and industrial points of view
•
Offers ancillary material on a companion Web site
CRC
Press
Taylor
&
Francis Croup
iforma business
6000
Broken Sound Parkway, NW
Suite
300,
Boca Raton, FL
33487
270
Madison Avenue
New York, NY
10016
2
Pork Square, Milton Park
Abingdon, Oxon
ОХЫ
4RN, UK |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bellouard, Yves |
author_facet | Bellouard, Yves |
author_role | aut |
author_sort | Bellouard, Yves |
author_variant | y b yb |
building | Verbundindex |
bvnumber | BV035073861 |
classification_rvk | ZQ 6250 |
ctrlnum | (OCoLC)318292813 (DE-599)HBZHT016270636 |
dewey-full | 629.892 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.892 |
dewey-search | 629.892 |
dewey-sort | 3629.892 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01765nam a2200433 c 4500</leader><controlfield tag="001">BV035073861</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100510 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080929s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA885957</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420061956</subfield><subfield code="9">978-1-4200-6195-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">142006195X</subfield><subfield code="9">1-4200-6195-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)318292813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT016270636</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.892</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 6250</subfield><subfield code="0">(DE-625)158184:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bellouard, Yves</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microrobotics</subfield><subfield code="b">methods and applications</subfield><subfield code="c">Yves Bellouard</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 436 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfabrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfabrication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Robotik</subfield><subfield code="0">(DE-588)4261462-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrosystemtechnik</subfield><subfield code="0">(DE-588)4221617-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Robotik</subfield><subfield code="0">(DE-588)4261462-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikrosystemtechnik</subfield><subfield code="0">(DE-588)4221617-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742215&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742215&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016742215</subfield></datafield></record></collection> |
id | DE-604.BV035073861 |
illustrated | Illustrated |
index_date | 2024-07-02T22:04:54Z |
indexdate | 2024-07-09T21:21:36Z |
institution | BVB |
isbn | 9781420061956 142006195X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016742215 |
oclc_num | 318292813 |
open_access_boolean | |
owner | DE-703 DE-92 DE-11 |
owner_facet | DE-703 DE-92 DE-11 |
physical | XIX, 436 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | CRC Press |
record_format | marc |
spelling | Bellouard, Yves Verfasser aut Microrobotics methods and applications Yves Bellouard Boca Raton, Fla. [u.a.] CRC Press 2010 XIX, 436 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Robotics Microfabrication Robotik (DE-588)4261462-4 gnd rswk-swf Mikrosystemtechnik (DE-588)4221617-5 gnd rswk-swf Robotik (DE-588)4261462-4 s Mikrosystemtechnik (DE-588)4221617-5 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742215&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742215&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Bellouard, Yves Microrobotics methods and applications Robotics Microfabrication Robotik (DE-588)4261462-4 gnd Mikrosystemtechnik (DE-588)4221617-5 gnd |
subject_GND | (DE-588)4261462-4 (DE-588)4221617-5 |
title | Microrobotics methods and applications |
title_auth | Microrobotics methods and applications |
title_exact_search | Microrobotics methods and applications |
title_exact_search_txtP | Microrobotics methods and applications |
title_full | Microrobotics methods and applications Yves Bellouard |
title_fullStr | Microrobotics methods and applications Yves Bellouard |
title_full_unstemmed | Microrobotics methods and applications Yves Bellouard |
title_short | Microrobotics |
title_sort | microrobotics methods and applications |
title_sub | methods and applications |
topic | Robotics Microfabrication Robotik (DE-588)4261462-4 gnd Mikrosystemtechnik (DE-588)4221617-5 gnd |
topic_facet | Robotics Microfabrication Robotik Mikrosystemtechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742215&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742215&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bellouardyves microroboticsmethodsandapplications |