Quantum mechanics: concepts and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester [u.a.]
Wiley
2008
|
Ausgabe: | reprint. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 649 S. Ill., graph. Darst. |
ISBN: | 9780471489443 9780471489436 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035073824 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080929s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780471489443 |9 978-0-471-48944-3 | ||
020 | |a 9780471489436 |9 978-0-471-48943-6 | ||
035 | |a (OCoLC)316002320 | ||
035 | |a (DE-599)BVBBV035073824 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
100 | 1 | |a Zettili, Nouredine |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum mechanics |b concepts and applications |c Nouredine Zettili |
250 | |a reprint. | ||
264 | 1 | |a Chichester [u.a.] |b Wiley |c 2008 | |
300 | |a XIV, 649 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016742179 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138023235878912 |
---|---|
adam_text | Contents
Preface
xiii
1
Origins of Quantum Physics
1
1.1
Historical Note
.................................. 1
1.2
Particle Aspect of Radiation
........................... 4
1.2.1
Blackbody
Radiation
........................... 4
1.2.2
Photoelectric Effect
............................ 10
1.2.3
Compton Effect
.............................. 13
1.2.4
Pair Production
.............................. 15
1.3
Wave Aspect of Particles
............................. 17
1.3.1 de Broglie s
Hypothesis: Matter Waves
................. 17
1.3.2
Experimental Confirmation of
de
Broglie s Hypothesis
......... 18
1.3.3
Matter Waves for Macroscopic Objects
................. 20
1.4
Particles versus Waves
.............................. 21
1.4.1
Classical View of Particles and Waves
.................. 21
1.4.2
Quantum View of Particles and Waves
.................. 23
1.4.3
Wave-Particle Duality: Complementarity
................ 25
1.4.4
Principle of Linear Superposition
.................... 26
1.5
Indeterministic Nature of the Microphysical World
............... 27
1.5.1 Heisenberg
Uncertainty Principle
.................... 27
1.5.2
Probabilistic Interpretation
........................ 29
1.6
Atomic Transitions and Spectroscopy
...................... 30
1.6.1
Rutherford Planetary Model of the Atom
................ 30
1.6.2
Bohr Model of the Hydrogen Atom
................... 30
1.7
Quantization Rules
................................ 36
1.8
Wave Packets
................................... 38
1.8.1
Localized Wave Packets
......................... 38
1.8.2
Wave Packets and the Uncertainty Relations
............... 41
1.8.3
Motion of Wave Packets
......................... 42
1.9
Concluding Remarks
............................... 53
1.10
Solved Problems
................................. 54
Exercises
........................................ 71
vi
CONTENTS
2
Mathematical Tools of Quantum Mechanics
79
2.1
Introduction
.................................... 79
2.2
The Hubert Space and Wave Functions
...................... 79
2.2.1
The Linear Vector Space
......................... 79
2.2.2
The Hubert Space
............................ 80
2.2.3
Dimension and Basis of a Vector Space
................. 81
2.2.4
Square-Integrable Functions: Wave Functions
.............. 83
2.3
Dirac Notation
.................................. 84
2.4
Operators
..................................... 88
2.4.1
General Definitions
............................ 88
2.4.2
Hermitian Adjoint
............................ 89
2.4.3
Projection Operators
........................... 91
2.4.4
Commutator Algebra
........................... 92
2.4.5
Uncertainty Relation between Two Operators
.............. 94
2.4.6
Functions of Operators
.......................... 95
2.4.7
Inverse and Unitary Operators
...................... 96
2.4.8
Eigenvalues and Eigenvectors of an Operator
.............. 97
2.4.9
Infinitesimal and Finite Unitary Transformations
............ 100
2.5
Representation in Discrete Bases
......................... 102
2.5.1
Matrix Representation of
Kets,
Bras and Operators
........... 103
2.5.2
Change of Bases and Unitary Transformations
.............
Ill
2.5.3
Matrix Representation of the Eigenvalue Problem
............ 114
2.6
Representation in Continuous Bases
....................... 117
2.6.1
General Treatment
............................ 117
2.6.2
Position Representation
......................... 119
2.6.3
Momentum Representation
........................ 120
2.6.4
Connecting the Position and Momentum Representations
........ 120
2.6.5
Parity Operator
.............................. 124
2.7
Matrix and Wave Mechanics
........................... 126
2.7.1
Matrix Mechanics
............................ 126
2.7.2
Wave Mechanics
............................. 127
2.8
Concluding Remarks
............................... 128
2.9
Solved Problems
................................. 129
Exercises
........................................ 148
3
Postulates of Quantum Mechanics
157
3.1
Introduction
.................................... 157
3.2
The Basic Postulates of Quantum Mechanics
.................. 157
3.3
The State of a System
............................... 159
3.3.1
Probability Density
............................ 159
3.3.2
The Superposition Principle
....................... 160
3.4
Observables
and Operators
............................ 162
3.5
Measurement in Quantum Mechanics
...................... 164
3.5.1
How Measurements Disturb Systems
.................. 164
3.5.2
Expectation Values
............................ 165
3.5.3
Complete Sets of Commuting Operators
................. 167
3.5.4
Measurement and the Uncertainty Relations
............... 169
CONTENTS
vii
3.6 Time Evolution
of the System s
State....................... 170
3.6.1
Time Evolution Operator
......................... 170
3.6.2
Stationary States: Time-Independent Potentials
............. 171
3.6.3 Schrödinger
Equation and Wave Packets
................. 172
3.6.4
The Conservation of Probability
..................... 173
3.6.5
Time Evolution of Expectation Values
.................. 174
3.7
Symmetries and Conservation Laws
....................... 175
3.7.1
Infinitesimal Unitary Transformations
.................. 175
3.7.2
Finite Unitary Transformations
...................... 176
3.7.3
Symmetries and Conservation Laws
................... 177
3.8
Connecting Quantum to Classical Mechanics
.................. 179
3.8.1
Poisson
Brackets and Commutators
................... 179
3.8.2
The
Ehrenfest
Theorem
.......................... 181
3.8.3
Quantum Mechanics and Classical Mechanics
.............. 182
3.9
Solved Problems
................................. 183
Exercises
........................................ 199
4
One-Dimensional Problems
205
4.1
Introduction
.................................... 205
4.2
Properties of One-Dimensional Motion
...................... 206
4.2.1
Discrete Spectrum (Bound States)
.................... 206
4.2.2
Continuous Spectrum (Unbound States)
................. 207
4.2.3
Mixed Spectrum
............................. 207
4.2.4
Symmetric Potentials and Parity
..................... 207
4.3
The Free Particle: Continuous States
....................... 208
4.4
The Potential Step
................................. 210
4.5
The Potential Barrier and Well
.......................... 213
4.5.1
The Case
E
>
Vo
............................. 214
4.5.2
The Case
E
<
Fo: Tunneling
...................... 216
4.5.3
The Tunneling Effect
........................... 219
4.6
The Infinite Square Well Potential
........................ 220
4.6.1
The Unsymmetric Square Well
...................... 220
4.6.2
The Symmetric Potential Well
...................... 223
4.7
The Finite Square Well Potential
......................... 224
4.7.1
The Scattering Solutions (E
>
Vo)
.................... 224
4.7.2
The Bound State Solutions
(0 <
E
<
Vo)
................ 224
4.8
The Harmonic Oscillator
............................. 227
4.8.1
Energy Eigenvalues
............................ 229
4.8.2
Energy Eigenstates
............................ 231
4.8.3
Energy Eigenstates in Position Space
.................. 231
4.8.4
The Matrix Representation of Various Operators
............ 234
4.8.5
Expectation Values of Various Operators
................ 235
4.9
Numerical Solution of the
Schrödinger
Equation
................. 236
4.9.1
Numerical Procedure
........................... 236
4.9.2
Algorithm
................................. 237
4.10
Solved Problems
................................. 239
Exercises
........................................ 263
viii
CONTENTS
5
Angular
Momentum
269
5.1
Introduction
.................................... 269
5.2
Orbital Angular Momentum
........................... 269
5.3
General Formalism of Angular Momentum
................... 271
5.4
Matrix Representation of Angular Momentum
.................. 276
5.5
Geometrical Representation of Angular Momentum
............... 279
5.6
Spin Angular Momentum
............................. 280
5.6.1
Experimental Evidence of the Spin
.................... 280
5.6.2
General Theory of Spin
.......................... 283
5.6.3
Spin
1/2
and the
Pauli
Matrices
..................... 284
5.7
Eigenfunctions of Orbital Angular Momentum
.................. 287
5.7.1
Eigenfunctions and Eigenvalues of ¿z
.................. 288
5.7.2
Eigenfunctions of I2
........................... 289
5.7.3
Properties of the Spherical Harmonics
.................. 292
5.8
Solved Problems
................................. 295
Exercises
........................................ 311
6
Three-Dimensional Problems
317
6.1
Introduction
....................................317
6.2 3D
Problems in Cartesian Coordinates
......................317
6.2.1
General Treatment: Separation of Variables
...............317
6.2.2
The Free Particle
.............................319
6.2.3
The Box Potential
............................320
6.2.4
The Harmonic Oscillator
.........................322
6.3 3D
Problems in Spherical Coordinates
......................324
6.3.1
Central Potential: General Treatment
..................324
6.3.2
The Free Particle in Spherical Coordinates
...............327
6.3.3
The Spherical Square Well Potential
...................329
6.3.4
The
Isotropie
Harmonic Oscillator
....................330
6.3.5
The Hydrogen Atom
...........................334
6.3.6
Effect of Magnetic Fields on Central Potentials
.............348
6.4
Concluding Remarks
...............................351
6.5
Solved Problems
.................................351
Exercises
........................................368
7
Rotations and Addition of Angular Momenta
373
7.1
Rotations in Classical Physics
.......................... 373
7.2
Rotations in Quantum Mechanics
......................... 375
7.2.1
Infinitesimal Rotations
.......................... 375
7.2.2
Finite Rotations
.............................. 377
7.2.3
Properties of the Rotation Operator
................... 378
7.2.4
Euler
Rotations
.............................. 379
7.2.5
Representation of the Rotation Operator
.................
З8О
7.2.6
Rotation Matrices and the Spherical Harmonics
............. 382
7.3
Addition of Angular Momenta
.......................... 385
7.3.1
Addition of Two Angular Momenta: General Formalism
........ 385
7.3.2
Calculation oftheClebsch-Gordan Coefficients
............. 391
CONTENTS ix
7.3.3
Coupling of Orbital and Spin Angular Momenta
............ 397
7.3.4
Addition of More Than Two Angular Momenta
............. 401
7.3.5
Rotation Matrices for Coupling Two Angular Momenta
......... 402
7.3.6
Isospin
.................................. 404
7.4
Scalar, Vector and Tensor Operators
....................... 407
7.4.1
Scalar Operators
............................. 408
7.4.2
Vector Operators
............................. 408
7.4.3
Tensor Operators: Reducible and Irreducible Tensors
.......... 410
7.4.4
Wigner-Eckart Theorem for Spherical Tensor Operators
........ 412
7.5
Solved Problems
................................. 415
Exercises
........................................ 431
8
Identical Particles
437
8.1
Many-Particle Systems
.............................. 437
8.1.1 Schrödinger
Equation
........................... 437
8.1.2
Interchange Symmetry
.......................... 439
8.1.3
Systems of Distinguishable Noninteracting Particles
.......... 440
8.2
Systems of Identical Particles
........................... 442
8.2.1
Identical Particles in Classical and Quantum Mechanics
........ 442
8.2.2
Exchange Degeneracy
.......................... 444
8.2.3
Symmetrization Postulate
........................ 445
8.2.4
Constructing Symmetric and Antisymmetric Functions
......... 446
8.2.5
Systems of Identical Noninteracting Particles
.............. 446
8.3
The
Pauli
Exclusion Principle
.......................... 449
8.4
The Exclusion Principle and the Periodic Table
................. 451
8.5
Solved Problems
................................. 457
Exercises
........................................ 466
9
Approximation Methods for Stationary States
469
9.1
Introduction
.................................... 469
9.2
Time-Independent Perturbation Theory
...................... 470
9.2.1
Nondegenerate
Perturbation Theory
................... 470
9.2.2
Degenerate Perturbation Theory
..................... 476
9.2.3
Fine Structure and the Anomalous
Zeeman
Effect
............ 479
9.3
The Variational Method
.............................. 488
9.4
The Wentzel-Kramers-Brillouin Method
.................... 495
9.4.1
General Formalism
............................ 495
9.4.2
Bound States for Potential Wells with No Rigid Walls
......... 498
9.4.3
Bound States for Potential Wells with One Rigid Wall
......... 504
9.4.4
Bound States for Potential Wells with Two Rigid Walls
......... 505
9.4.5
Tunneling through a Potential Barrier
.................. 507
9.5
Concluding Remarks
............................... 510
9.6
Solved Problems
................................. 510
Exercises
........................................ 542
x
CONTENTS
10
Time-Dependent Perturbation Theory
549
10.1
Introduction
....................................549
10.2
The Pictures of Quantum Mechanics
.......................549
10.2.1
The
Schrödinger
Picture
.........................550
10.2.2
The
Heisenberg
Picture
..........................550
10.2.3
The Interaction Picture
..........................551
10.3
Time-Dependent Perturbation Theory
......................552
10.3.1
Transition Probability
..........................554
10.3.2
Transition Probability for a Constant Perturbation
............555
10.3.3
Transition Probability for a Harmonic Perturbation
...........557
10.4
Adiabatic and Sudden Approximations
......................560
10.4.1
Adiabatic Approximation
.........................560
10.4.2
Sudden Approximation
..........................561
10.5
Interaction of Atoms with Radiation
.......................564
10.5.1
Classical Treatment of the Incident Radiation
..............565
10.5.2
Quantization of the Electromagnetic Field
................566
10.5.3
Transition Rates for Absorption and Emission of Radiation
.......569
10.5.4
Transition Rates within the
Dipole
Approximation
...........570
10.5.5
The Electric
Dipole
Selection Rules
...................571
10.5.6
Spontaneous Emission
..........................572
10.6
Solved Problems
.................................575
Exercises
........................................591
11
Scattering Theory
595
11.1
Scattering and Cross Section
...........................595
11.1.1
Connecting the Angles in the Lab and CM frames
............596
11.1.2
Connecting the Lab and CM Cross Sections
...............598
11.2
Scattering Amplitude of Spinless Particles
....................599
11.2.1
Scattering Amplitude and Differential Cross Section
..........601
11.2.2
Scattering Amplitude
...........................602
11.3
The Born Approximation
.............................606
11.3.1
The First Born Approximation
......................606
11.3.2
Validity of the First Born Approximation
................607
11.4
Partial Wave Analysis
...............................609
11.4.1
Partial Wave Analysis for Elastic Scattering
...............609
11.4.2
Partial Wave Analysis for Inelastic Scattering
..............613
11.5
Scattering of Identical Particles
..........................614
11.6
Solved Problems
.................................617
Exercises
........................................627
A The Delta Function
629
A.
1
One-Dimensional Delta Function
......................... 629
АЛЛ
Various Definitions of the Delta Function
................ 629
A.1.2 Properties of the Delta Function
..................... 630
A.1.3 Derivative of the Delta Function
..................... 631
A.2 Three-Dimensional Delta Function
........................ 631
CONTENTS xi
В
Angular
Momentum in Spherical Coordinates
633
B.
1
Derivation of Some General Relations
...................... 633
B.2 Gradient and Laplacian in Spherical Coordinates
................ 634
B.3 Angular Momentum in Spherical Coordinates
.................. 635
С
Computer Code for Solving the
Schrödinger
Equation
637
References
641
Index
643
|
adam_txt |
Contents
Preface
xiii
1
Origins of Quantum Physics
1
1.1
Historical Note
. 1
1.2
Particle Aspect of Radiation
. 4
1.2.1
Blackbody
Radiation
. 4
1.2.2
Photoelectric Effect
. 10
1.2.3
Compton Effect
. 13
1.2.4
Pair Production
. 15
1.3
Wave Aspect of Particles
. 17
1.3.1 de Broglie's
Hypothesis: Matter Waves
. 17
1.3.2
Experimental Confirmation of
de
Broglie's Hypothesis
. 18
1.3.3
Matter Waves for Macroscopic Objects
. 20
1.4
Particles versus Waves
. 21
1.4.1
Classical View of Particles and Waves
. 21
1.4.2
Quantum View of Particles and Waves
. 23
1.4.3
Wave-Particle Duality: Complementarity
. 25
1.4.4
Principle of Linear Superposition
. 26
1.5
Indeterministic Nature of the Microphysical World
. 27
1.5.1 Heisenberg
Uncertainty Principle
. 27
1.5.2
Probabilistic Interpretation
. 29
1.6
Atomic Transitions and Spectroscopy
. 30
1.6.1
Rutherford Planetary Model of the Atom
. 30
1.6.2
Bohr Model of the Hydrogen Atom
. 30
1.7
Quantization Rules
. 36
1.8
Wave Packets
. 38
1.8.1
Localized Wave Packets
. 38
1.8.2
Wave Packets and the Uncertainty Relations
. 41
1.8.3
Motion of Wave Packets
. 42
1.9
Concluding Remarks
. 53
1.10
Solved Problems
. 54
Exercises
. 71
vi
CONTENTS
2
Mathematical Tools of Quantum Mechanics
79
2.1
Introduction
. 79
2.2
The Hubert Space and Wave Functions
. 79
2.2.1
The Linear Vector Space
. 79
2.2.2
The Hubert Space
. 80
2.2.3
Dimension and Basis of a Vector Space
. 81
2.2.4
Square-Integrable Functions: Wave Functions
. 83
2.3
Dirac Notation
. 84
2.4
Operators
. 88
2.4.1
General Definitions
. 88
2.4.2
Hermitian Adjoint
. 89
2.4.3
Projection Operators
. 91
2.4.4
Commutator Algebra
. 92
2.4.5
Uncertainty Relation between Two Operators
. 94
2.4.6
Functions of Operators
. 95
2.4.7
Inverse and Unitary Operators
. 96
2.4.8
Eigenvalues and Eigenvectors of an Operator
. 97
2.4.9
Infinitesimal and Finite Unitary Transformations
. 100
2.5
Representation in Discrete Bases
. 102
2.5.1
Matrix Representation of
Kets,
Bras and Operators
. 103
2.5.2
Change of Bases and Unitary Transformations
.
Ill
2.5.3
Matrix Representation of the Eigenvalue Problem
. 114
2.6
Representation in Continuous Bases
. 117
2.6.1
General Treatment
. 117
2.6.2
Position Representation
. 119
2.6.3
Momentum Representation
. 120
2.6.4
Connecting the Position and Momentum Representations
. 120
2.6.5
Parity Operator
. 124
2.7
Matrix and Wave Mechanics
. 126
2.7.1
Matrix Mechanics
. 126
2.7.2
Wave Mechanics
. 127
2.8
Concluding Remarks
. 128
2.9
Solved Problems
. 129
Exercises
. 148
3
Postulates of Quantum Mechanics
157
3.1
Introduction
. 157
3.2
The Basic Postulates of Quantum Mechanics
. 157
3.3
The State of a System
. 159
3.3.1
Probability Density
. 159
3.3.2
The Superposition Principle
. 160
3.4
Observables
and Operators
. 162
3.5
Measurement in Quantum Mechanics
. 164
3.5.1
How Measurements Disturb Systems
. 164
3.5.2
Expectation Values
. 165
3.5.3
Complete Sets of Commuting Operators
. 167
3.5.4
Measurement and the Uncertainty Relations
. 169
CONTENTS
vii
3.6 Time Evolution
of the System's
State. 170
3.6.1
Time Evolution Operator
. 170
3.6.2
Stationary States: Time-Independent Potentials
. 171
3.6.3 Schrödinger
Equation and Wave Packets
. 172
3.6.4
The Conservation of Probability
. 173
3.6.5
Time Evolution of Expectation Values
. 174
3.7
Symmetries and Conservation Laws
. 175
3.7.1
Infinitesimal Unitary Transformations
. 175
3.7.2
Finite Unitary Transformations
. 176
3.7.3
Symmetries and Conservation Laws
. 177
3.8
Connecting Quantum to Classical Mechanics
. 179
3.8.1
Poisson
Brackets and Commutators
. 179
3.8.2
The
Ehrenfest
Theorem
. 181
3.8.3
Quantum Mechanics and Classical Mechanics
. 182
3.9
Solved Problems
. 183
Exercises
. 199
4
One-Dimensional Problems
205
4.1
Introduction
. 205
4.2
Properties of One-Dimensional Motion
. 206
4.2.1
Discrete Spectrum (Bound States)
. 206
4.2.2
Continuous Spectrum (Unbound States)
. 207
4.2.3
Mixed Spectrum
. 207
4.2.4
Symmetric Potentials and Parity
. 207
4.3
The Free Particle: Continuous States
. 208
4.4
The Potential Step
. 210
4.5
The Potential Barrier and Well
. 213
4.5.1
The Case
E
>
Vo
. 214
4.5.2
The Case
E
<
Fo: Tunneling
. 216
4.5.3
The Tunneling Effect
. 219
4.6
The Infinite Square Well Potential
. 220
4.6.1
The Unsymmetric Square Well
. 220
4.6.2
The Symmetric Potential Well
. 223
4.7
The Finite Square Well Potential
. 224
4.7.1
The Scattering Solutions (E
>
Vo)
. 224
4.7.2
The Bound State Solutions
(0 <
E
<
Vo)
. 224
4.8
The Harmonic Oscillator
. 227
4.8.1
Energy Eigenvalues
. 229
4.8.2
Energy Eigenstates
. 231
4.8.3
Energy Eigenstates in Position Space
. 231
4.8.4
The Matrix Representation of Various Operators
. 234
4.8.5
Expectation Values of Various Operators
. 235
4.9
Numerical Solution of the
Schrödinger
Equation
. 236
4.9.1
Numerical Procedure
. 236
4.9.2
Algorithm
. 237
4.10
Solved Problems
. 239
Exercises
. 263
viii
CONTENTS
5
Angular
Momentum
269
5.1
Introduction
. 269
5.2
Orbital Angular Momentum
. 269
5.3
General Formalism of Angular Momentum
. 271
5.4
Matrix Representation of Angular Momentum
. 276
5.5
Geometrical Representation of Angular Momentum
. 279
5.6
Spin Angular Momentum
. 280
5.6.1
Experimental Evidence of the Spin
. 280
5.6.2
General Theory of Spin
. 283
5.6.3
Spin
1/2
and the
Pauli
Matrices
. 284
5.7
Eigenfunctions of Orbital Angular Momentum
. 287
5.7.1
Eigenfunctions and Eigenvalues of ¿z
. 288
5.7.2
Eigenfunctions of I2
. 289
5.7.3
Properties of the Spherical Harmonics
. 292
5.8
Solved Problems
. 295
Exercises
. 311
6
Three-Dimensional Problems
317
6.1
Introduction
.317
6.2 3D
Problems in Cartesian Coordinates
.317
6.2.1
General Treatment: Separation of Variables
.317
6.2.2
The Free Particle
.319
6.2.3
The Box Potential
.320
6.2.4
The Harmonic Oscillator
.322
6.3 3D
Problems in Spherical Coordinates
.324
6.3.1
Central Potential: General Treatment
.324
6.3.2
The Free Particle in Spherical Coordinates
.327
6.3.3
The Spherical Square Well Potential
.329
6.3.4
The
Isotropie
Harmonic Oscillator
.330
6.3.5
The Hydrogen Atom
.334
6.3.6
Effect of Magnetic Fields on Central Potentials
.348
6.4
Concluding Remarks
.351
6.5
Solved Problems
.351
Exercises
.368
7
Rotations and Addition of Angular Momenta
373
7.1
Rotations in Classical Physics
. 373
7.2
Rotations in Quantum Mechanics
. 375
7.2.1
Infinitesimal Rotations
. 375
7.2.2
Finite Rotations
. 377
7.2.3
Properties of the Rotation Operator
. 378
7.2.4
Euler
Rotations
. 379
7.2.5
Representation of the Rotation Operator
.
З8О
7.2.6
Rotation Matrices and the Spherical Harmonics
. 382
7.3
Addition of Angular Momenta
. 385
7.3.1
Addition of Two Angular Momenta: General Formalism
. 385
7.3.2
Calculation oftheClebsch-Gordan Coefficients
. 391
CONTENTS ix
7.3.3
Coupling of Orbital and Spin Angular Momenta
. 397
7.3.4
Addition of More Than Two Angular Momenta
. 401
7.3.5
Rotation Matrices for Coupling Two Angular Momenta
. 402
7.3.6
Isospin
. 404
7.4
Scalar, Vector and Tensor Operators
. 407
7.4.1
Scalar Operators
. 408
7.4.2
Vector Operators
. 408
7.4.3
Tensor Operators: Reducible and Irreducible Tensors
. 410
7.4.4
Wigner-Eckart Theorem for Spherical Tensor Operators
. 412
7.5
Solved Problems
. 415
Exercises
. 431
8
Identical Particles
437
8.1
Many-Particle Systems
. 437
8.1.1 Schrödinger
Equation
. 437
8.1.2
Interchange Symmetry
. 439
8.1.3
Systems of Distinguishable Noninteracting Particles
. 440
8.2
Systems of Identical Particles
. 442
8.2.1
Identical Particles in Classical and Quantum Mechanics
. 442
8.2.2
Exchange Degeneracy
. 444
8.2.3
Symmetrization Postulate
. 445
8.2.4
Constructing Symmetric and Antisymmetric Functions
. 446
8.2.5
Systems of Identical Noninteracting Particles
. 446
8.3
The
Pauli
Exclusion Principle
. 449
8.4
The Exclusion Principle and the Periodic Table
. 451
8.5
Solved Problems
. 457
Exercises
. 466
9
Approximation Methods for Stationary States
469
9.1
Introduction
. 469
9.2
Time-Independent Perturbation Theory
. 470
9.2.1
Nondegenerate
Perturbation Theory
. 470
9.2.2
Degenerate Perturbation Theory
. 476
9.2.3
Fine Structure and the Anomalous
Zeeman
Effect
. 479
9.3
The Variational Method
. 488
9.4
The Wentzel-Kramers-Brillouin Method
. 495
9.4.1
General Formalism
. 495
9.4.2
Bound States for Potential Wells with No Rigid Walls
. 498
9.4.3
Bound States for Potential Wells with One Rigid Wall
. 504
9.4.4
Bound States for Potential Wells with Two Rigid Walls
. 505
9.4.5
Tunneling through a Potential Barrier
. 507
9.5
Concluding Remarks
. 510
9.6
Solved Problems
. 510
Exercises
. 542
x
CONTENTS
10
Time-Dependent Perturbation Theory
549
10.1
Introduction
.549
10.2
The Pictures of Quantum Mechanics
.549
10.2.1
The
Schrödinger
Picture
.550
10.2.2
The
Heisenberg
Picture
.550
10.2.3
The Interaction Picture
.551
10.3
Time-Dependent Perturbation Theory
.552
10.3.1
Transition Probability
.554
10.3.2
Transition Probability for a Constant Perturbation
.555
10.3.3
Transition Probability for a Harmonic Perturbation
.557
10.4
Adiabatic and Sudden Approximations
.560
10.4.1
Adiabatic Approximation
.560
10.4.2
Sudden Approximation
.561
10.5
Interaction of Atoms with Radiation
.564
10.5.1
Classical Treatment of the Incident Radiation
.565
10.5.2
Quantization of the Electromagnetic Field
.566
10.5.3
Transition Rates for Absorption and Emission of Radiation
.569
10.5.4
Transition Rates within the
Dipole
Approximation
.570
10.5.5
The Electric
Dipole
Selection Rules
.571
10.5.6
Spontaneous Emission
.572
10.6
Solved Problems
.575
Exercises
.591
11
Scattering Theory
595
11.1
Scattering and Cross Section
.595
11.1.1
Connecting the Angles in the Lab and CM frames
.596
11.1.2
Connecting the Lab and CM Cross Sections
.598
11.2
Scattering Amplitude of Spinless Particles
.599
11.2.1
Scattering Amplitude and Differential Cross Section
.601
11.2.2
Scattering Amplitude
.602
11.3
The Born Approximation
.606
11.3.1
The First Born Approximation
.606
11.3.2
Validity of the First Born Approximation
.607
11.4
Partial Wave Analysis
.609
11.4.1
Partial Wave Analysis for Elastic Scattering
.609
11.4.2
Partial Wave Analysis for Inelastic Scattering
.613
11.5
Scattering of Identical Particles
.614
11.6
Solved Problems
.617
Exercises
.627
A The Delta Function
629
A.
1
One-Dimensional Delta Function
. 629
АЛЛ
Various Definitions of the Delta Function
. 629
A.1.2 Properties of the Delta Function
. 630
A.1.3 Derivative of the Delta Function
. 631
A.2 Three-Dimensional Delta Function
. 631
CONTENTS xi
В
Angular
Momentum in Spherical Coordinates
633
B.
1
Derivation of Some General Relations
. 633
B.2 Gradient and Laplacian in Spherical Coordinates
. 634
B.3 Angular Momentum in Spherical Coordinates
. 635
С
Computer Code for Solving the
Schrödinger
Equation
637
References
641
Index
643 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Zettili, Nouredine |
author_facet | Zettili, Nouredine |
author_role | aut |
author_sort | Zettili, Nouredine |
author_variant | n z nz |
building | Verbundindex |
bvnumber | BV035073824 |
classification_rvk | UK 1000 |
ctrlnum | (OCoLC)316002320 (DE-599)BVBBV035073824 |
discipline | Physik |
discipline_str_mv | Physik |
edition | reprint. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01402nam a2200361 c 4500</leader><controlfield tag="001">BV035073824</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080929s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471489443</subfield><subfield code="9">978-0-471-48944-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471489436</subfield><subfield code="9">978-0-471-48943-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316002320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035073824</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zettili, Nouredine</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum mechanics</subfield><subfield code="b">concepts and applications</subfield><subfield code="c">Nouredine Zettili</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">reprint.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 649 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016742179</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV035073824 |
illustrated | Illustrated |
index_date | 2024-07-02T22:04:53Z |
indexdate | 2024-07-09T21:21:35Z |
institution | BVB |
isbn | 9780471489443 9780471489436 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016742179 |
oclc_num | 316002320 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XIV, 649 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Zettili, Nouredine Verfasser aut Quantum mechanics concepts and applications Nouredine Zettili reprint. Chichester [u.a.] Wiley 2008 XIV, 649 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Quantenmechanik (DE-588)4047989-4 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Quantenmechanik (DE-588)4047989-4 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zettili, Nouredine Quantum mechanics concepts and applications Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4047989-4 (DE-588)4123623-3 |
title | Quantum mechanics concepts and applications |
title_auth | Quantum mechanics concepts and applications |
title_exact_search | Quantum mechanics concepts and applications |
title_exact_search_txtP | Quantum mechanics concepts and applications |
title_full | Quantum mechanics concepts and applications Nouredine Zettili |
title_fullStr | Quantum mechanics concepts and applications Nouredine Zettili |
title_full_unstemmed | Quantum mechanics concepts and applications Nouredine Zettili |
title_short | Quantum mechanics |
title_sort | quantum mechanics concepts and applications |
title_sub | concepts and applications |
topic | Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Quantenmechanik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016742179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zettilinouredine quantummechanicsconceptsandapplications |