Precipitation: advances in measurement, estimation and prediction
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXX, 540 S. Ill., graph. Darst. 24 cm |
ISBN: | 9783540776543 9783540776550 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035070710 | ||
003 | DE-604 | ||
005 | 20081107 | ||
007 | t | ||
008 | 080925s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N03,1180 |2 dnb | ||
015 | |a 08,A33,0694 |2 dnb | ||
016 | 7 | |a 986833754 |2 DE-101 | |
020 | |a 9783540776543 |c Pp. : EUR 139.05 (freier Pr.) |9 978-3-540-77654-3 | ||
020 | |a 9783540776550 |9 978-3-540-77655-0 | ||
024 | 3 | |a 9783540776543 | |
028 | 5 | 2 | |a 11972914 |
035 | |a (OCoLC)244065316 | ||
035 | |a (DE-599)DNB986833754 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 | ||
082 | 0 | |a 551.577 |2 22/ger | |
084 | |a RB 10232 |0 (DE-625)142220:12666 |2 rvk | ||
084 | |a RB 10420 |0 (DE-625)142220:12731 |2 rvk | ||
084 | |a RB 10429 |0 (DE-625)142220:12734 |2 rvk | ||
084 | |a UT 8100 |0 (DE-625)146845: |2 rvk | ||
084 | |a 550 |2 sdnb | ||
245 | 1 | 0 | |a Precipitation |b advances in measurement, estimation and prediction |c Silas Michaelides |
264 | 1 | |a Berlin ; Heidelberg |b Springer |c 2008 | |
300 | |a XXX, 540 S. |b Ill., graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 4 | |a Precipitation (Meteorology) |x Measurement | |
650 | 4 | |a Precipitation forecasting | |
650 | 0 | 7 | |a Niederschlag |0 (DE-588)4132260-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Niederschlag |0 (DE-588)4132260-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Michaelides, Silas |e Sonstige |0 (DE-588)13558924X |4 oth | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016739101&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016739101 |
Datensatz im Suchindex
_version_ | 1804138018797256704 |
---|---|
adam_text | GESCANNT DURCH CONTENTS PART I. MEASUREMENT OF PRECIPITATION 1 CHAPTER 1
-THE 2D-VIDEO-DISTROMETER 3 MICHAEL SCHONHUBER, GI MTER HAMMER, WALTER
L. RANDEN 1.1 INTRODUCTION 3 1.2 ABOUT DISTROMETER TYPES 4 1.3 PRINCIPLE
OF MEASUREMENT BY 2D-VIDEO-DISTROMETER 6 1.3.1 DESIGN OF THE INSTRUMENT
8 1.3.2 MEASURABLE AND DERIVED QUANTITIES 12 1.4 CURRENT IMPLEMENTATION
20 1.4.1 SPECIFICATIONS 21 1.4.2 MAINTENANCE PROCEDURES 21 1.5
EXPERIENCES 23 1.6 SCIENTIFIC MERITS 24 1.7 OUTLOOK 28 REFERENCES 29
CHAPTER 2 - USING VIBRATING-WIRE TECHNOLOGY FOR PRECIPITATION
MEASUREMENTS 33 CLAUDE E. DUCHON 2.1 INTRODUCTION 33 2.2 PRINCIPLES OF
OPERATION 35 2.3 DESCRIPTION OF FIELD SITE AND DATA ACQUISITION 36 2.4
ADVANTAGES OF USING THREE VIBRATING WIRES 41 2.5
CALIBRATION-VERIFICATION 44 2.6 TEMPERATURE SENSITIVITY 47 2.7 RAIN RATE
ESTIMATION 50 2.8 VERY LOW PRECIPITATION EVENTS 53 2.9 SUMMARY 56
REFERENCES 58 BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/986833754
DIGITALISIERT DURCH REFERENCES 99 XXII CONTENTS CHAPTER 3 - MEASUREMENTS
OF LIGHT RAIN, DRIZZLE AND HEAVY FOG 59 ISMAIL GULTEPE 3.1 INTRODUCTION
59 3.2 FRAM FIELD PROJECTS AND OBSERVATIONS 62 3.2.1 FD12P MEASUREMENTS
63 3.2.2 VRG101 MEASUREMENTS 64 3.2.3 POSS MEASUREMENTS 65 3.2.4 TOTAL
PRECIPITATION SENSOR (TPS) MEASUREMENTS 67 3.2.5 FMD AND CIP
MEASUREMENTS 68 3.3 ANALYSIS 68 3.4 RESULTS 69 3.4.1 CASE STUDIES 69
3.4.2 OVERALL COMPARISONS 70 3.5 DISCUSSION 73 3.5.1 LIGHT PRECIPITATION
AND DRIZZLE MEASUREMENTS 75 3.5.2 VISIBILITY CALCULATIONS 75 3.5.3
UNCERTAINTIES 78 3.6 CONCLUSIONS 79 REFERENCES 80 CHAPTER 4 - THE
DROPLET SPECTROMETER - A MEASURING CONCEPT FOR DETAILED PRECIPITATION
CHARACTERIZATION 83 SEBASTIAN GLASL, MAGNUS ANSELM 4.1 INTRODUCTION 83
4.2 PHYSICAL BASIS 84 4.2.1 DROP SIZE CALCULATION 84 4.2.2 CALIBRATION
86 4.3 THE MEASURING CONCEPT 87 4.3.1 THE DROPLET SENSOR 87 4.3.2 THE
SOFTWARE RAINALYSER 89 4.4 DISCUSSION AND APPLICATIONS 93 4.4.1
MEASURING RANGE 93 4.4.2 INFLUENCE OF WIND 94 4.4.3 DROP SHAPES AND DRAG
COEFFICIENT 94 4.4.4 SIGNIFICANCE OF THE IMPULSE OF THE DROPS 94 4.4.5
APPLICATION POSSIBILITIES 95 4.5 FUTURE PLANS AND IMPROVEMENTS 96 4.6
APPENDIX 97 * * * * * * REFERENCES 279 CONTENTS XXV CHAPTER 9 - COMBINED
RADAR-RADIOMETER RETRIEVALS FROM SATELLITE OBSERVATIONS 219 MIRCEA
GREEN, EMMANOUIL N. ANAGNOSTOU 9.1 INTRODUCTION 219 9.2 BACKGROUND 220
9.3 GENERAL FORMULATION 223 9.4 CONCLUDING REMARKS 228 REFERENCES 228
PART II. ESTIMATION OF PRECIPITATION II. GROUND ESTIMATION 231 CHAPTER
10 - RAIN MICROSTRUCTURE FROM POLARIMETRIC RADAR AND ADVANCED
DISDROMETERS 233 MERHALA THURAI, V. N. BRINGI 10.1 INTRODUCTION 234
10.1.1 BACKGROUND 234 10.1.2 RAIN MICROSTRUCTURE: RELEVANCE 235 10.1.3
RELATING RAIN MICROSTRUCTURE TO POLARIMETRIC RADAR MEASUREMENTS 238 10.2
DROP SIZE DISTRIBUTIONS 242 10.2.1 VARIABILITY 242 10.2.2 DSD MODELS 243
10.2.3 DSD ESTIMATION FROM POLARIMETRIC RADAR MEASUREMENTS 248 10.2.4
DSD ESTIMATION FROM ADVANCED DISDROMETERS 254 10.2.5 GLOBAL DSD
CHARACTERISTICS 257 10.2.6 SEASONAL VARIATION 259 10.3 DROP SHAPES 263
10.3.1 AXIS RATIO MEASUREMENTS FROM AN ARTIFICIAL RAIN EXPERIMENT 263
10.3.2 DROP CONTOURS 265 10.3.3 CONSISTENCY WITH POLARIMETRIC RADAR
MEASUREMENTS 268 10.4 DROP ORIENTATION ANGLES 269 10.5 FALL VELOCITIES
274 10.6 SUMMARY 276 * * * * * * * * * * * * * * * * CONTENTS XXVII 12.5
ALGORITHM EVALUATION 328 12.5.1 EVALUATION OF THE DSD RETRIEVAL
TECHNIQUES 329 12.5.2 EVALUATION OF RAINFALL RETRIEVAL TECHNIQUES 333
12.6 CLOSING REMARKS 337 REFERENCES 337 PART II. ESTIMATION OF
PRECIPITATION III. UNDERWATER ESTIMATION 341 CHAPTER 13 - UNDERWATER
ACOUSTIC MEASUREMENTS OF RAINFALL 343 EYAL AMITAI, JEFFREY A. NYSTUEN
13.1 INTRODUCTION 343 13.1.1 WHY MEASURE RAINFALL AT SEA? 343 13.1.2 WHY
LISTEN TO RAINFALL UNDERWATER? 344 13.1.3 WHAT INSTRUMENTATION IS USED
TO MEASURE RAINFALL AT SEA? 344 13.1.4 USING SOUND TO MEASURE DROP SIZE
DISTRIBUTION AND RAIN RATE 345 13.2 LISTENING TO RAINFALL IN A SHALLOW
WATER POND 348 13.3 OCEANIC FIELD STUDIES OF THE ACOUSTIC MEASUREMENT OF
RAINFALL 349 13.4 LISTENING TO RAINFALL 2000 METERS UNDERWATER - THE
IONIAN SEA RAINFALL EXPERIMENT 350 13.4.1 RAIN TYPE CLASSIFICATION AND
WIND SPEED ESTIMATES 358 13.5 CONCLUSIONS AND OUTLOOK 360 REFERENCES 361
PART III. PREDICTION OF PRECIPITATION 365 CHAPTER 14 - PROBABILISTIC
EVALUATION OF ENSEMBLE PRECIPITATION FORECASTS 367 BODO AHRENS, SIMON
JAIM 14.1 INTRODUCTION 367 14.2 RAIN STATION PRECIPITATION DATA 370 14.3
FORECAST DATA BY THE LIMITED-AREA PREDICTION SYSTEM COSMO-LEPS 371 14.4
OBSERVATIONAL REFERENCES 373 14.5 SKILL SCORES 376 XXVIII CONTENTS 14.6
RESULTS AND DISCUSSION 379 14.7 CONCLUSIONS 384 REFERENCES 386 CHAPTER
15 - IMPROVED NOWCASTING OF PRECIPITATION BASED ON CONVECTIVE ANALYSIS
FIELDS 389 THOMAS HAIDEN, MARTIN STEINHEIMER 15.1 INTRODUCTION 389 15.2
THE INCA SYSTEM 393 15.3 ADVECTION FORECAST 397 15.4 CONVECTIVE ANALYSIS
FIELDS 401 15.5 CELL EVOLUTION ALGORITHM 403 15.6 VERIFICATION AND
PARAMETER SENSITIVITY 407 15.7 OROGRAPHIC EFFECTS IN CONVECTIVE
INITIATION 412 15.8 CONCLUSIONS 415 REFERENCES 416 CHAPTER 16 - OVERVIEW
OF METHODS FOR THE VERIFICATION OF QUANTITATIVE PRECIPITATION FORECASTS
419 ANDREA ROSSA, PERTTI NURMI, ELIZABETH EBERT 16.1 INTRODUCTION 419
16.2 TRADITIONAL VERIFICATION OF QPF AND LIMITATIONS FOR HIGH RESOLUTION
VERIFICATION 423 16.2.1 COMMON SCORES 424 16.2.2 THE DOUBLE PENALTY
ISSUE 429 16.3 SCALE-DEPENDENT TECHNIQUES 433 16.3.1 NEIGHBORHOOD
METHODS 433 16.3.2 SPATIAL DECOMPOSITION METHODS 437 16.4 OBJECT AND
ENTITY-BASED TECHNIQUES 438 16.5 STRATIFICATION 440 16.5.1 SEASONAL,
GEOGRAPHICAL AND TEMPORAL STRATIFICATION 441 16.5.2 WEATHER-TYPE
DEPENDENT STRATIFICATION 442 16.6 WHICH VERIFICATION APPROACH SHOULD I
USE? 448 REFERENCES 449 * * * * * * * * * * * * * * 1 THE
2D-VIDEO-DISTROMETER MICHAEL SCHONHUBER , GIINTER LAMMER , WALTER L.
RANDEU INSTITUTE OF APPLIED SYSTEMS TECHNOLOGY, JOANNEUM RESEARCH, GRAZ,
AUSTRIA GRAZ UNIVERSITY OF TECHNOLOGY, GRAZ, AUSTRIA TABLE OF CONTENTS
1.1 INTRODUCTION 3 1.2 ABOUT DISTROMETER TYPES 4 1.3 PRINCIPLE OF
MEASUREMENT BY 2D-VIDEO-DISTROMETER 6 1.3.1 DESIGN OF THE INSTRUMENT 8
1.3.2 MEASURABLE AND DERIVED QUANTITIES 12 1.4 CURRENT IMPLEMENTATION 20
1.4.1 SPECIFICATIONS..... 21 1.4.2 MAINTENANCE PROCEDURES 21 1.5
EXPERIENCES 23 1.6 SCIENTIFIC MERITS 24 1.7 OUTLOOK 28 REFERENCES 29
USING VIBRATING-WIRE TECHNOLOGY FOR PRECIPITATION MEASUREMENTS CLAUDE E.
DUCHON SCHOOL OF METEOROLOGY, UNIVERSITY OF OKLAHOMA, OK, USA TABLE OF
CONTENTS 2.1 INTRODUCTION 33 2.2 PRINCIPLES OF OPERATION 35 2.3
DESCRIPTION OF FIELD SITE AND DATA ACQUISITION 36 2.4 ADVANTAGES OF
USING THREE VIBRATING WIRES 41 2.5 CALIBRATION-VERIFICATION 44 2.6
TEMPERATURE SENSITIVITY 47 2.7 RAIN RATE ESTIMATION 50 2.8 VERY LOW
PRECIPITATION EVENTS 53 2.9 SUMMARY 56 REFERENCES 58 MEASUREMENTS OF
LIGHT RAIN, DRIZZLE AND HEAVY FOG ISMAIL GULTEPE CLOUD PHYSICS AND
SEVERE WEATHER RESEARCH SECTION METEOROLOGICAL RESEARCH DIVISION,
TORONTO, ENVIRONMENT CANADA, ONTARIO M3H 5T4, CANADA TABLE OF CONTENTS
3.1 INTRODUCTION 59 3.2 FRAM FIELD PROJECTS AND OBSERVATIONS 62 3.2.1
FD12P MEASUREMENTS 63 3.2.2 VRG101 MEASUREMENTS 64 3.2.3 POSS
MEASUREMENTS 65 3.2.4 TOTAL PRECIPITATION SENSOR (TPS) MEASUREMENTS 67
3.2.5 FMD AND CIP MEASUREMENTS 68 3.3 ANALYSIS 68 3.4 RESULTS 69 3.4.1
CASE STUDIES 69 3.4.2 OVERALL COMPARISONS 70 3.5 DISCUSSION 73 3.5.1
LIGHT PRECIPITATION AND DRIZZLE MEASUREMENTS 75 3.5.2 VISIBILITY
CALCULATIONS 75 3.5.3 UNCERTAINTIES 78 3.6 CONCLUSIONS 79 REFERENCES 80
99 THE DROPLET SPECTROMETER - A MEASURING CONCEPT FOR DETAILED
PRECIPITATION CHARACTERIZATION SEBASTIAN GLASL, MAGNUS ANSELM TECHNISCHE
UNIVERSITAT MUNCHEN, GERMANY TABLE OF CONTENTS 4.1 INTRODUCTION 83 4.2
PHYSICAL BASIS 84 4.2.1 DROP SIZE CALCULATION 84 4.2.2 CALIBRATION 86
4.3 THE MEASURING CONCEPT 87 4.3.1 THE DROPLET SENSOR 87 4.3.2 THE
SOFTWARE RAINALYSER 89 4.4 DISCUSSION AND APPLICATIONS 93 4.4.1
MEASURING RANGE 93 4.4.2 INFLUENCE OF WIND 94 4.4.3 DROP SHAPES AND DRAG
COEFFICIENT 94 4.4.4 SIGNIFICANCE OF THE IMPULSE OF THE DROPS 94 4.4.5
APPLICATION POSSIBILITIES 95 4.5 FUTURE PLANS AND IMPROVEMENTS 96 4.6
APPENDIX 97 REFERENCES 123 5 QUALITY CONTROL OF PRECIPITATION DATA
THOMAS EINFALT 1 , SILAS MICHAELIDES 2 HYDRO & METEO GMBH & CO. KG,
LIIBECK, GERMANY 2 METEOROLOGICAL SERVICE, NICOSIA, CYPRUS TABLE OF
CONTENTS 5.1 INTRODUCTION 101 5.2 QUALITY CONTROL OF RAIN GAUGE DATA 102
5.2.1 GAPS IN THE DATA 103 5.2.2 PHYSICALLY IMPOSSIBLE VALUES 103 5.2.3
CONSTANT VALUES 103 5.2.4 VALUES ABOVE SET THRESHOLDS 103 5.2.5
IMPROBABLE ZERO VALUES 104 5.2.6 UNUSUALLY LOW DAILY VALUES 104 5.2.7
UNUSUALLY HIGH DAILY VALUES 104 5.2.8 DATA CHECK TIME SERIES 104 5.2.9
STATION DATA QUALITY 105 5.2.10 GENERALIZATION AND FUTURE WORK 106
5.2.11 CONCLUSION: WHAT CAN WE DO AUTOMATICALLY? 106 5.3 QUALITY CONTROL
OF RADAR DATA 106 5.3.1 DATA QUALITY REPORT OF COST 717 107 5.3.2 ERROR
SOURCES 108 5.3.3 DATA QUALITY INDEX 111 5.3.4 CORRECTION METHODS 114
5.4 FUTURE DEVELOPMENTS 123 REFERENCES . REFERENCES 164 6 GLOBAL
PRECIPITATION MEASUREMENT ARTHUR Y. HOU 1 , GAIL SKOFRONICK-JACKSON 1 ,
CHRISTIAN D. KUMMEROW 2 , JAMES MARSHALL SHEPHERD 3 1 NASA GODDARD SPACE
FLIGHT CENTER, GREENBELT, MD, USA 2 COLORADO STATE UNIVERSITY, FORT
COLLINS, CO, USA 3 UNIVERSITY OF GEORGIA, ATHENS, GA, USA TABLE OF
CONTENTS 6.1 INTRODUCTION 131 6.2 MICROWAVE PRECIPITATION SENSORS 135
6.3 RAINFALL MEASUREMENT WITH COMBINED USE OF ACTIVE AND PASSIVE
TECHNIQUES 140 6.4 THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION
143 6.4.1 GPM MISSION CONCEPT AND STATUS 145 6.4.2 GPM CORE SENSOR
INSTRUMENTATION 148 6.4.3 GROUND VALIDATION PLANS 151 6.5 PRECIPITATION
RETRIEVAL ALGORITHM METHODOLOGIES 153 6.5.1 ACTIVE RETRIEVAL METHODS 155
6.5.2 COMBINED RETRIEVAL METHODS FOR GPM 157 6.5.3 PASSIVE RETRIEVAL
METHODS 159 6.5.4 MERGED MICROWAVE/INFRARED METHODS 160 6.6 SUMMARY 162
REFERENCES 190 OPERATIONAL DISCRIMINATION OF RAINING FROM NON-RAINING
CLOUDS IN MID-LATITUDES USING MULTISPECTRAL SATELLITE DATA THOMAS NAUSS
1 , BORIS THIES 1 , ANDREAS TUREK 1 , JORG BENDIX 1 , ALEXANDER
KOKHANOVSKY 2 LABORATORY OF CLIMATOLOGY AND REMOTE SENSING, UNIVERSITY
OF MARBURG GERMANY INSTITUTE OF REMOTE SENSING, UNIVERSITY OF BREMEN,
GERMANY TABLE OF CONTENTS 7.1 INTRODUCTION 171 7.2 CONCEPTUAL MODEL FOR
THE DISCRIMINATION OF RAINING FROM NON-RAINING MID-LATITUDE CLOUD
SYSTEMS 172 7.3 RETRIEVAL OF THE CLOUD PROPERTIES USING MULTISPECTRAL
SATELLITE DATA 173 7.4 APPLICATION OF THE CONCEPTUAL MODEL TO METEOSAT
SECOND GENERATION SEVIRI DATA 175 7.4.1 THE DAYTIME APPROACH 175 7.4.2
THE NIGHT-TIME APPROACH 178 7.5 EVALUATION OF THE NEW RAIN AREA
DELINEATION SCHEME 183 7.5.1 EVALUATION STUDY USING DAYTIME SCENES 184
7.5.2 EVALUATION STUDY USING NIGHT-TIME SCENES 186 7.6 CONCLUSIONS 188
REFERENCES 213 8 ESTIMATION OF PRECIPITATION FROM SPACE-BASED PLATFORMS
ITAMAR M. LENSKY 1 , VINCENZO LEVIZZANI 2 DEPARTMENT OF GEOGRAPHY AND
ENVIRONMENT, BAR-ILAN UNIVERSITY, RAMAT-GAN, ISRAEL INSTITUTE OF
ATMOSPHERIC SCIENCES AND CLIMATE, NATIONAL RESEARCH COUNCIL, BOLOGNA,
ITALY TABLE OF CONTENTS 8.1 INTRODUCTION 195 8.2 ESTIMATING RAINFALL
FROM SPACE 196 8.2.1 VIS/IR 197 8.2.2 PASSIVE MICROWAVE 198 8.2.3 ACTIVE
SENSORS 200 8.2.4 BLENDED TECHNIQUES 202 8.3 RETRIEVAL OF PRECIPITATION
FORMATION PROCESSES USING MICROPHYSICAL DATA 205 8.3.1 RAIN ESTIMATES
USING MICROPHYSICAL CONSIDERATIONS 205 8.3.2 RETRIEVAL OF PRECIPITATION
FORMATION PROCESSES 207 8.3.3 FUTURE DEVELOPMENTS 212 8.4 ABBREVIATION
212 REFERENCES 228 COMBINED RADAR-RADIOMETER RETRIEVALS FROM SATELLITE
OBSERVATIONS MIRCEA GRECU 1 , EMMANOUIL N. ANAGNOSTOU 2 GODDARD EARTH
SCIENCES AND TECHNOLOGY CENTER, UNIVERSITY OF MARYLAND BALTIMORE COUNTY
AND NASA GODDARD SPACE FLIGHT CENTER GREENBELT, MD.USA 2 CIVIL AND
ENVIRONMENTAL ENGINEERING, UNIVERSITY OF CONNECTICUT, STORRS, CT, USA;
HELLENIC CENTER FOR MARINE RESEARCH, INSTITUTE OF INLAND WATERS,
ANAVISSOS-ATTIKIS, GREECE TABLE OF CONTENTS 9.1 INTRODUCTION 219 9.2
BACKGROUND 220 9.3 GENERAL FORMULATION 223 9.4 CONCLUDING REMARKS 228
REFERENCES 279 10 RAIN MICROSTRUCTURE FROM POLARIMETRIC RADAR AND
ADVANCED DISDROMETERS MERHALA THURAI, V. N. BRINGI DEPT. OF ELECTRICAL
AND COMPUTER ENGINEERING, COLORADO STATE UNIVERSITY, CO, USA TABLE OF
CONTENTS 10.1 INTRODUCTION 234 10.1.1 BACKGROUND 234 10.1.2 RAIN
MICROSTRUCTURE: RELEVANCE 235 10.1.3 RELATING RAIN MICROSTRUCTURE TO
POLARIMETRIC RADAR MEASUREMENTS 238 10.2 DROP SIZE DISTRIBUTIONS 242
10.2.1 VARIABILITY 242 10.2.2 DSD MODELS 243 10.2.3 DSD ESTIMATION FROM
POLARIMETRIC RADAR MEASUREMENTS 248 10.2.4 DSD ESTIMATION FROM ADVANCED
DISDROMETERS 254 10.2.5 GLOBAL DSD CHARACTERISTICS 257 10.2.6 SEASONAL
VARIATION 259 10.3 DROP SHAPES 263 10.3.1 AXIS RATIO MEASUREMENTS FROM
AN ARTIFICIAL RAIN EXPERIMENT 263 10.3.2 DROP CONTOURS 265 10.3.3
CONSISTENCY WITH POLARIMETRIC RADAR MEASUREMENTS 268 10.4 DROP
ORIENTATION ANGLES 269 10.5 FALL VELOCITIES 274 10.6 SUMMARY 276
REFERENCES 311 11 ON THE USE OF SPECTRAL POLARIMETRY TO OBSERVE ICE
CLOUD MICROPHYSICS WITH RADAR HERMAN RUSSCHENBERG 1 , LENNERT SPEK 1 ,
DMITRI MOISSEEV 2 , CHRISTINE UNAL 1 , YANN DUFOURNET 1 , CHANDRASEKHAR
VENKATACHALAM 2 DELFT UNIVERSITY OF TECHNOLOGY, IRCTR, THE NETHERLANDS
COLORADO STATE UNIVERSITY, FORT COLLINS, CO, USA TABLE OF CONTENTS 11.1
INTRODUCTION 286 11.2 THE CONCEPT OF SPECTRAL POLARIMETRY 287 11.3
MICROPHYSICAL MODEL OF ICE PARTICLES 288 11.3.1 THE SHAPE OF ICE
CRYSTALS 289 11.3.2 CANTING ANGLES OF ICE CRYSTALS 290 11.3.3 MASS
DENSITY OF ICE CRYSTALS 290 11.3.4 VELOCITY OF ICE CRYSTALS 291 11.3.5
BULK PARAMETERS 292 11.4 RADAR OBSERVABLES OF ICE PARTICLES 293 11.5
RETRIEVAL OF MICROPHYSICAL PARAMETERS 296 11.5.1 DEPENDENCE ON DSD
PARAMETERS OF PLATES AND AGGREGATES 296 11.5.2 THE CURVE FITTING
PROCEDURE 297 11.5.3 QUALITY OF RETRIEVAL TECHNIQUE 302 11.6 APPLICATION
TO RADAR DATA 303 11.6.1 RETRIEVAL ALGORITHM RESULTS 304 11.6.2
COMPARISON OF IWC WITH LWC 304 11.6.3 RELATION BETWEEN IWC AND
REFLECTIVITY 307 11.6.4 INFLUENCE OF THE SHAPE PARAMETER OF THE DSD 308
11.7 SUMMARY AND CONCLUSIONS 310 12 PERFORMANCE OF ALGORITHMS FOR
RAINFALL RETRIEVAL FROM DUAL-POLARIZATION X-BAND RADAR MEASUREMENTS
MARIOS N. ANAGNOSTOU 1 , EMMANOUIL N. ANAGNOSTOU 2 HELLENIC CENTER FOR
MARINE RESEARCH, INSTITUTE OF INLAND WATERS, ANAVISSOS-ATTIKIS, GREECE
CIVIL AND ENVIRONMENTAL ENGINEERING, UNIVERSITY OF CONNECTICUT, STORRS,
CT, USA TABLE OF CONTENTS 12.1 INTRODUCTION 313 12.2 X-BAND
DUAL-POLARIZATION SYSTEMS 316 12.3 ATTENUATION CORRECTION SCHEMES FOR
X-BAND DUAL-POLARIZATION RADAR OBSERVATIONS 318 12.4 RAINFALL ESTIMATION
ALGORITHMS 319 12.4.1 REVIEW OF MICROPHYSICAL RETRIEVAL ALGORITHMS 319
12.4.2 RAINFALL RETRIEVAL ALGORITHMS 324 12.4.3 DATA 325 12.5 ALGORITHM
EVALUATION 328 12.5.1 EVALUATION OF THE DSD RETRIEVAL TECHNIQUES 329
12.5.2 EVALUATION OF RAINFALL RETRIEVAL TECHNIQUES 333 12.6 CLOSING
REMARKS 337 REFERENCES 337 REFERENCES 361 13 UNDERWATER ACOUSTIC
MEASUREMENTS OF RAINFALL EYAL AMITAI - 2 , JEFFREY A. NYSTUCN 3 NASA
GODDARD SPACE FLIGHT CENTER, GRCENBELL, MD, USA GEORGE MASON
UNIVERSITY, FAIRFAX, VA. USA 3 APPLIED PHYSICS LABORATORY, UNIVERSITY OF
WASHINGTON. SEATTLE. WA, USA TABLE OF CONTENTS 13.1 INTRODUCTION 343
13.1.1 WHY MEASURE RAINFALL AT SEA? 343 13.1.2 WHY LISTEN TO RAINFALL
UNDERWATER? 344 13.1.3 WHAT INSTRUMENTATION IS USED TO MEASURE RAINFALL
AT SEA? 344 13.1.4 USING SOUND TO MEASURE DROP SIZE DISTRIBUTION AND
RAIN RATE 345 13.2 LISTENING TO RAINFALL IN A SHALLOW WATER POND 348
13.3 OCEANIC FIELD STUDIES OF THE ACOUSTIC MEASUREMENT OF RAINFALL .349
13.4 LISTENING TO RAINFALL 2000 METERS UNDERWATER - THE IONIAN SEA
RAINFALL EXPERIMENT 350 13.4.1 RAIN TYPE CLASSIFICATION AND WIND SPEED
ESTIMATES 35X 13.5 CONCLUSIONS AND OUTLOOK 360 REFERENCES 386 14
PROBABILISTIC EVALUATION OF ENSEMBLE PRECIPITATION FORECASTS BODO AHRENS
1 , SIMON JAUN 2 INSTITUTE FOR ATMOSPHERE AND ENVIRONMENT,
GOETHE-UNIVERSITY FRANKFURT A.M., GERMANY INSTITUTE FOR ATMOSPHERIC AND
CLIMATE SCIENCE, ETH ZURICH, SWITZERLAND TABLE OF CONTENTS 14.1
INTRODUCTION 367 14.2 RAIN STATION PRECIPITATION DATA 370 14.3 FORECAST
DATA BY THE LIMITED-AREA PREDICTION SYSTEM COSMO-LEPS 371 14.4
OBSERVATIONAL REFERENCES 373 14.5 SKILL SCORES 376 14.6 RESULTS AND
DISCUSSION 379 14.7 CONCLUSIONS 384 15 IMPROVED NOWCASTING OF
PRECIPITATION BASED ON CONVECTIVE ANALYSIS FIELDS THOMAS HAIDEN, MARTIN
STEINHEIMER CENTRAL INSTITUTE FOR METEOROLOGY AND GEODYNAMICS (ZAMG),
VIENNA, AUSTRIA TABLE OF CONTENTS 15.1 INTRODUCTION 389 15.2 THE INCA
SYSTEM 393 15.3 ADVECTION FORECAST 397 15.4 CONVECTIVE ANALYSIS FIELDS
401 15.5 CELL EVOLUTION ALGORITHM 403 15.6 VERIFICATION AND PARAMETER
SENSITIVITY 407 15.7 OROGRAPHIC EFFECTS IN CONVECTIVE INITIATION 412
15.8 CONCLUSIONS 415 REFERENCES 416 REFERENCES 449 16 OVERVIEW OF
METHODS FOR THE VERIFICATION OF QUANTITATIVE PRECIPITATION FORECASTS
ANDREA ROSSA , PERTTI NURMI 2 , ELIZABETH EBERT 3 CENTRA METEOROLOGICO
DI TEOLO, ARPA VENETO, ITALY 2 METEOROLOGICAL RESEARCH, FINNISH
METEOROLOGICAL INSTITUTE, FINLAND 3 CENTRE FOR AUSTRALIAN WEATHER AND
CLIMATE RESEARCH, BUREAU OF METEOROLOGY, AUSTRALIA TABLE OF CONTENTS
16.1 INTRODUCTION 419 16.2 TRADITIONAL VERIFICATION OF QPF AND
LIMITATIONS FOR HIGH RESOLUTION VERIFICATION 423 16.2.1 COMMON SCORES
424 16.2.2 THE DOUBLE PENALTY ISSUE 429 16.3 SCALE-DEPENDENT TECHNIQUES
433 16.3.1 NEIGHBORHOOD METHODS 433 16.3.2 SPATIAL DECOMPOSITION METHODS
437 16.4 OBJECT AND ENTITY-BASED TECHNIQUES 438 16.5 STRATIFICATION 440
16.5.1 SEASONAL, GEOGRAPHICAL AND TEMPORAL STRATIFICATION 44! 16.5.2
WEATHER-TYPE DEPENDENT STRATIFICATION 442 16.6 WHICH VERIFICATION
APPROACH SHOULD I USE? 448 REFERENCES 469 17 OBJECTIVE VERIFICATION OF
SPATIAL PRECIPITATION FORECASTS NAZARIO TARTAGLIONE 1 , STEFANO MARIANI
2 3 , CHRISTOPHE ACCADIA 4 , SILAS MICHAELIDES 5 , MARCO CASAIOLI 2
DEPARTMENT OF PHYSICS, UNIVERSITY OF CAMERINO, ITALY AGENCY FOR
ENVIRONMENTAL PROTECTION AND TECHNICAL SERVICES (APAT), ROME, ITALY
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FERRARA, ITALY 4 EUMETSAT,
DARMSTADT, GERMANY METEOROLOGICAL SERVICE, NICOSIA, CYPRUS TABLE OF
CONTENTS 17.1 INTRODUCTION 453 17.2 THE PROBLEM OF OBSERVATIONS IN
OBJECTIVE VERIFICATION 456 17.3 USE OF RAINFALL ADJUSTED FIELD FOR
VERIFYING PRECIPITATION 458 17.4 STATISTICAL INTERPRETATION OF POSITION
ERRORS AS DERIVED BY OBJECT-ORIENTED METHODS 461 17.5 ASSESSING THE
DIFFERENCE BETWEEN CMS INDICES FROM TWO DIFFERENT FORECAST SYSTEMS 466
17.6 CONCLUSIONS 467 REFERENCES 490 18 COMBINED USE OF WEATHER RADAR AND
LIMITED AREA MODEL FOR WINTERTIME PRECIPITATION TYPE DISCRIMINATION
ROBERTO CREMONINI, RENZO BECHINI, VALENTINA CAMPANA, LUCA TOMASSONE ARPA
PIEMONTE, AREA PREVISIONE E MONITORAGGIO AMBIENTALE, TORINO, ITALY TABLE
OF CONTENTS 18.1 INTRODUCTION 475 18.2 DATA SOURCE AND PRECIPITATION
TYPE DISCRIMINATING ALGORITHMS 478 18.2.1 DATA SOURCES 478 18.2.2
PRECIPITATION TYPE DISCRIMINATING ALGORITHMS 480 18.3 ALGORITHM S
VALIDATION 482 18.4 RESULTS 485 18.4.1 GROUND NETWORK 2 M AIR
TEMPERATURE 485 18.4.2 LAMI FREEZING LEVEL 486 18.4.3 LAMI WET-BULB
TEMPERATURE 488 18.5 SUMMARY AND CONCLUSIONS 489 REFERENCES 512 19
ADJUSTING GROUND RADAR USING SPACE TRMM PRECIPITATION RADAR MARCO
GABELLA , SILAS MICHAELIDES 2 1 DEPARTMENT OF ELECTRONICS, POLITECNICO
DI TORINO, TURIN, ITALY 2 METEOROLOGICAL SERVICE, NICOSIA, CYPRUS TABLE
OF CONTENTS 19.1 INTRODUCTION 494 19.1.1 MONITORING HARDWARE STABILITY
AND MEASUREMENTS REPRODUCIBILITY 494 19.1.2 CALIBRATION VERSUS ABSOLUTE
CALIBRATION 494 19.1.3 ADJUSTMENT 495 19.1.4 WHY TO ADJUST GROUND-BASED
RADAR (GR) DATA? 496 19.2 RADAR/GAUGE FACTOR: RANGE-DEPENDENCE AS SEEN
BY GAUGES 497 19.2.1 ADJUSTMENT NOT DIRECTLY RELATED TO PHYSICAL
VARIABLES ..498 19.2.2 ADJUSTMENT FACTOR RELATED TO SOME PHYSICAL
VARIABLES.. 499 19.3 COMPARING GROUND-BASED AND SPACEBORNE RADAR 500
19.3.1 RANGE-DEPENDENCE AS SEEN BY THE TPR 501 19.4 INSTRUMENTATION AND
DATA DESCRIPTION 503 19.4.1 THE TRMM PRECIPITATION RADAR (TPR) 503
19.4.2 THE GROUND-BASED RADAR (GR) IN CYPRUS 504 19.5 RESULTS 505 19.5.1
BIAS AND RANGE-DEPENDENCE DERIVED FROM SINGLE OVERERPASSES 505 19.5.2 A
ROBUST RANGE-ADJUSTMENT EQUATION: INTEGRATING MORE OVERPASSES 507 19.5.3
COMPARING TPR AND GR ECHOES 508 19.6 SUMMARY AND LESSONS LEARNED 510 $30
20 IMPLEMENTING A MULTIPLATFORM PRECIPITATION EXPERIMENT GIOVANNI PERONA
1 , MARCO GABELLA 1 , RICCARDO CASALE 2 POLITECNICO DI TORINO,
ELECTRONICS DEPARTMENT, TORINO, ITALY 2 RESEARCH DIRECTORATE GENERAL,
EUROPEAN COMMISSION, BRUSSELS BELGIUM TABLE OF CONTENTS 20.1
INTRODUCTION 515 20.1.1 SCIENTIFIC/TECHNOLOGICAL OBJECTIVES OF THE
VOLTAIRE PROJECT 517 20.1.2 PROJECT ORGANIZATION 518 20.2 VOLTAIRE
PROJECT SUMMARY AND RECOMMENDATIONS 520 20.2.1 SUMMARY 520 20.2.2 MAIN
LESSONS LEARNED 523 20.2.3 RECOMMENDATIONS 524 20.3 VOLTAIRE TECHNICAL
CONCLUSIONS 526 20.4 OUTLOOK FOR QPE USING RADAR 527 20.4.1 WHERE WE
STAND TODAY 527 20.4.2 PROPOSED SOLUTION: USE OF MANY INEXPENSIVE,
REDUNDANT, SHORT-RANGE RADARS 528 20.5 GENERAL CONCLUSIONS 529 20.6
APPENDIX 530 REFERENCES
|
adam_txt |
GESCANNT DURCH CONTENTS PART I. MEASUREMENT OF PRECIPITATION 1 CHAPTER 1
-THE 2D-VIDEO-DISTROMETER 3 MICHAEL SCHONHUBER, GI'MTER HAMMER, WALTER
L. RANDEN 1.1 INTRODUCTION 3 1.2 ABOUT DISTROMETER TYPES 4 1.3 PRINCIPLE
OF MEASUREMENT BY 2D-VIDEO-DISTROMETER 6 1.3.1 DESIGN OF THE INSTRUMENT
8 1.3.2 MEASURABLE AND DERIVED QUANTITIES 12 1.4 CURRENT IMPLEMENTATION
20 1.4.1 SPECIFICATIONS 21 1.4.2 MAINTENANCE PROCEDURES 21 1.5
EXPERIENCES 23 1.6 SCIENTIFIC MERITS 24 1.7 OUTLOOK 28 REFERENCES 29
CHAPTER 2 - USING VIBRATING-WIRE TECHNOLOGY FOR PRECIPITATION
MEASUREMENTS 33 CLAUDE E. DUCHON 2.1 INTRODUCTION 33 2.2 PRINCIPLES OF
OPERATION 35 2.3 DESCRIPTION OF FIELD SITE AND DATA ACQUISITION 36 2.4
ADVANTAGES OF USING THREE VIBRATING WIRES 41 2.5
CALIBRATION-VERIFICATION 44 2.6 TEMPERATURE SENSITIVITY 47 2.7 RAIN RATE
ESTIMATION 50 2.8 VERY LOW PRECIPITATION EVENTS 53 2.9 SUMMARY 56
REFERENCES 58 BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/986833754
DIGITALISIERT DURCH REFERENCES 99 XXII CONTENTS CHAPTER 3 - MEASUREMENTS
OF LIGHT RAIN, DRIZZLE AND HEAVY FOG 59 ISMAIL GULTEPE 3.1 INTRODUCTION
59 3.2 FRAM FIELD PROJECTS AND OBSERVATIONS 62 3.2.1 FD12P MEASUREMENTS
63 3.2.2 VRG101 MEASUREMENTS 64 3.2.3 POSS MEASUREMENTS 65 3.2.4 TOTAL
PRECIPITATION SENSOR (TPS) MEASUREMENTS 67 3.2.5 FMD AND CIP
MEASUREMENTS 68 3.3 ANALYSIS 68 3.4 RESULTS 69 3.4.1 CASE STUDIES 69
3.4.2 OVERALL COMPARISONS 70 3.5 DISCUSSION 73 3.5.1 LIGHT PRECIPITATION
AND DRIZZLE MEASUREMENTS 75 3.5.2 VISIBILITY CALCULATIONS 75 3.5.3
UNCERTAINTIES 78 3.6 CONCLUSIONS 79 REFERENCES 80 CHAPTER 4 - THE
DROPLET SPECTROMETER - A MEASURING CONCEPT FOR DETAILED PRECIPITATION
CHARACTERIZATION 83 SEBASTIAN GLASL, MAGNUS ANSELM 4.1 INTRODUCTION 83
4.2 PHYSICAL BASIS 84 4.2.1 DROP SIZE CALCULATION 84 4.2.2 CALIBRATION
86 4.3 THE MEASURING CONCEPT 87 4.3.1 THE DROPLET SENSOR 87 4.3.2 THE
SOFTWARE 'RAINALYSER' 89 4.4 DISCUSSION AND APPLICATIONS 93 4.4.1
MEASURING RANGE 93 4.4.2 INFLUENCE OF WIND 94 4.4.3 DROP SHAPES AND DRAG
COEFFICIENT 94 4.4.4 SIGNIFICANCE OF THE IMPULSE OF THE DROPS 94 4.4.5
APPLICATION POSSIBILITIES 95 4.5 FUTURE PLANS AND IMPROVEMENTS 96 4.6
APPENDIX 97 * * * * * * REFERENCES 279 CONTENTS XXV CHAPTER 9 - COMBINED
RADAR-RADIOMETER RETRIEVALS FROM SATELLITE OBSERVATIONS 219 MIRCEA
GREEN, EMMANOUIL N. ANAGNOSTOU 9.1 INTRODUCTION 219 9.2 BACKGROUND 220
9.3 GENERAL FORMULATION 223 9.4 CONCLUDING REMARKS 228 REFERENCES 228
PART II. ESTIMATION OF PRECIPITATION II. GROUND ESTIMATION 231 CHAPTER
10 - RAIN MICROSTRUCTURE FROM POLARIMETRIC RADAR AND ADVANCED
DISDROMETERS 233 MERHALA THURAI, V. N. BRINGI 10.1 INTRODUCTION 234
10.1.1 BACKGROUND 234 10.1.2 RAIN MICROSTRUCTURE: RELEVANCE 235 10.1.3
RELATING RAIN MICROSTRUCTURE TO POLARIMETRIC RADAR MEASUREMENTS 238 10.2
DROP SIZE DISTRIBUTIONS 242 10.2.1 VARIABILITY 242 10.2.2 DSD MODELS 243
10.2.3 DSD ESTIMATION FROM POLARIMETRIC RADAR MEASUREMENTS 248 10.2.4
DSD ESTIMATION FROM ADVANCED DISDROMETERS 254 10.2.5 GLOBAL DSD
CHARACTERISTICS 257 10.2.6 SEASONAL VARIATION 259 10.3 DROP SHAPES 263
10.3.1 AXIS RATIO MEASUREMENTS FROM AN ARTIFICIAL RAIN EXPERIMENT 263
10.3.2 DROP CONTOURS 265 10.3.3 CONSISTENCY WITH POLARIMETRIC RADAR
MEASUREMENTS 268 10.4 DROP ORIENTATION ANGLES 269 10.5 FALL VELOCITIES
274 10.6 SUMMARY 276 * * * * * * * * * * * * * * * * CONTENTS XXVII 12.5
ALGORITHM EVALUATION 328 12.5.1 EVALUATION OF THE DSD RETRIEVAL
TECHNIQUES 329 12.5.2 EVALUATION OF RAINFALL RETRIEVAL TECHNIQUES 333
12.6 CLOSING REMARKS 337 REFERENCES 337 PART II. ESTIMATION OF
PRECIPITATION III. UNDERWATER ESTIMATION 341 CHAPTER 13 - UNDERWATER
ACOUSTIC MEASUREMENTS OF RAINFALL 343 EYAL AMITAI, JEFFREY A. NYSTUEN
13.1 INTRODUCTION 343 13.1.1 WHY MEASURE RAINFALL AT SEA? 343 13.1.2 WHY
LISTEN TO RAINFALL UNDERWATER? 344 13.1.3 WHAT INSTRUMENTATION IS USED
TO MEASURE RAINFALL AT SEA? 344 13.1.4 USING SOUND TO MEASURE DROP SIZE
DISTRIBUTION AND RAIN RATE 345 13.2 LISTENING TO RAINFALL IN A SHALLOW
WATER POND 348 13.3 OCEANIC FIELD STUDIES OF THE ACOUSTIC MEASUREMENT OF
RAINFALL 349 13.4 LISTENING TO RAINFALL 2000 METERS UNDERWATER - THE
IONIAN SEA RAINFALL EXPERIMENT 350 13.4.1 RAIN TYPE CLASSIFICATION AND
WIND SPEED ESTIMATES 358 13.5 CONCLUSIONS AND OUTLOOK 360 REFERENCES 361
PART III. PREDICTION OF PRECIPITATION 365 CHAPTER 14 - PROBABILISTIC
EVALUATION OF ENSEMBLE PRECIPITATION FORECASTS 367 BODO AHRENS, SIMON
JAIM 14.1 INTRODUCTION 367 14.2 RAIN STATION PRECIPITATION DATA 370 14.3
FORECAST DATA BY THE LIMITED-AREA PREDICTION SYSTEM COSMO-LEPS 371 14.4
OBSERVATIONAL REFERENCES 373 14.5 SKILL SCORES 376 XXVIII CONTENTS 14.6
RESULTS AND DISCUSSION 379 14.7 CONCLUSIONS 384 REFERENCES 386 CHAPTER
15 - IMPROVED NOWCASTING OF PRECIPITATION BASED ON CONVECTIVE ANALYSIS
FIELDS 389 THOMAS HAIDEN, MARTIN STEINHEIMER 15.1 INTRODUCTION 389 15.2
THE INCA SYSTEM 393 15.3 ADVECTION FORECAST 397 15.4 CONVECTIVE ANALYSIS
FIELDS 401 15.5 CELL EVOLUTION ALGORITHM 403 15.6 VERIFICATION AND
PARAMETER SENSITIVITY 407 15.7 OROGRAPHIC EFFECTS IN CONVECTIVE
INITIATION 412 15.8 CONCLUSIONS 415 REFERENCES 416 CHAPTER 16 - OVERVIEW
OF METHODS FOR THE VERIFICATION OF QUANTITATIVE PRECIPITATION FORECASTS
419 ANDREA ROSSA, PERTTI NURMI, ELIZABETH EBERT 16.1 INTRODUCTION 419
16.2 TRADITIONAL VERIFICATION OF QPF AND LIMITATIONS FOR HIGH RESOLUTION
VERIFICATION 423 16.2.1 COMMON SCORES 424 16.2.2 THE DOUBLE PENALTY
ISSUE 429 16.3 SCALE-DEPENDENT TECHNIQUES 433 16.3.1 NEIGHBORHOOD
METHODS 433 16.3.2 SPATIAL DECOMPOSITION METHODS 437 16.4 OBJECT AND
ENTITY-BASED TECHNIQUES 438 16.5 STRATIFICATION 440 16.5.1 SEASONAL,
GEOGRAPHICAL AND TEMPORAL STRATIFICATION 441 16.5.2 WEATHER-TYPE
DEPENDENT STRATIFICATION 442 16.6 WHICH VERIFICATION APPROACH SHOULD I
USE? 448 REFERENCES 449 * * * * * * * * * * * * * * 1 THE
2D-VIDEO-DISTROMETER MICHAEL SCHONHUBER , GIINTER LAMMER , WALTER L.
RANDEU INSTITUTE OF APPLIED SYSTEMS TECHNOLOGY, JOANNEUM RESEARCH, GRAZ,
AUSTRIA GRAZ UNIVERSITY OF TECHNOLOGY, GRAZ, AUSTRIA TABLE OF CONTENTS
1.1 INTRODUCTION 3 1.2 ABOUT DISTROMETER TYPES 4 1.3 PRINCIPLE OF
MEASUREMENT BY 2D-VIDEO-DISTROMETER 6 1.3.1 DESIGN OF THE INSTRUMENT 8
1.3.2 MEASURABLE AND DERIVED QUANTITIES 12 1.4 CURRENT IMPLEMENTATION 20
1.4.1 SPECIFICATIONS. 21 1.4.2 MAINTENANCE PROCEDURES 21 1.5
EXPERIENCES 23 1.6 SCIENTIFIC MERITS 24 1.7 OUTLOOK 28 REFERENCES 29
USING VIBRATING-WIRE TECHNOLOGY FOR PRECIPITATION MEASUREMENTS CLAUDE E.
DUCHON SCHOOL OF METEOROLOGY, UNIVERSITY OF OKLAHOMA, OK, USA TABLE OF
CONTENTS 2.1 INTRODUCTION 33 2.2 PRINCIPLES OF OPERATION 35 2.3
DESCRIPTION OF FIELD SITE AND DATA ACQUISITION 36 2.4 ADVANTAGES OF
USING THREE VIBRATING WIRES 41 2.5 CALIBRATION-VERIFICATION 44 2.6
TEMPERATURE SENSITIVITY 47 2.7 RAIN RATE ESTIMATION 50 2.8 VERY LOW
PRECIPITATION EVENTS 53 2.9 SUMMARY 56 REFERENCES 58 MEASUREMENTS OF
LIGHT RAIN, DRIZZLE AND HEAVY FOG ISMAIL GULTEPE CLOUD PHYSICS AND
SEVERE WEATHER RESEARCH SECTION METEOROLOGICAL RESEARCH DIVISION,
TORONTO, ENVIRONMENT CANADA, ONTARIO M3H 5T4, CANADA TABLE OF CONTENTS
3.1 INTRODUCTION 59 3.2 FRAM FIELD PROJECTS AND OBSERVATIONS 62 3.2.1
FD12P MEASUREMENTS 63 3.2.2 VRG101 MEASUREMENTS 64 3.2.3 POSS
MEASUREMENTS 65 3.2.4 TOTAL PRECIPITATION SENSOR (TPS) MEASUREMENTS 67
3.2.5 FMD AND CIP MEASUREMENTS 68 3.3 ANALYSIS 68 3.4 RESULTS 69 3.4.1
CASE STUDIES 69 3.4.2 OVERALL COMPARISONS 70 3.5 DISCUSSION 73 3.5.1
LIGHT PRECIPITATION AND DRIZZLE MEASUREMENTS 75 3.5.2 VISIBILITY
CALCULATIONS 75 3.5.3 UNCERTAINTIES 78 3.6 CONCLUSIONS 79 REFERENCES 80
99 THE DROPLET SPECTROMETER - A MEASURING CONCEPT FOR DETAILED
PRECIPITATION CHARACTERIZATION SEBASTIAN GLASL, MAGNUS ANSELM TECHNISCHE
UNIVERSITAT MUNCHEN, GERMANY TABLE OF CONTENTS 4.1 INTRODUCTION 83 4.2
PHYSICAL BASIS 84 4.2.1 DROP SIZE CALCULATION 84 4.2.2 CALIBRATION 86
4.3 THE MEASURING CONCEPT 87 4.3.1 THE DROPLET SENSOR 87 4.3.2 THE
SOFTWARE 'RAINALYSER' 89 4.4 DISCUSSION AND APPLICATIONS 93 4.4.1
MEASURING RANGE 93 4.4.2 INFLUENCE OF WIND 94 4.4.3 DROP SHAPES AND DRAG
COEFFICIENT 94 4.4.4 SIGNIFICANCE OF THE IMPULSE OF THE DROPS 94 4.4.5
APPLICATION POSSIBILITIES 95 4.5 FUTURE PLANS AND IMPROVEMENTS 96 4.6
APPENDIX 97 REFERENCES 123 5 QUALITY CONTROL OF PRECIPITATION DATA
THOMAS EINFALT 1 , SILAS MICHAELIDES 2 'HYDRO & METEO GMBH & CO. KG,
LIIBECK, GERMANY 2 METEOROLOGICAL SERVICE, NICOSIA, CYPRUS TABLE OF
CONTENTS 5.1 INTRODUCTION 101 5.2 QUALITY CONTROL OF RAIN GAUGE DATA 102
5.2.1 GAPS IN THE DATA 103 5.2.2 PHYSICALLY IMPOSSIBLE VALUES 103 5.2.3
CONSTANT VALUES 103 5.2.4 VALUES ABOVE SET THRESHOLDS 103 5.2.5
IMPROBABLE ZERO VALUES 104 5.2.6 UNUSUALLY LOW DAILY VALUES 104 5.2.7
UNUSUALLY HIGH DAILY VALUES 104 5.2.8 DATA CHECK TIME SERIES 104 5.2.9
STATION DATA QUALITY 105 5.2.10 GENERALIZATION AND FUTURE WORK 106
5.2.11 CONCLUSION: WHAT CAN WE DO AUTOMATICALLY? 106 5.3 QUALITY CONTROL
OF RADAR DATA 106 5.3.1 DATA QUALITY REPORT OF COST 717 107 5.3.2 ERROR
SOURCES 108 5.3.3 DATA QUALITY INDEX 111 5.3.4 CORRECTION METHODS 114
5.4 FUTURE DEVELOPMENTS 123 REFERENCES '. REFERENCES 164 6 GLOBAL
PRECIPITATION MEASUREMENT ARTHUR Y. HOU 1 , GAIL SKOFRONICK-JACKSON 1 ,
CHRISTIAN D. KUMMEROW 2 , JAMES MARSHALL SHEPHERD 3 1 NASA GODDARD SPACE
FLIGHT CENTER, GREENBELT, MD, USA 2 COLORADO STATE UNIVERSITY, FORT
COLLINS, CO, USA 3 UNIVERSITY OF GEORGIA, ATHENS, GA, USA TABLE OF
CONTENTS 6.1 INTRODUCTION 131 6.2 MICROWAVE PRECIPITATION SENSORS 135
6.3 RAINFALL MEASUREMENT WITH COMBINED USE OF ACTIVE AND PASSIVE
TECHNIQUES 140 6.4 THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION
143 6.4.1 GPM MISSION CONCEPT AND STATUS 145 6.4.2 GPM CORE SENSOR
INSTRUMENTATION 148 6.4.3 GROUND VALIDATION PLANS 151 6.5 PRECIPITATION
RETRIEVAL ALGORITHM METHODOLOGIES 153 6.5.1 ACTIVE RETRIEVAL METHODS 155
6.5.2 COMBINED RETRIEVAL METHODS FOR GPM 157 6.5.3 PASSIVE RETRIEVAL
METHODS 159 6.5.4 MERGED MICROWAVE/INFRARED METHODS 160 6.6 SUMMARY 162
REFERENCES 190 OPERATIONAL DISCRIMINATION OF RAINING FROM NON-RAINING
CLOUDS IN MID-LATITUDES USING MULTISPECTRAL SATELLITE DATA THOMAS NAUSS
1 , BORIS THIES 1 , ANDREAS TUREK 1 , JORG BENDIX 1 , ALEXANDER
KOKHANOVSKY 2 'LABORATORY OF CLIMATOLOGY AND REMOTE SENSING, UNIVERSITY
OF MARBURG GERMANY INSTITUTE OF REMOTE SENSING, UNIVERSITY OF BREMEN,
GERMANY TABLE OF CONTENTS 7.1 INTRODUCTION 171 7.2 CONCEPTUAL MODEL FOR
THE DISCRIMINATION OF RAINING FROM NON-RAINING MID-LATITUDE CLOUD
SYSTEMS 172 7.3 RETRIEVAL OF THE CLOUD PROPERTIES USING MULTISPECTRAL
SATELLITE DATA 173 7.4 APPLICATION OF THE CONCEPTUAL MODEL TO METEOSAT
SECOND GENERATION SEVIRI DATA 175 7.4.1 THE DAYTIME APPROACH 175 7.4.2
THE NIGHT-TIME APPROACH 178 7.5 EVALUATION OF THE NEW RAIN AREA
DELINEATION SCHEME 183 7.5.1 EVALUATION STUDY USING DAYTIME SCENES 184
7.5.2 EVALUATION STUDY USING NIGHT-TIME SCENES 186 7.6 CONCLUSIONS 188
REFERENCES 213 8 ESTIMATION OF PRECIPITATION FROM SPACE-BASED PLATFORMS
ITAMAR M. LENSKY 1 , VINCENZO LEVIZZANI 2 'DEPARTMENT OF GEOGRAPHY AND
ENVIRONMENT, BAR-ILAN UNIVERSITY, RAMAT-GAN, ISRAEL INSTITUTE OF
ATMOSPHERIC SCIENCES AND CLIMATE, NATIONAL RESEARCH COUNCIL, BOLOGNA,
ITALY TABLE OF CONTENTS 8.1 INTRODUCTION 195 8.2 ESTIMATING RAINFALL
FROM SPACE 196 8.2.1 VIS/IR 197 8.2.2 PASSIVE MICROWAVE 198 8.2.3 ACTIVE
SENSORS 200 8.2.4 BLENDED TECHNIQUES 202 8.3 RETRIEVAL OF PRECIPITATION
FORMATION PROCESSES USING MICROPHYSICAL DATA 205 8.3.1 RAIN ESTIMATES
USING MICROPHYSICAL CONSIDERATIONS 205 8.3.2 RETRIEVAL OF PRECIPITATION
FORMATION PROCESSES 207 8.3.3 FUTURE DEVELOPMENTS 212 8.4 ABBREVIATION
212 REFERENCES 228 COMBINED RADAR-RADIOMETER RETRIEVALS FROM SATELLITE
OBSERVATIONS MIRCEA GRECU 1 , EMMANOUIL N. ANAGNOSTOU 2 'GODDARD EARTH
SCIENCES AND TECHNOLOGY CENTER, UNIVERSITY OF MARYLAND BALTIMORE COUNTY
AND NASA GODDARD SPACE FLIGHT CENTER GREENBELT, MD.USA 2 CIVIL AND
ENVIRONMENTAL ENGINEERING, UNIVERSITY OF CONNECTICUT, STORRS, CT, USA;
HELLENIC CENTER FOR MARINE RESEARCH, INSTITUTE OF INLAND WATERS,
ANAVISSOS-ATTIKIS, GREECE TABLE OF CONTENTS 9.1 INTRODUCTION 219 9.2
BACKGROUND 220 9.3 GENERAL FORMULATION 223 9.4 CONCLUDING REMARKS 228
REFERENCES 279 10 RAIN MICROSTRUCTURE FROM POLARIMETRIC RADAR AND
ADVANCED DISDROMETERS MERHALA THURAI, V. N. BRINGI DEPT. OF ELECTRICAL
AND COMPUTER ENGINEERING, COLORADO STATE UNIVERSITY, CO, USA TABLE OF
CONTENTS 10.1 INTRODUCTION 234 10.1.1 BACKGROUND 234 10.1.2 RAIN
MICROSTRUCTURE: RELEVANCE 235 10.1.3 RELATING RAIN MICROSTRUCTURE TO
POLARIMETRIC RADAR MEASUREMENTS 238 10.2 DROP SIZE DISTRIBUTIONS 242
10.2.1 VARIABILITY 242 10.2.2 DSD MODELS 243 10.2.3 DSD ESTIMATION FROM
POLARIMETRIC RADAR MEASUREMENTS 248 10.2.4 DSD ESTIMATION FROM ADVANCED
DISDROMETERS 254 10.2.5 GLOBAL DSD CHARACTERISTICS 257 10.2.6 SEASONAL
VARIATION 259 10.3 DROP SHAPES 263 10.3.1 AXIS RATIO MEASUREMENTS FROM
AN ARTIFICIAL RAIN EXPERIMENT 263 10.3.2 DROP CONTOURS 265 10.3.3
CONSISTENCY WITH POLARIMETRIC RADAR MEASUREMENTS 268 10.4 DROP
ORIENTATION ANGLES 269 10.5 FALL VELOCITIES 274 10.6 SUMMARY 276
REFERENCES 311 11 ON THE USE OF SPECTRAL POLARIMETRY TO OBSERVE ICE
CLOUD MICROPHYSICS WITH RADAR HERMAN RUSSCHENBERG 1 , LENNERT SPEK 1 ,
DMITRI MOISSEEV 2 , CHRISTINE UNAL 1 , YANN DUFOURNET 1 , CHANDRASEKHAR
VENKATACHALAM 2 'DELFT UNIVERSITY OF TECHNOLOGY, IRCTR, THE NETHERLANDS
COLORADO STATE UNIVERSITY, FORT COLLINS, CO, USA TABLE OF CONTENTS 11.1
INTRODUCTION 286 11.2 THE CONCEPT OF SPECTRAL POLARIMETRY 287 11.3
MICROPHYSICAL MODEL OF ICE PARTICLES 288 11.3.1 THE SHAPE OF ICE
CRYSTALS 289 11.3.2 CANTING ANGLES OF ICE CRYSTALS 290 11.3.3 MASS
DENSITY OF ICE CRYSTALS 290 11.3.4 VELOCITY OF ICE CRYSTALS 291 11.3.5
BULK PARAMETERS 292 11.4 RADAR OBSERVABLES OF ICE PARTICLES 293 11.5
RETRIEVAL OF MICROPHYSICAL PARAMETERS 296 11.5.1 DEPENDENCE ON DSD
PARAMETERS OF PLATES AND AGGREGATES 296 11.5.2 THE CURVE FITTING
PROCEDURE 297 11.5.3 QUALITY OF RETRIEVAL TECHNIQUE 302 11.6 APPLICATION
TO RADAR DATA 303 11.6.1 RETRIEVAL ALGORITHM RESULTS 304 11.6.2
COMPARISON OF IWC WITH LWC 304 11.6.3 RELATION BETWEEN IWC AND
REFLECTIVITY 307 11.6.4 INFLUENCE OF THE SHAPE PARAMETER OF THE DSD 308
11.7 SUMMARY AND CONCLUSIONS 310 12 PERFORMANCE OF ALGORITHMS FOR
RAINFALL RETRIEVAL FROM DUAL-POLARIZATION X-BAND RADAR MEASUREMENTS
MARIOS N. ANAGNOSTOU 1 , EMMANOUIL N. ANAGNOSTOU'' 2 HELLENIC CENTER FOR
MARINE RESEARCH, INSTITUTE OF INLAND WATERS, ANAVISSOS-ATTIKIS, GREECE
CIVIL AND ENVIRONMENTAL ENGINEERING, UNIVERSITY OF CONNECTICUT, STORRS,
CT, USA TABLE OF CONTENTS 12.1 INTRODUCTION 313 12.2 X-BAND
DUAL-POLARIZATION SYSTEMS 316 12.3 ATTENUATION CORRECTION SCHEMES FOR
X-BAND DUAL-POLARIZATION RADAR OBSERVATIONS 318 12.4 RAINFALL ESTIMATION
ALGORITHMS 319 12.4.1 REVIEW OF MICROPHYSICAL RETRIEVAL ALGORITHMS 319
12.4.2 RAINFALL RETRIEVAL ALGORITHMS 324 12.4.3 DATA 325 12.5 ALGORITHM
EVALUATION 328 12.5.1 EVALUATION OF THE DSD RETRIEVAL TECHNIQUES 329
12.5.2 EVALUATION OF RAINFALL RETRIEVAL TECHNIQUES 333 12.6 CLOSING
REMARKS 337 REFERENCES 337 REFERENCES 361 13 UNDERWATER ACOUSTIC
MEASUREMENTS OF RAINFALL EYAL AMITAI'- 2 , JEFFREY A. NYSTUCN 3 'NASA
GODDARD SPACE FLIGHT CENTER, GRCENBELL, MD, USA 'GEORGE MASON
UNIVERSITY, FAIRFAX, VA. USA 3 APPLIED PHYSICS LABORATORY, UNIVERSITY OF
WASHINGTON. SEATTLE. WA, USA TABLE OF CONTENTS 13.1 INTRODUCTION 343
13.1.1 WHY MEASURE RAINFALL AT SEA? 343 13.1.2 WHY LISTEN TO RAINFALL
UNDERWATER? 344 13.1.3 WHAT INSTRUMENTATION IS USED TO MEASURE RAINFALL
AT SEA? 344 13.1.4 USING SOUND TO MEASURE DROP SIZE DISTRIBUTION AND
RAIN RATE 345 13.2 LISTENING TO RAINFALL IN A SHALLOW WATER POND 348
13.3 OCEANIC FIELD STUDIES OF THE ACOUSTIC MEASUREMENT OF RAINFALL .349
13.4 LISTENING TO RAINFALL 2000 METERS UNDERWATER - THE IONIAN SEA
RAINFALL EXPERIMENT 350 13.4.1 RAIN TYPE CLASSIFICATION AND WIND SPEED
ESTIMATES 35X 13.5 CONCLUSIONS AND OUTLOOK 360 REFERENCES 386 14
PROBABILISTIC EVALUATION OF ENSEMBLE PRECIPITATION FORECASTS BODO AHRENS
1 , SIMON JAUN 2 INSTITUTE FOR ATMOSPHERE AND ENVIRONMENT,
GOETHE-UNIVERSITY FRANKFURT A.M., GERMANY INSTITUTE FOR ATMOSPHERIC AND
CLIMATE SCIENCE, ETH ZURICH, SWITZERLAND TABLE OF CONTENTS 14.1
INTRODUCTION 367 14.2 RAIN STATION PRECIPITATION DATA 370 14.3 FORECAST
DATA BY THE LIMITED-AREA PREDICTION SYSTEM COSMO-LEPS 371 14.4
OBSERVATIONAL REFERENCES 373 14.5 SKILL SCORES 376 14.6 RESULTS AND
DISCUSSION 379 14.7 CONCLUSIONS 384 15 IMPROVED NOWCASTING OF
PRECIPITATION BASED ON CONVECTIVE ANALYSIS FIELDS THOMAS HAIDEN, MARTIN
STEINHEIMER CENTRAL INSTITUTE FOR METEOROLOGY AND GEODYNAMICS (ZAMG),
VIENNA, AUSTRIA TABLE OF CONTENTS 15.1 INTRODUCTION 389 15.2 THE INCA
SYSTEM 393 15.3 ADVECTION FORECAST 397 15.4 CONVECTIVE ANALYSIS FIELDS
401 15.5 CELL EVOLUTION ALGORITHM 403 15.6 VERIFICATION AND PARAMETER
SENSITIVITY 407 15.7 OROGRAPHIC EFFECTS IN CONVECTIVE INITIATION 412
15.8 CONCLUSIONS 415 REFERENCES 416 REFERENCES 449 16 OVERVIEW OF
METHODS FOR THE VERIFICATION OF QUANTITATIVE PRECIPITATION FORECASTS
ANDREA ROSSA', PERTTI NURMI 2 , ELIZABETH EBERT 3 'CENTRA METEOROLOGICO
DI TEOLO, ARPA VENETO, ITALY 2 METEOROLOGICAL RESEARCH, FINNISH
METEOROLOGICAL INSTITUTE, FINLAND 3 CENTRE FOR AUSTRALIAN WEATHER AND
CLIMATE RESEARCH, BUREAU OF METEOROLOGY, AUSTRALIA TABLE OF CONTENTS
16.1 INTRODUCTION 419 16.2 TRADITIONAL VERIFICATION OF QPF AND
LIMITATIONS FOR HIGH RESOLUTION VERIFICATION 423 16.2.1 COMMON SCORES
424 16.2.2 THE DOUBLE PENALTY ISSUE 429 16.3 SCALE-DEPENDENT TECHNIQUES
433 16.3.1 NEIGHBORHOOD METHODS 433 16.3.2 SPATIAL DECOMPOSITION METHODS
437 16.4 OBJECT AND ENTITY-BASED TECHNIQUES 438 16.5 STRATIFICATION 440
16.5.1 SEASONAL, GEOGRAPHICAL AND TEMPORAL STRATIFICATION 44! 16.5.2
WEATHER-TYPE DEPENDENT STRATIFICATION 442 16.6 WHICH VERIFICATION
APPROACH SHOULD I USE? 448 REFERENCES 469 17 OBJECTIVE VERIFICATION OF
SPATIAL PRECIPITATION FORECASTS NAZARIO TARTAGLIONE 1 , STEFANO MARIANI
2 ' 3 , CHRISTOPHE ACCADIA 4 , SILAS MICHAELIDES 5 , MARCO CASAIOLI 2
DEPARTMENT OF PHYSICS, UNIVERSITY OF CAMERINO, ITALY AGENCY FOR
ENVIRONMENTAL PROTECTION AND TECHNICAL SERVICES (APAT), ROME, ITALY
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FERRARA, ITALY 4 EUMETSAT,
DARMSTADT, GERMANY METEOROLOGICAL SERVICE, NICOSIA, CYPRUS TABLE OF
CONTENTS 17.1 INTRODUCTION 453 17.2 THE PROBLEM OF OBSERVATIONS IN
OBJECTIVE VERIFICATION 456 17.3 USE OF RAINFALL ADJUSTED FIELD FOR
VERIFYING PRECIPITATION 458 17.4 STATISTICAL INTERPRETATION OF POSITION
ERRORS AS DERIVED BY OBJECT-ORIENTED METHODS 461 17.5 ASSESSING THE
DIFFERENCE BETWEEN CMS INDICES FROM TWO DIFFERENT FORECAST SYSTEMS 466
17.6 CONCLUSIONS 467 REFERENCES 490 18 COMBINED USE OF WEATHER RADAR AND
LIMITED AREA MODEL FOR WINTERTIME PRECIPITATION TYPE DISCRIMINATION
ROBERTO CREMONINI, RENZO BECHINI, VALENTINA CAMPANA, LUCA TOMASSONE ARPA
PIEMONTE, AREA PREVISIONE E MONITORAGGIO AMBIENTALE, TORINO, ITALY TABLE
OF CONTENTS 18.1 INTRODUCTION 475 18.2 DATA SOURCE AND PRECIPITATION
TYPE DISCRIMINATING ALGORITHMS 478 18.2.1 DATA SOURCES 478 18.2.2
PRECIPITATION TYPE DISCRIMINATING ALGORITHMS 480 18.3 ALGORITHM'S
VALIDATION 482 18.4 RESULTS 485 18.4.1 GROUND NETWORK 2 M AIR
TEMPERATURE 485 18.4.2 LAMI FREEZING LEVEL 486 18.4.3 LAMI WET-BULB
TEMPERATURE 488 18.5 SUMMARY AND CONCLUSIONS 489 REFERENCES 512 19
ADJUSTING GROUND RADAR USING SPACE TRMM PRECIPITATION RADAR MARCO
GABELLA', SILAS MICHAELIDES 2 1 DEPARTMENT OF ELECTRONICS, POLITECNICO
DI TORINO, TURIN, ITALY 2 METEOROLOGICAL SERVICE, NICOSIA, CYPRUS TABLE
OF CONTENTS 19.1 INTRODUCTION 494 19.1.1 MONITORING HARDWARE STABILITY
AND MEASUREMENTS' REPRODUCIBILITY 494 19.1.2 CALIBRATION VERSUS ABSOLUTE
CALIBRATION 494 19.1.3 ADJUSTMENT 495 19.1.4 WHY TO ADJUST GROUND-BASED
RADAR (GR) DATA? 496 19.2 RADAR/GAUGE FACTOR: RANGE-DEPENDENCE AS SEEN
BY GAUGES 497 19.2.1 ADJUSTMENT NOT DIRECTLY RELATED TO PHYSICAL
VARIABLES .498 19.2.2 ADJUSTMENT FACTOR RELATED TO SOME PHYSICAL
VARIABLES. 499 19.3 COMPARING GROUND-BASED AND SPACEBORNE RADAR 500
19.3.1 RANGE-DEPENDENCE AS SEEN BY THE TPR 501 19.4 INSTRUMENTATION AND
DATA DESCRIPTION 503 19.4.1 THE TRMM PRECIPITATION RADAR (TPR) 503
19.4.2 THE GROUND-BASED RADAR (GR) IN CYPRUS 504 19.5 RESULTS 505 19.5.1
BIAS AND RANGE-DEPENDENCE DERIVED FROM SINGLE OVERERPASSES 505 19.5.2 A
ROBUST RANGE-ADJUSTMENT EQUATION: INTEGRATING MORE OVERPASSES 507 19.5.3
COMPARING TPR AND GR ECHOES 508 19.6 SUMMARY AND LESSONS LEARNED 510 $30
20 IMPLEMENTING A MULTIPLATFORM PRECIPITATION EXPERIMENT GIOVANNI PERONA
1 , MARCO GABELLA 1 , RICCARDO CASALE 2 POLITECNICO DI TORINO,
ELECTRONICS DEPARTMENT, TORINO, ITALY 2 RESEARCH DIRECTORATE GENERAL,
EUROPEAN COMMISSION, BRUSSELS BELGIUM TABLE OF CONTENTS 20.1
INTRODUCTION 515 20.1.1 SCIENTIFIC/TECHNOLOGICAL OBJECTIVES OF THE
VOLTAIRE PROJECT 517 20.1.2 PROJECT ORGANIZATION 518 20.2 VOLTAIRE
PROJECT SUMMARY AND RECOMMENDATIONS 520 20.2.1 SUMMARY 520 20.2.2 MAIN
LESSONS LEARNED 523 20.2.3 RECOMMENDATIONS 524 20.3 VOLTAIRE TECHNICAL
CONCLUSIONS 526 20.4 OUTLOOK FOR QPE USING RADAR 527 20.4.1 WHERE WE
STAND TODAY 527 20.4.2 PROPOSED SOLUTION: USE OF MANY INEXPENSIVE,
REDUNDANT, SHORT-RANGE RADARS 528 20.5 GENERAL CONCLUSIONS 529 20.6
APPENDIX 530 REFERENCES |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)13558924X |
building | Verbundindex |
bvnumber | BV035070710 |
classification_rvk | RB 10232 RB 10420 RB 10429 UT 8100 |
ctrlnum | (OCoLC)244065316 (DE-599)DNB986833754 |
dewey-full | 551.577 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.577 |
dewey-search | 551.577 |
dewey-sort | 3551.577 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Physik Geographie |
discipline_str_mv | Geologie / Paläontologie Physik Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01887nam a2200505 c 4500</leader><controlfield tag="001">BV035070710</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081107 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080925s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N03,1180</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A33,0694</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">986833754</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540776543</subfield><subfield code="c">Pp. : EUR 139.05 (freier Pr.)</subfield><subfield code="9">978-3-540-77654-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540776550</subfield><subfield code="9">978-3-540-77655-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540776543</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11972914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)244065316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB986833754</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.577</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10232</subfield><subfield code="0">(DE-625)142220:12666</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10420</subfield><subfield code="0">(DE-625)142220:12731</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10429</subfield><subfield code="0">(DE-625)142220:12734</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UT 8100</subfield><subfield code="0">(DE-625)146845:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">550</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precipitation</subfield><subfield code="b">advances in measurement, estimation and prediction</subfield><subfield code="c">Silas Michaelides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXX, 540 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation (Meteorology)</subfield><subfield code="x">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation forecasting</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Niederschlag</subfield><subfield code="0">(DE-588)4132260-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Niederschlag</subfield><subfield code="0">(DE-588)4132260-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michaelides, Silas</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)13558924X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016739101&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016739101</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV035070710 |
illustrated | Illustrated |
index_date | 2024-07-02T22:04:09Z |
indexdate | 2024-07-09T21:21:31Z |
institution | BVB |
isbn | 9783540776543 9783540776550 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016739101 |
oclc_num | 244065316 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XXX, 540 S. Ill., graph. Darst. 24 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Precipitation advances in measurement, estimation and prediction Silas Michaelides Berlin ; Heidelberg Springer 2008 XXX, 540 S. Ill., graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Literaturangaben Precipitation (Meteorology) Measurement Precipitation forecasting Niederschlag (DE-588)4132260-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Niederschlag (DE-588)4132260-5 s DE-604 Michaelides, Silas Sonstige (DE-588)13558924X oth DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016739101&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Precipitation advances in measurement, estimation and prediction Precipitation (Meteorology) Measurement Precipitation forecasting Niederschlag (DE-588)4132260-5 gnd |
subject_GND | (DE-588)4132260-5 (DE-588)4143413-4 |
title | Precipitation advances in measurement, estimation and prediction |
title_auth | Precipitation advances in measurement, estimation and prediction |
title_exact_search | Precipitation advances in measurement, estimation and prediction |
title_exact_search_txtP | Precipitation advances in measurement, estimation and prediction |
title_full | Precipitation advances in measurement, estimation and prediction Silas Michaelides |
title_fullStr | Precipitation advances in measurement, estimation and prediction Silas Michaelides |
title_full_unstemmed | Precipitation advances in measurement, estimation and prediction Silas Michaelides |
title_short | Precipitation |
title_sort | precipitation advances in measurement estimation and prediction |
title_sub | advances in measurement, estimation and prediction |
topic | Precipitation (Meteorology) Measurement Precipitation forecasting Niederschlag (DE-588)4132260-5 gnd |
topic_facet | Precipitation (Meteorology) Measurement Precipitation forecasting Niederschlag Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016739101&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT michaelidessilas precipitationadvancesinmeasurementestimationandprediction |