Handbook of dielectric, piezoelectric and ferroelectric materials: synthesis, properties and applications
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press
2008
Cambridge Woodhead |
Ausgabe: | 1. publ. |
Schriftenreihe: | Woodhead publishing in materials
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Nebent.: Handbook of advanced dielectric, piezoelectric and ferroelectric materials |
Beschreibung: | XXIX, 1060 S. Ill., graph. Darst. |
ISBN: | 9781420070859 9781845691868 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035072840 | ||
003 | DE-604 | ||
005 | 20100803 | ||
007 | t | ||
008 | 080926s2008 ad|| |||| 00||| eng d | ||
020 | |a 9781420070859 |c CRC Press |9 978-1-4200-7085-9 | ||
020 | |a 9781845691868 |c Woodhead Publ. |9 978-1-84569-186-8 | ||
035 | |a (OCoLC)635184304 | ||
035 | |a (DE-599)HBZHT015509695 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-83 |a DE-92 | ||
084 | |a UP 4500 |0 (DE-625)146401: |2 rvk | ||
084 | |a ZN 2550 |0 (DE-625)157264: |2 rvk | ||
084 | |a ZN 3400 |0 (DE-625)157307: |2 rvk | ||
084 | |a ZN 3420 |0 (DE-625)157308: |2 rvk | ||
084 | |a ZN 3430 |0 (DE-625)157312: |2 rvk | ||
084 | |a ZN 3490 |0 (DE-625)157325: |2 rvk | ||
245 | 1 | 0 | |a Handbook of dielectric, piezoelectric and ferroelectric materials |b synthesis, properties and applications |c ed. by Zuo-Guang Ye |
246 | 1 | 3 | |a Handbook of advanced dielectric, piezoelectric and ferroelectric materials |
250 | |a 1. publ. | ||
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press |c 2008 | |
264 | 1 | |a Cambridge |b Woodhead | |
300 | |a XXIX, 1060 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Woodhead publishing in materials | |
500 | |a Nebent.: Handbook of advanced dielectric, piezoelectric and ferroelectric materials | ||
650 | 0 | 7 | |a Dielektrische Polarisation |0 (DE-588)4295347-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stoffeigenschaft |0 (DE-588)4192147-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ferroelektrizität |0 (DE-588)4154126-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Piezoelektrizität |0 (DE-588)4322722-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dielektrische Polarisation |0 (DE-588)4295347-9 |D s |
689 | 0 | 1 | |a Ferroelektrizität |0 (DE-588)4154126-1 |D s |
689 | 0 | 2 | |a Piezoelektrizität |0 (DE-588)4322722-3 |D s |
689 | 0 | 3 | |a Stoffeigenschaft |0 (DE-588)4192147-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ye, Zuo-Guang |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-84569-400-5 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016741204&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016741204 |
Datensatz im Suchindex
_version_ | 1804138021772066816 |
---|---|
adam_text | Contents
Contributor contact details
xix
Introduction
xxvii
Part I High-strain, high-performance piezo- and
ferroelectric single crystals
1
Bridgman growth and properties of PMN-PT based
single crystals
3
P Han,
J
Tian
and
W
Yan, H.C. Materials Corporation, USA
1.1
Introduction
3
1.2
Crystal growth
6
1.3
Imperfection
13
1.4
Property characterization
15
1.5
Optimization of cut directions
25
1.6
Conclusions and future trends
30
1.7
Appendix
31
1.8
References
35
2
Flux growth and characterization of PZN-PT and
PMN-PT single crystals
38
L
-С
Lim.
National University of Singapore, and
Microfine
Materials
Technologies Pte Ltd. Singapore
2.1
Introduction
38
2.2
Flux growth of PZN-PT and PMN-PT single crystals
40
2.3
Effect of flux composition
42
2.4
Growth of relaxor single crystals of low PT contents:
PZN-(
4-7
)<7c PT
44
2.5
Flux growth of relaxor single crystals of high PT contents:
PMN-(28-34)<7cPT
47
2.6
Other commonly encountered problems
52
vi
Contents
2.7
Properties of flux-grown PZN-PT and PMN-PT single
crystals
57
2.8
Comparison with reported property values
60
2.9
Future trends
62
2.10
Conclusions
64
2.11
Acknowledgements
65
2.12
References and further reading
65
3
Recent developments and applications of
piezoelectric crystals
73
W
S
Hackenberger,
J
Luo, X Jiang,
К
A Snook and
Ρ
W
Rehrig
TRS
Technologies, USA and
S
Zhang and
T R
Shrout,
Pennsylvania State University, USA
3.1
Introduction
73
3.2
Crystal growth and characterization of relaxor
piezoelectrics
74
3.3
Dynamic performance of piezoelectric crystals with
frequency and dc bias
83
3.4
Single crystal piezoelectric actuators
87
3.5
Single crystal piezoelectric transducers
92
3.6
Conclusions and future trends
97
3.7
References
98
4
Piezoelectric single crystals for medical ultrasonic
transducers
101
S M
Rhim,
Humanscan
Co. Ltd, Korea and
M C
Shin and S-G Lee,
IBULe Photonics Co. Ltd, Korea
4.1
Introduction
101
4.2
Piezoelectric single crystals
102
4.3
Single crystal transducers
107
4.4
Conclusions and future trends
125
4.5
References
127
5
High-performance, high-Tc piezoelectric crystals
130
S J
Zhang, Pennsylvania State University, USA,
J
Luo,
TRS
Technologies Inc., USA and
D
W
Snyder and
T R Shrout,
Pennsylvania
State
University,
USA
5.1
Introduction
130
5.2
Background on the growth of relaxor-PT single crystals
135
5.3
Modification of PMNT single crystals
135
5.4
Relaxor-PT systems with high Curie temperature
137
5.5
High Tc bismuth-based perovskite single crystals
141
Contents
VII
5.6
Non-perovskite piezoelectric single crystals
145
5.7
Summary
149
5.8
Future trends
150
5.9
Acknowledgment
151
5.10
References
151
6
Development of high-performance piezoelectric
single crystals by using solid-state single crystal
growth (SSCG) method
158
H-Y Lee, Sunmoon University and Ceracomp Co. Ltd, Korea
6.1
Introduction
158
6.2
Solid-state crystal growth (SSCG) process
159
6.3
Dielectric and piezoelectric properties of BZT, PMN-PT,
and PMN-PZT single crystals
163
6.4
Conclusions and future trends
170
6.5
References
170
7
Piezo- and ferroelectric (1-x)Pb(Sc1/2Nb1/2)O3-xPbTiO3
solid solution system
173
Y-H
Bing
and Z-G Ye, Simon
Fraser
University, Canada
7.1
Introduction
173
7.2
Synthesis, structure, morphotropic phase diagram, and
properties of the (l-jt)Pb(Sc1/2Nb1/2)O3-JcPbTiO3 solid
solution ceramics
176
7.3
Growth of relaxor ferroelectric Pb(Sc1/2Nb1/2)O3 and
(l-x)Pb(Sci/2Nb|/2)03-xPbTi03 single crystals
185
7.4
Properties of Pb(Sc,/2Nb|/2)O3 and
(1-х)
Pb(Sc1/2 Nb1/2)O3-x
PbTiÒ3
single crystals
191
7.5
Concluding remarks and future trends
201
7.6
Acknowledgements
202
7.7
References
202
8
High Curie temperature piezoelectric single crystals
of the
Pb(ln1/2Nbl/2)O3-Pb(Mg1/3Nb2/3)O3-PbTÌO3
ternary materials system
205
Y J
Yamashita and Y. Hosono. Toshiba R&D Center Japan
8.1
Introduction
205
8.2
PIMNT ceramics
208
8.3
PIMNT single crystals grown by the flux method
212
8.4
PIMNT and PSMNT single crystals grown by the Bridgman
method
216
VIII
Contents
8.5
Future
trends
8.6
Conclusions
8.7
References
227
228
229
Part II
Field-induced effects and domain engineering
9
Full-set material properties and domain engineering
principles of ferroelectric single crystals
235
W
Cao,
Pennsylvania State University, USA
9.1
Introduction
235
9.2
Technical challenges and characterization methods
237
9.3
Complete set material properties for a few compositions
of PMN-PT and PZN-PT single crystals
248
9.4
Correlation between single domain and multi-domain
properties and the principle of property enhancement in
domain engineered ferroelectric single crystals
256
9.5
Summary
260
9.6
References
263
10
Domain wall engineering in piezoelectric crystals
with engineered domain configuration
266
S
Wada.
University of Yamanashi, Japan
10.1
Introduction
266
10.2
History of engineered domain configuration
267
10.3
Effect of engineered domain configuration on
piezoelectric property
268
10.4
Crystal structure and crystallographic orientation
dependence of BaTiO3 crystals with various engineered
domain configurations
269
10.5
Domain size dependence of BaTiO3 crystals with
engineered domain configurations
278
10.6
Role of
non-
180°
domain wall region on piezoelectric
properties
286
10.7
New challenge of domain wall engineering using
patterning electrode
290
10.8
New challenge of domain wall engineering using
uniaxial
stress field
294
10.9
What is domain wall engineering?
298
10.10
Conclusions and future trends
300
10.11
Acknowledgements
301
10.12
References
301
Contents
ix
11 Enhancement
of piezoelectric properties in
perovskite crystals by thermally, compositionally,
electric field and stress-induced instabilities
304
D
Damjanovic,
M Davis
and
M Budimir,
Swiss Federal Institute of
Technology
-
EPFL, Switzerland
11.1
Introduction
304
11.2
Deformation of perovskite crystals under external fields
305
11.3
Anisotropy of a free energy and piezoelectric enhancement
317
11.4
Final remarks
326
11.5
References
329
12
Electric field-induced domain structures and phase
transitions in PMN-PT single crystals
333
V H
Schmidt and
R R
Chien,
Montana State University, USA and
С
-S
Tu, Fu Jen
Catholic University, Taiwan
12.1
Introduction
333
12.2
Experimental methods
335
12.3
Polarizing microscopy as applied to perovskite-structure
crystals
336
12.4
Thermal stability of various PMN-PT compositions
341
12.5
Field-dependent domain structures of various PMN-PT
compositions
349
12.6
Field-poling effect on optical properties
357
12.7
Relation of results to Landau free energy
359
12.8
Conclusions
362
12.9
References and further reading
363
13
Energy analysis of field-induced phase transitions in
relaxor-based piezo- and ferroelectric crystals
366
T
Liu and
C S
Lynch, The Georgia Institute of Technology, USA
13.1
Introduction
366
13.2
Background
367
13.3
Multi-field-induced phase transitions
368
13.4
Energy analysis of phase transitions
373
13.5
Discussion
381
13.6
Concluding remarks and future trends
382
13.7
Acknowledgement
383
13.8
References
383
χ
Contents
Part III Morphotropic phase boundary and related
phenomena
14
From the structure of relaxors to the structure of
MPB
systems
391
J-M Kiat and
В
Dkhil,
Ecole Centrale
Paris, France
14.1
Introduction
391
14.2
Historical context
392
14.3
Structure of archetypal relaxors PbMg1/3Nb2/3O3 (PMN)
and PbSc1/2Nb1/2O3 (PSN)
395
14.4
Towards the
MPB:
substitution of titanium
412
14.5
Stability of the
MPB
phases under external and internal
fields
429
14.6
Conclusions and future trends
432
14.7
Acknowledgements
440
14.8
References
440
15
Size effects on the macroscopic properties of the
relaxor ferroelectric
РЬ(Мді/зМЬ2/з)0з-РЬТі03
solid
solution
447
M
Algłjeró,
J Ricote, P
Ramos and
R Jíménez,
Instituto de Ciencia
de Materiales de Madrid (CSIC),
Spain, J Carreaud, J-M Kiat and
В
Dkhil,
Ecole Centrale
Paris, France and
J
Holc and
M Kosec,
Institute
Jozef
Stefan, Slovenia
15.1
Introduction
447
15.2
Size effects in ferroelectrics
448
15.3
The relaxor ferroelectric
PMMgjöNbj^CVPbTiC^
solid
solution
450
15.4
Processing of submicrometre- and nanostructured
Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics
452
15.5
Size effects on the macroscopic properties of
0.8Fb(Mg,/3Nb2/3)O3-0.2PbTiO3
453
15.6
Size effects on the macroscopic properties of
0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3
461
15.7
Final remarks and future trends
466
15.8
References
467
Contents xi
Part IV High-power piezoelectric and microwave
dielectric materials
16
Loss mechanisms and high-power piezoelectric
components
475
К
Uchino, Pennsylvania State University and Micromechatronics
Inc., USA;
J H
Zheng,
Y Gao,
S
Ural, S-H
Park and
N Bhattacharya,
Pennsylvania State University, USA and
S
Hírőse,
Yamagata University, Japan
16.1
Introduction
475
16.2
General consideration of loss and hysteresis in
piezoelectrics
476
16.3
Losses at a piezoelectric resonance
484
16.4
Heat generation in piezoelectrics
488
16.5
Loss anisotropy
490
16.6
High-power piezoelectric ceramics
491
16.7
High-power piezoelectric components
498
16.8
Summary and conclusions
500
16.9
Future trends
501
16.10
Acknowledgement
501
16.11
References
501
17
Bismuth-based
pyrochlore
dielectric ceramics for
microwave applications
503
Hong Wang and X Yao, Xi an Jiaotong University, China
17.1
Introduction
503
17.2
Crystal structures in the BZN system
504
17.3
Phase equilibrium and phase relation of BZN
pyrochlores
509
17.4
Dielectric properties of BZN
pyrochlores
514
17.5
Potential RF and microwave applications
525
17.6
Summary and future trends
532
17.7
Acknowledgements
534
17.8
References
534
Part V Nanoscale piezo- and ferroelectrics
18
Ferroelectric nanostructures for device applications
541
J
F Scott,
Cambridge University, UK
18.1
Introduction
541
18.2
Ferroelectric nanostructures
542
18.3
Self-patterning
549
<ii
Contents
18.4
Magnetoelectrics
and magnetoelectric devices
551
18.5
Toroidal and circular ordering of ferroelectric domains in
ferroics
553
18.6
Electron emission from ferroelectrics
554
18.7
Base-metal-electrode capacitors
555
18.8
Electrocaloric cooling for mainframes and MEMs
555
18.9
Interfacial
phenomena
557
18.10
Phased-array radar
558
18.11
Focal-plane arrays
559
18.12
Ferroelectric superlattices
559
18.13
Ultra-thin single crystals
559
18.14
Summary
560
18.15
Future trends
561
18.16
Further reading
563
18.17
References
563
19
Domains in ferroelectric nanostructures from first
principles
570
I A Kornev, University of Arkansas, USA and Mads Clausen
Institute, University of Southern Denmark, Denmark and B-K Lai,
I Naumov, I Ponomareva,
H
Fu
and
L Bellaiche,
University of
Arkansas, USA
19.1
Introduction
570
19.2
Methods
572
19.3
Domains in ferroelectric thin films
573
19.4
Domains in one-dimensional and zero-dimensional
ferroelectrics
591
19.5
Conclusions
597
19.6
Acknowledgments
597
19.7
References
597
20
Nanosized ferroelectric crystals
600
I Szafraniak-Wiza,
Poznan
University of Technology, Poland and
M
Alexe
and
D
Hesse, Max Planck Institute of
Microstructure
Physics. Germany
20.1
Introduction
600
20.2
Preparation of nano-islands
601
20.3
Physical properties of the nano-islands
610
20.4
Conclusions and future trends
618
20.5
Acknowledgments
620
20.6
References
620
Contents xiii
21
Nano-
and micro-domain engineering in normal and
relaxor ferroelectrics
622
V
Y Shur,
Ural State University, Russia
21.1
Introduction
622
21.2
Main experimental stages of domain structure evolution
during polarization reversal in normal ferroelectrics
624
21.3
Materials and experimental conditions
627
21.4
General consideration
631
21.5
Domain growth: from quasi-equilibrium to highly non-
equilibrium
638
21.6
Self-assembled nanoscale domain structures
645
21.7
Modern tricks in nanoscale domain engineering
649
21.8
Polarization reversal in relaxors
657
21.9
Conclusions and future trends
663
21.10
Acknowledgments
664
21.11
References
664
22
Interface control in
3D
ferroelectric nano-composites
670
С
Elissalde and
M
Maglione,
University of Bordeaux
1,
France
22.1
Introduction
670
22.2
Interface defects and dielectric properties of bulk
ferroelectric materials
671
22.3
Interdiffusion
in bulk ceramics and composites
674
22.4
Summary and future trends
686
22.5
References
687
Part VI Piezo- and ferroelectric films
693
23
Single crystalline PZT films and the impact of extended
structural defects on the ferroelectric properties
695
I Vrejoiu,
D
Hesse, and
M
Alexe,
Max Planck Institute of
Microstructure
Physics, Germany
23.1
Introduction
695
23.2
Pulsed laser deposition of epitaxial ferroelectric oxide
thin films
696
23.3
Epitaxial ferroelectric oxide thin films and nanostructures
with extended structural defects
697
23.4
Single crystalline PbTiO3 and PZT
20/80
films free from
extended structural defects
709
23.5
Comparison of ferroelectric properties of PZT
20/80
films
with and without extended structural defects
714
xiv Contents
23.6
Summary
717
23.7
Acknowledgments
719
23.8
References
719
24
Piezoelectric thick films for MEMS application
724
Z Wang,
W
Zhu and
J
Miao, Nanyang
Technological University,
Singapore
24.1
Introduction
724
24.2
A composite coating process for preparing thick film on
silicon wafer
725
24.3
Characterization of spin-coated thick films
729
24.4
Piezoelectric micromachined ultrasonic transducer
(pMUT) based on thick PZT film
733
24.5
Microfabrication of thick film pMUT
737
24.6
Performances of thick film pMUT
742
24.7
Summary
751
24.8
Future perspective
753
24.9
References
753
25
Symmetry engineering and size effects in
ferroelectric thin films
756
В
Noheda, University of
Groningen,
The Netherlands and
G
Catalan, University of Cambridge, UK
25.1
Introduction
756
25.2
Size effects
757
25.3
Heterogeneous thin films: superlattices and gradients
764
25.4
Symmetry and ferroelectric properties: polarization
rotation and lattice softening
767
25.5
Strain effects on ferroelectric thin films
776
25.6
Conclusion and future trends
783
25.7
Further reading
785
25.8
Acknowledgements
786
25.9
References
786
Part
VII
Novel processing and new materials
26
Processing of textured piezoelectric and dielectric
perovskite-structured ceramics by the
reactive-templated grain growth method
799
T
KiMURA, Keio University, Japan
26.1
Enhancement of piezoelectric properties of perovskite-
structured ceramics by texture formation
799
Contents xv
26.2 Reactive-templated
grain growth method
801
26.3
Selection of reactive templates
807
26.4
Factors determining texture development
809
26.5
Application to solid solutions
911
26.6
Conclusions and future trends
813
26.7
References
814
27
Grain orientation and electrical properties of bismuth
layer-structured ferroelectrics
818
Τ
Takenaka, Tokyo University of Science, Japan
27.1
Introduction
818
27.2
Bismuth layer-structured ferroelectrics (BLSF)
819
27.3
Grain orientation and hot-forging (HF) method
822
27.4
Grain orientation effects on electrical properties
823
27.5
Conclusions and future trends
847
27.6
Acknowledgments
849
27.7
References
849
28
Novel solution routes to ferroelectrics and relaxors
852
К
Babooram and Z-G Ye, Simon
Fraser
University, Canada
28.1
Introduction
852
28.2
Soft chemical methods for the synthesis of mixed metal
oxides
853
28.3
Polyethylene glycol-based new sol-gel route to relaxor
ferroelectric solid solution (l-.x)Pb(Mgi/3Nb2/3)O3-.rPbTiO3
(л-
= 0.1
and
0.35) 855
28.4
New soft chemical methods for the synthesis of
ferroelectric SrBi2Ta2O9
865
28.5
Novel sol-gel route to ferroelectric Bi4Ti3O12 and
BÍ4_xLarTi3Oi2
ceramics
873
28.6
Future trends
876
28.7
Acknowledgments
879
28.8
References
879
29
Room temperature preparation of KNbO3
nanoparticles and thin film from a perovskite
nanosheet
884
К
Toda
and
M
Sato, Niigata University, Japan
29.1
Introduction
884
29.2
Mechanisms of generation of KNbO3 nanoparticles
885
29.3
Fabrication of KNbO3 thin film
889
xvi
Contents
29.4
Conclusions
and
future
trends
29.5
References
894
894
30
Lead-free relaxors
896
A Simon and
J
Ravez, University of Bordeaux!, France
30.1
Introduction
896
30.2
Lead-free relaxor ceramics derived from BaTiO3
897
30.3
Perovskite-type relaxor not derived from BaTiO3
906
30.4
Crossover from a ferroelectric to a relaxor state
906
30.5
Lead-free relaxors with tetragonal bronze (TTB) structure
912
30.6
Ceramics containing bismuth
918
30.7
Conclusions
924
30.8
References
924
Part
VIII
Novel properties of ferroelectrics and related
materials
31
Novel physical effects in dielectric superlattices and
their applications
933
Y Q
QiN and
S N Zhu,
Nanjing University, China
31.1
Introduction
933
31.2
Preparation of DSLs by modulation of ferroelectric
domains
935
31.3
Preparation of DSL by the photorefractive effect
941
31.4
Application of DSLs in nonlinear parametric interactions
942
31.5
Application of DSLs in acoustics
953
31.6
Application of DSLs in electro-optic technology
957
31.7
Outlook
960
31.8
Acknowledgments
961
31.9
References and further reading
32
Dielectric and optical properties of perovskite
artificial
superlattices
971
T Tsľrľmi
and
T Harigai,
Tokyo Institute of Technology, Japan
32.1
Introduction
971
32.2
Preparation of artificial superlattices
973
32.3
Lattice distortions in artificial superlattices
980
32.4
Optical property of artificial superlattices
983
32.5
Dielectric properties of artificial superlattices
987
32.6
Conclusions and future trends
1001
32.7
References
1002
Contents xvii
33
Crystal structure and defect control in
Bi4Ti3012-based layered ferroelectric single
crystals
1006
Y
Noguchi and
M Miyayama,
The University of Tokyo, Japan
33.1
Introduction
1006
33.2
Crystal structure
1008
33.3
Electronic band structure and density of states (DOS)
1011
33.4
Defect structure
1015
33.5
Domain structure
1020
33.6
Leakage current
1023
33.7
Polarization properties
1025
33.8
Effects of La and Nd substitutions on the electronic band
structure and chemical bonding
1027
33.9
Summary
1028
33.10
Future trends
1029
33.11
References
1030
|
adam_txt |
Contents
Contributor contact details
xix
Introduction
xxvii
Part I High-strain, high-performance piezo- and
ferroelectric single crystals
1
Bridgman growth and properties of PMN-PT based
single crystals
3
P Han,
J
Tian
and
W
Yan, H.C. Materials Corporation, USA
1.1
Introduction
3
1.2
Crystal growth
6
1.3
Imperfection
13
1.4
Property characterization
15
1.5
Optimization of cut directions
25
1.6
Conclusions and future trends
30
1.7
Appendix
31
1.8
References
35
2
Flux growth and characterization of PZN-PT and
PMN-PT single crystals
38
L
-С
Lim.
National University of Singapore, and
Microfine
Materials
Technologies Pte Ltd. Singapore
2.1
Introduction
38
2.2
Flux growth of PZN-PT and PMN-PT single crystals
40
2.3
Effect of flux composition
42
2.4
Growth of relaxor single crystals of low PT contents:
PZN-(
4-7
)<7c PT
44
2.5
Flux growth of relaxor single crystals of high PT contents:
PMN-(28-34)<7cPT
47
2.6
Other commonly encountered problems
52
vi
Contents
2.7
Properties of flux-grown PZN-PT and PMN-PT single
crystals
57
2.8
Comparison with reported property values
60
2.9
Future trends
62
2.10
Conclusions
64
2.11
Acknowledgements
65
2.12
References and further reading
65
3
Recent developments and applications of
piezoelectric crystals
73
W
S
Hackenberger,
J
Luo, X Jiang,
К
A Snook and
Ρ
W
Rehrig
TRS
Technologies, USA and
S
Zhang and
T R
Shrout,
Pennsylvania State University, USA
3.1
Introduction
73
3.2
Crystal growth and characterization of relaxor
piezoelectrics
74
3.3
Dynamic performance of piezoelectric crystals with
frequency and dc bias
83
3.4
Single crystal piezoelectric actuators
87
3.5
Single crystal piezoelectric transducers
92
3.6
Conclusions and future trends
97
3.7
References
98
4
Piezoelectric single crystals for medical ultrasonic
transducers
101
S M
Rhim,
Humanscan
Co. Ltd, Korea and
M C
Shin and S-G Lee,
IBULe Photonics Co. Ltd, Korea
4.1
Introduction
101
4.2
Piezoelectric single crystals
102
4.3
Single crystal transducers
107
4.4
Conclusions and future trends
125
4.5
References
127
5
High-performance, high-Tc piezoelectric crystals
130
S J
Zhang, Pennsylvania State University, USA,
J
Luo,
TRS
Technologies Inc., USA and
D
W
Snyder and
T R Shrout,
Pennsylvania
State
University,
USA
5.1
Introduction
130
5.2
Background on the growth of relaxor-PT single crystals
135
5.3
Modification of PMNT single crystals
135
5.4
Relaxor-PT systems with high Curie temperature
137
5.5
High Tc bismuth-based perovskite single crystals
141
Contents
VII
5.6
Non-perovskite piezoelectric single crystals
145
5.7
Summary
149
5.8
Future trends
150
5.9
Acknowledgment
151
5.10
References
151
6
Development of high-performance piezoelectric
single crystals by using solid-state single crystal
growth (SSCG) method
158
H-Y Lee, Sunmoon University and Ceracomp Co. Ltd, Korea
6.1
Introduction
158
6.2
Solid-state crystal growth (SSCG) process
159
6.3
Dielectric and piezoelectric properties of BZT, PMN-PT,
and PMN-PZT single crystals
163
6.4
Conclusions and future trends
170
6.5
References
170
7
Piezo- and ferroelectric (1-x)Pb(Sc1/2Nb1/2)O3-xPbTiO3
solid solution system
173
Y-H
Bing
and Z-G Ye, Simon
Fraser
University, Canada
7.1
Introduction
173
7.2
Synthesis, structure, morphotropic phase diagram, and
properties of the (l-jt)Pb(Sc1/2Nb1/2)O3-JcPbTiO3 solid
solution ceramics
176
7.3
Growth of relaxor ferroelectric Pb(Sc1/2Nb1/2)O3 and
(l-x)Pb(Sci/2Nb|/2)03-xPbTi03 single crystals
185
7.4
Properties of Pb(Sc,/2Nb|/2)O3 and
(1-х)
Pb(Sc1/2 Nb1/2)O3-x
PbTiÒ3
single crystals
191
7.5
Concluding remarks and future trends
201
7.6
Acknowledgements
202
7.7
References
202
8
High Curie temperature piezoelectric single crystals
of the
Pb(ln1/2Nbl/2)O3-Pb(Mg1/3Nb2/3)O3-PbTÌO3
ternary materials system
205
Y J
Yamashita and Y. Hosono. Toshiba R&D Center Japan
8.1
Introduction
205
8.2
PIMNT ceramics
208
8.3
PIMNT single crystals grown by the flux method
212
8.4
PIMNT and PSMNT single crystals grown by the Bridgman
method
216
VIII
Contents
8.5
Future
trends
8.6
Conclusions
8.7
References
227
228
229
Part II
Field-induced effects and domain engineering
9
Full-set material properties and domain engineering
principles of ferroelectric single crystals
235
W
Cao,
Pennsylvania State University, USA
9.1
Introduction
235
9.2
Technical challenges and characterization methods
237
9.3
Complete set material properties for a few compositions
of PMN-PT and PZN-PT single crystals
248
9.4
Correlation between single domain and multi-domain
properties and the principle of property enhancement in
domain engineered ferroelectric single crystals
256
9.5
Summary
260
9.6
References
263
10
Domain wall engineering in piezoelectric crystals
with engineered domain configuration
266
S
Wada.
University of Yamanashi, Japan
10.1
Introduction
266
10.2
History of engineered domain configuration
267
10.3
Effect of engineered domain configuration on
piezoelectric property
268
10.4
Crystal structure and crystallographic orientation
dependence of BaTiO3 crystals with various engineered
domain configurations
269
10.5
Domain size dependence of BaTiO3 crystals with
engineered domain configurations
278
10.6
Role of
non-
180°
domain wall region on piezoelectric
properties
286
10.7
New challenge of domain wall engineering using
patterning electrode
290
10.8
New challenge of domain wall engineering using
uniaxial
stress field
294
10.9
What is domain wall engineering?
298
10.10
Conclusions and future trends
300
10.11
Acknowledgements
301
10.12
References
301
Contents
ix
11 Enhancement
of piezoelectric properties in
perovskite crystals by thermally, compositionally,
electric field and stress-induced instabilities
304
D
Damjanovic,
M Davis
and
M Budimir,
Swiss Federal Institute of
Technology
-
EPFL, Switzerland
11.1
Introduction
304
11.2
Deformation of perovskite crystals under external fields
305
11.3
Anisotropy of a free energy and piezoelectric enhancement
317
11.4
Final remarks
326
11.5
References
329
12
Electric field-induced domain structures and phase
transitions in PMN-PT single crystals
333
V H
Schmidt and
R R
Chien,
Montana State University, USA and
С
-S
Tu, Fu Jen
Catholic University, Taiwan
12.1
Introduction
333
12.2
Experimental methods
335
12.3
Polarizing microscopy as applied to perovskite-structure
crystals
336
12.4
Thermal stability of various PMN-PT compositions
341
12.5
Field-dependent domain structures of various PMN-PT
compositions
349
12.6
Field-poling effect on optical properties
357
12.7
Relation of results to Landau free energy
359
12.8
Conclusions
362
12.9
References and further reading
363
13
Energy analysis of field-induced phase transitions in
relaxor-based piezo- and ferroelectric crystals
366
T
Liu and
C S
Lynch, The Georgia Institute of Technology, USA
13.1
Introduction
366
13.2
Background
367
13.3
Multi-field-induced phase transitions
368
13.4
Energy analysis of phase transitions
373
13.5
Discussion
381
13.6
Concluding remarks and future trends
382
13.7
Acknowledgement
383
13.8
References
383
χ
Contents
Part III Morphotropic phase boundary and related
phenomena
14
From the structure of relaxors to the structure of
MPB
systems
391
J-M Kiat and
В
Dkhil,
Ecole Centrale
Paris, France
14.1
Introduction
391
14.2
Historical context
392
14.3
Structure of archetypal relaxors PbMg1/3Nb2/3O3 (PMN)
and PbSc1/2Nb1/2O3 (PSN)
395
14.4
Towards the
MPB:
substitution of titanium
412
14.5
Stability of the
MPB
phases under external and internal
fields
429
14.6
Conclusions and future trends
432
14.7
Acknowledgements
440
14.8
References
440
15
Size effects on the macroscopic properties of the
relaxor ferroelectric
РЬ(Мді/зМЬ2/з)0з-РЬТі03
solid
solution
447
M
Algłjeró,
J Ricote, P
Ramos and
R Jíménez,
Instituto de Ciencia
de Materiales de Madrid (CSIC),
Spain, J Carreaud, J-M Kiat and
В
Dkhil,
Ecole Centrale
Paris, France and
J
Holc and
M Kosec,
Institute
Jozef
Stefan, Slovenia
15.1
Introduction
447
15.2
Size effects in ferroelectrics
448
15.3
The relaxor ferroelectric
PMMgjöNbj^CVPbTiC^
solid
solution
450
15.4
Processing of submicrometre- and nanostructured
Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics
452
15.5
Size effects on the macroscopic properties of
0.8Fb(Mg,/3Nb2/3)O3-0.2PbTiO3
453
15.6
Size effects on the macroscopic properties of
0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3
461
15.7
Final remarks and future trends
466
15.8
References
467
Contents xi
Part IV High-power piezoelectric and microwave
dielectric materials
16
Loss mechanisms and high-power piezoelectric
components
475
К
Uchino, Pennsylvania State University and Micromechatronics
Inc., USA;
J H
Zheng,
Y Gao,
S
Ural, S-H
Park and
N Bhattacharya,
Pennsylvania State University, USA and
S
Hírőse,
Yamagata University, Japan
16.1
Introduction
475
16.2
General consideration of loss and hysteresis in
piezoelectrics
476
16.3
Losses at a piezoelectric resonance
484
16.4
Heat generation in piezoelectrics
488
16.5
Loss anisotropy
490
16.6
High-power piezoelectric ceramics
491
16.7
High-power piezoelectric components
498
16.8
Summary and conclusions
500
16.9
Future trends
501
16.10
Acknowledgement
501
16.11
References
501
17
Bismuth-based
pyrochlore
dielectric ceramics for
microwave applications
503
Hong Wang and X Yao, Xi'an Jiaotong University, China
17.1
Introduction
503
17.2
Crystal structures in the BZN system
504
17.3
Phase equilibrium and phase relation of BZN
pyrochlores
509
17.4
Dielectric properties of BZN
pyrochlores
514
17.5
Potential RF and microwave applications
525
17.6
Summary and future trends
532
17.7
Acknowledgements
534
17.8
References
534
Part V Nanoscale piezo- and ferroelectrics
18
Ferroelectric nanostructures for device applications
541
J
F Scott,
Cambridge University, UK
18.1
Introduction
541
18.2
Ferroelectric nanostructures
542
18.3
Self-patterning
549
<ii
Contents
18.4
Magnetoelectrics
and magnetoelectric devices
551
18.5
Toroidal and circular ordering of ferroelectric domains in
ferroics
553
18.6
Electron emission from ferroelectrics
554
18.7
Base-metal-electrode capacitors
555
18.8
Electrocaloric cooling for mainframes and MEMs
555
18.9
Interfacial
phenomena
557
18.10
Phased-array radar
558
18.11
Focal-plane arrays
559
18.12
Ferroelectric superlattices
559
18.13
Ultra-thin single crystals
559
18.14
Summary
560
18.15
Future trends
561
18.16
Further reading
563
18.17
References
563
19
Domains in ferroelectric nanostructures from first
principles
570
I A Kornev, University of Arkansas, USA and Mads Clausen
Institute, University of Southern Denmark, Denmark and B-K Lai,
I Naumov, I Ponomareva,
H
Fu
and
L Bellaiche,
University of
Arkansas, USA
19.1
Introduction
570
19.2
Methods
572
19.3
Domains in ferroelectric thin films
573
19.4
Domains in one-dimensional and zero-dimensional
ferroelectrics
591
19.5
Conclusions
597
19.6
Acknowledgments
597
19.7
References
597
20
Nanosized ferroelectric crystals
600
I Szafraniak-Wiza,
Poznan
University of Technology, Poland and
M
Alexe
and
D
Hesse, Max Planck Institute of
Microstructure
Physics. Germany
20.1
Introduction
600
20.2
Preparation of nano-islands
601
20.3
Physical properties of the nano-islands
610
20.4
Conclusions and future trends
618
20.5
Acknowledgments
620
20.6
References
620
Contents xiii
21
Nano-
and micro-domain engineering in normal and
relaxor ferroelectrics
622
V
Y Shur,
Ural State University, Russia
21.1
Introduction
622
21.2
Main experimental stages of domain structure evolution
during polarization reversal in normal ferroelectrics
624
21.3
Materials and experimental conditions
627
21.4
General consideration
631
21.5
Domain growth: from quasi-equilibrium to highly non-
equilibrium
638
21.6
Self-assembled nanoscale domain structures
645
21.7
Modern tricks in nanoscale domain engineering
649
21.8
Polarization reversal in relaxors
657
21.9
Conclusions and future trends
663
21.10
Acknowledgments
664
21.11
References
664
22
Interface control in
3D
ferroelectric nano-composites
670
С
Elissalde and
M
Maglione,
University of Bordeaux
1,
France
22.1
Introduction
670
22.2
Interface defects and dielectric properties of bulk
ferroelectric materials
671
22.3
Interdiffusion
in bulk ceramics and composites
674
22.4
Summary and future trends
686
22.5
References
687
Part VI Piezo- and ferroelectric films
693
23
Single crystalline PZT films and the impact of extended
structural defects on the ferroelectric properties
695
I Vrejoiu,
D
Hesse, and
M
Alexe,
Max Planck Institute of
Microstructure
Physics, Germany
23.1
Introduction
695
23.2
Pulsed laser deposition of epitaxial ferroelectric oxide
thin films
696
23.3
Epitaxial ferroelectric oxide thin films and nanostructures
with extended structural defects
697
23.4
Single crystalline PbTiO3 and PZT
20/80
films free from
extended structural defects
709
23.5
Comparison of ferroelectric properties of PZT
20/80
films
with and without extended structural defects
714
xiv Contents
23.6
Summary
717
23.7
Acknowledgments
719
23.8
References
719
24
Piezoelectric thick films for MEMS application
724
Z Wang,
W
Zhu and
J
Miao, Nanyang
Technological University,
Singapore
24.1
Introduction
724
24.2
A composite coating process for preparing thick film on
silicon wafer
725
24.3
Characterization of spin-coated thick films
729
24.4
Piezoelectric micromachined ultrasonic transducer
(pMUT) based on thick PZT film
733
24.5
Microfabrication of thick film pMUT
737
24.6
Performances of thick film pMUT
742
24.7
Summary
751
24.8
Future perspective
753
24.9
References
753
25
Symmetry engineering and size effects in
ferroelectric thin films
756
В
Noheda, University of
Groningen,
The Netherlands and
G
Catalan, University of Cambridge, UK
25.1
Introduction
756
25.2
Size effects
757
25.3
Heterogeneous thin films: superlattices and gradients
764
25.4
Symmetry and ferroelectric properties: polarization
rotation and lattice softening
767
25.5
Strain effects on ferroelectric thin films
776
25.6
Conclusion and future trends
783
25.7
Further reading
785
25.8
Acknowledgements
786
25.9
References
786
Part
VII
Novel processing and new materials
26
Processing of textured piezoelectric and dielectric
perovskite-structured ceramics by the
reactive-templated grain growth method
799
T
KiMURA, Keio University, Japan
26.1
Enhancement of piezoelectric properties of perovskite-
structured ceramics by texture formation
799
Contents xv
26.2 Reactive-templated
grain growth method
801
26.3
Selection of reactive templates
807
26.4
Factors determining texture development
809
26.5
Application to solid solutions
911
26.6
Conclusions and future trends
813
26.7
References
814
27
Grain orientation and electrical properties of bismuth
layer-structured ferroelectrics
818
Τ
Takenaka, Tokyo University of Science, Japan
27.1
Introduction
818
27.2
Bismuth layer-structured ferroelectrics (BLSF)
819
27.3
Grain orientation and hot-forging (HF) method
822
27.4
Grain orientation effects on electrical properties
823
27.5
Conclusions and future trends
847
27.6
Acknowledgments
849
27.7
References
849
28
Novel solution routes to ferroelectrics and relaxors
852
К
Babooram and Z-G Ye, Simon
Fraser
University, Canada
28.1
Introduction
852
28.2
Soft chemical methods for the synthesis of mixed metal
oxides
853
28.3
Polyethylene glycol-based new sol-gel route to relaxor
ferroelectric solid solution (l-.x)Pb(Mgi/3Nb2/3)O3-.rPbTiO3
(л-
= 0.1
and
0.35) 855
28.4
New soft chemical methods for the synthesis of
ferroelectric SrBi2Ta2O9
865
28.5
Novel sol-gel route to ferroelectric Bi4Ti3O12 and
BÍ4_xLarTi3Oi2
ceramics
873
28.6
Future trends
876
28.7
Acknowledgments
879
28.8
References
879
29
Room temperature preparation of KNbO3
nanoparticles and thin film from a perovskite
nanosheet
884
К
Toda
and
M
Sato, Niigata University, Japan
29.1
Introduction
884
29.2
Mechanisms of generation of KNbO3 nanoparticles
885
29.3
Fabrication of KNbO3 thin film
889
xvi
Contents
29.4
Conclusions
and
future
trends
29.5
References
894
894
30
Lead-free relaxors
896
A Simon and
J
Ravez, University of Bordeaux!, France
30.1
Introduction
896
30.2
Lead-free relaxor ceramics derived from BaTiO3
897
30.3
Perovskite-type relaxor not derived from BaTiO3
906
30.4
Crossover from a ferroelectric to a relaxor state
906
30.5
Lead-free relaxors with tetragonal bronze (TTB) structure
912
30.6
Ceramics containing bismuth
918
30.7
Conclusions
924
30.8
References
924
Part
VIII
Novel properties of ferroelectrics and related
materials
31
Novel physical effects in dielectric superlattices and
their applications
933
Y Q
QiN and
S N Zhu,
Nanjing University, China
31.1
Introduction
933
31.2
Preparation of DSLs by modulation of ferroelectric
domains
935
31.3
Preparation of DSL by the photorefractive effect
941
31.4
Application of DSLs in nonlinear parametric interactions
942
31.5
Application of DSLs in acoustics
953
31.6
Application of DSLs in electro-optic technology
957
31.7
Outlook
960
31.8
Acknowledgments
961
31.9
References and further reading
32
Dielectric and optical properties of perovskite
artificial
superlattices
971
T Tsľrľmi
and
T Harigai,
Tokyo Institute of Technology, Japan
32.1
Introduction
971
32.2
Preparation of artificial superlattices
973
32.3
Lattice distortions in artificial superlattices
980
32.4
Optical property of artificial superlattices
983
32.5
Dielectric properties of artificial superlattices
987
32.6
Conclusions and future trends
1001
32.7
References
1002
Contents xvii
33
Crystal structure and defect control in
Bi4Ti3012-based layered ferroelectric single
crystals
1006
Y
Noguchi and
M Miyayama,
The University of Tokyo, Japan
33.1
Introduction
1006
33.2
Crystal structure
1008
33.3
Electronic band structure and density of states (DOS)
1011
33.4
Defect structure
1015
33.5
Domain structure
1020
33.6
Leakage current
1023
33.7
Polarization properties
1025
33.8
Effects of La and Nd substitutions on the electronic band
structure and chemical bonding
1027
33.9
Summary
1028
33.10
Future trends
1029
33.11
References
1030 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Ye, Zuo-Guang |
author2_role | edt |
author2_variant | z g y zgy |
author_facet | Ye, Zuo-Guang |
building | Verbundindex |
bvnumber | BV035072840 |
classification_rvk | UP 4500 ZN 2550 ZN 3400 ZN 3420 ZN 3430 ZN 3490 |
ctrlnum | (OCoLC)635184304 (DE-599)HBZHT015509695 |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02324nam a2200529 c 4500</leader><controlfield tag="001">BV035072840</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100803 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080926s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420070859</subfield><subfield code="c">CRC Press</subfield><subfield code="9">978-1-4200-7085-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781845691868</subfield><subfield code="c">Woodhead Publ.</subfield><subfield code="9">978-1-84569-186-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635184304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015509695</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 4500</subfield><subfield code="0">(DE-625)146401:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 2550</subfield><subfield code="0">(DE-625)157264:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3400</subfield><subfield code="0">(DE-625)157307:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3420</subfield><subfield code="0">(DE-625)157308:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3430</subfield><subfield code="0">(DE-625)157312:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3490</subfield><subfield code="0">(DE-625)157325:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of dielectric, piezoelectric and ferroelectric materials</subfield><subfield code="b">synthesis, properties and applications</subfield><subfield code="c">ed. by Zuo-Guang Ye</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Handbook of advanced dielectric, piezoelectric and ferroelectric materials</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Woodhead</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 1060 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Woodhead publishing in materials</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nebent.: Handbook of advanced dielectric, piezoelectric and ferroelectric materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dielektrische Polarisation</subfield><subfield code="0">(DE-588)4295347-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stoffeigenschaft</subfield><subfield code="0">(DE-588)4192147-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ferroelektrizität</subfield><subfield code="0">(DE-588)4154126-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Piezoelektrizität</subfield><subfield code="0">(DE-588)4322722-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dielektrische Polarisation</subfield><subfield code="0">(DE-588)4295347-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ferroelektrizität</subfield><subfield code="0">(DE-588)4154126-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Piezoelektrizität</subfield><subfield code="0">(DE-588)4322722-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Stoffeigenschaft</subfield><subfield code="0">(DE-588)4192147-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Zuo-Guang</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-84569-400-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016741204&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016741204</subfield></datafield></record></collection> |
id | DE-604.BV035072840 |
illustrated | Illustrated |
index_date | 2024-07-02T22:04:43Z |
indexdate | 2024-07-09T21:21:34Z |
institution | BVB |
isbn | 9781420070859 9781845691868 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016741204 |
oclc_num | 635184304 |
open_access_boolean | |
owner | DE-703 DE-83 DE-92 |
owner_facet | DE-703 DE-83 DE-92 |
physical | XXIX, 1060 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | CRC Press Woodhead |
record_format | marc |
series2 | Woodhead publishing in materials |
spelling | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications ed. by Zuo-Guang Ye Handbook of advanced dielectric, piezoelectric and ferroelectric materials 1. publ. Boca Raton, Fla. [u.a.] CRC Press 2008 Cambridge Woodhead XXIX, 1060 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Woodhead publishing in materials Nebent.: Handbook of advanced dielectric, piezoelectric and ferroelectric materials Dielektrische Polarisation (DE-588)4295347-9 gnd rswk-swf Stoffeigenschaft (DE-588)4192147-1 gnd rswk-swf Ferroelektrizität (DE-588)4154126-1 gnd rswk-swf Piezoelektrizität (DE-588)4322722-3 gnd rswk-swf Dielektrische Polarisation (DE-588)4295347-9 s Ferroelektrizität (DE-588)4154126-1 s Piezoelektrizität (DE-588)4322722-3 s Stoffeigenschaft (DE-588)4192147-1 s DE-604 Ye, Zuo-Guang edt Erscheint auch als Online-Ausgabe 978-1-84569-400-5 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016741204&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications Dielektrische Polarisation (DE-588)4295347-9 gnd Stoffeigenschaft (DE-588)4192147-1 gnd Ferroelektrizität (DE-588)4154126-1 gnd Piezoelektrizität (DE-588)4322722-3 gnd |
subject_GND | (DE-588)4295347-9 (DE-588)4192147-1 (DE-588)4154126-1 (DE-588)4322722-3 |
title | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications |
title_alt | Handbook of advanced dielectric, piezoelectric and ferroelectric materials |
title_auth | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications |
title_exact_search | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications |
title_exact_search_txtP | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications |
title_full | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications ed. by Zuo-Guang Ye |
title_fullStr | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications ed. by Zuo-Guang Ye |
title_full_unstemmed | Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications ed. by Zuo-Guang Ye |
title_short | Handbook of dielectric, piezoelectric and ferroelectric materials |
title_sort | handbook of dielectric piezoelectric and ferroelectric materials synthesis properties and applications |
title_sub | synthesis, properties and applications |
topic | Dielektrische Polarisation (DE-588)4295347-9 gnd Stoffeigenschaft (DE-588)4192147-1 gnd Ferroelektrizität (DE-588)4154126-1 gnd Piezoelektrizität (DE-588)4322722-3 gnd |
topic_facet | Dielektrische Polarisation Stoffeigenschaft Ferroelektrizität Piezoelektrizität |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016741204&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT yezuoguang handbookofdielectricpiezoelectricandferroelectricmaterialssynthesispropertiesandapplications AT yezuoguang handbookofadvanceddielectricpiezoelectricandferroelectricmaterials |