From hyperbolic systems to kinetic theory: a personalized quest
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schriftenreihe: | Lecture notes of the Unione Matematica Italiana
6 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 275 - 276 |
Beschreibung: | XXVII, 279 S. |
ISBN: | 9783540775614 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035070327 | ||
003 | DE-604 | ||
005 | 20140715 | ||
007 | t | ||
008 | 080925s2008 gw |||| 00||| eng d | ||
010 | |a 2007942545 | ||
020 | |a 9783540775614 |9 978-3-540-77561-4 | ||
035 | |a (OCoLC)209333412 | ||
035 | |a (DE-599)BVBBV035070327 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-19 |a DE-11 |a DE-83 | ||
050 | 0 | |a QA808.2 | |
082 | 0 | |a 531 |2 22 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a 82C40 |2 msc | ||
084 | |a 35Lxx |2 msc | ||
100 | 1 | |a Tartar, Luc |d 1946- |e Verfasser |0 (DE-588)134210077 |4 aut | |
245 | 1 | 0 | |a From hyperbolic systems to kinetic theory |b a personalized quest |c Luc Tartar |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XXVII, 279 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes of the Unione Matematica Italiana |v 6 | |
500 | |a Literaturverz. S. 275 - 276 | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Continuum mechanics | |
650 | 4 | |a Differential equations, Hyperbolic | |
650 | 4 | |a Kinetic theory of gases | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Kinetische Theorie |0 (DE-588)4030669-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 0 | 1 | |a Kinetische Theorie |0 (DE-588)4030669-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-77562-1 |
830 | 0 | |a Lecture notes of the Unione Matematica Italiana |v 6 |w (DE-604)BV022297190 |9 6 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016738720&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016738720 |
Datensatz im Suchindex
_version_ | 1804138018278211584 |
---|---|
adam_text | Contents
1
Historical Perspective
..................................... 1
2
Hyperbolic Systems: Riemann Invariants, Rarefaction
Waves
..................................................... 17
3
Hyperbolic Systems: Contact Discontinuities, Shocks
...... 31
4
The Burgers Equation and the 1-D Scalar Case
............ 39
5
The 1-D Scalar Case: the E-Conditions of Lax
and of Oleinik
............................................. 45
6 Hopfs
Formulation of the E-Condition of Oleinik
.......... 51
7
The Burgers Equation: Special Solutions
................... 57
8
The Burgers Equation: Small Perturbations; the Heat
Equation
.................................................. 63
9
Fourier Transform; the Asymptotic Behaviour
for the Heat Equation
..................................... 73
10
Radon Measures; the Law of Large Numbers
.............. 83
11
A 1-D Model with Characteristic Speed ~
................. 91
12
A 2-D Generalization; the Perron—Frobenius Theory
....... 97
13
A General Finite-Dimensional Model with Characteristic
Speed
ì
...................................................105
14
Discrete Velocity Models
..................................113
XXVI Contents
15
The Mimura-Nishida and the Crandall-Tartar Existence
Theorems
..................................................
129
16
Systems Satisfying My Condition (S)
......................
135
17
Asymptotic Estimates for the Broadwell
and the
Carleman
Models
.................................
18
Oscillating Solutions; the 2-D Broadwell Model
............
I49
19
Oscillating Solutions: the
Carleman
Model
.................
157
20
The
Carleman
Model: Asymptotic Behaviour
..............
I63
21
Oscillating Solutions: the Broadwell Model
................
169
22
Generalized Invariant Regions; the
Varadhan
Estimate
----179
23
Questioning Physics; from Classical Particles to Balance
Laws
......................................................
187
24
Balance Laws; What Are Forces?
..........................
197
25
D. Bernoulli: from Masslets and Springs
to the 1-D Wave Equation
.................................
201
26
Cauchy: from Masslets and Springs to 2-D Linearized
Elasticity
..................................................
209
27
The Two-Body Problem
...................................
213
28
The Boltzmann Equation
..................................
219
29
The Illner-Shinbrot and the Hamdache Existence
Theorems
..................................................229
30
The Hubert Expansion
....................................233
31
Compactness by Integration
...............................239
32
Wave Front Sets;
Н
-Measures..............................
245
33
Н
-Measures and Idealized Particles
.....................251
34
Variants of
Н
-Measures....................................
257
35
Biographical Information
..................................267
36
Abbreviations and Mathematical Notation
.................271
ContontK
XXVII
References
.....................................................275
Index
..........................................................277
|
adam_txt |
Contents
1
Historical Perspective
. 1
2
Hyperbolic Systems: Riemann Invariants, Rarefaction
Waves
. 17
3
Hyperbolic Systems: Contact Discontinuities, Shocks
. 31
4
The Burgers Equation and the 1-D Scalar Case
. 39
5
The 1-D Scalar Case: the E-Conditions of Lax
and of Oleinik
. 45
6 Hopfs
Formulation of the E-Condition of Oleinik
. 51
7
The Burgers Equation: Special Solutions
. 57
8
The Burgers Equation: Small Perturbations; the Heat
Equation
. 63
9
Fourier Transform; the Asymptotic Behaviour
for the Heat Equation
. 73
10
Radon Measures; the Law of Large Numbers
. 83
11
A 1-D Model with Characteristic Speed ~
. 91
12
A 2-D Generalization; the Perron—Frobenius Theory
. 97
13
A General Finite-Dimensional Model with Characteristic
Speed
ì
.105
14
Discrete Velocity Models
.113
XXVI Contents
15
The Mimura-Nishida and the Crandall-Tartar Existence
Theorems
.
129
16
Systems Satisfying My Condition (S)
.
135
17
Asymptotic Estimates for the Broadwell
and the
Carleman
Models
.
18
Oscillating Solutions; the 2-D Broadwell Model
.
I49
19
Oscillating Solutions: the
Carleman
Model
.
157
20
The
Carleman
Model: Asymptotic Behaviour
.
I63
21
Oscillating Solutions: the Broadwell Model
.
169
22
Generalized Invariant Regions; the
Varadhan
Estimate
----179
23
Questioning Physics; from Classical Particles to Balance
Laws
.
187
24
Balance Laws; What Are Forces?
.
197
25
D. Bernoulli: from Masslets and Springs
to the 1-D Wave Equation
.
201
26
Cauchy: from Masslets and Springs to 2-D Linearized
Elasticity
.
209
27
The Two-Body Problem
.
213
28
The Boltzmann Equation
.
219
29
The Illner-Shinbrot and the Hamdache Existence
Theorems
.229
30
The Hubert Expansion
.233
31
Compactness by Integration
.239
32
Wave Front Sets;
Н
-Measures.
245
33
Н
-Measures and "Idealized Particles"
.251
34
Variants of
Н
-Measures.
257
35
Biographical Information
.267
36
Abbreviations and Mathematical Notation
.271
ContontK
XXVII
References
.275
Index
.277 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tartar, Luc 1946- |
author_GND | (DE-588)134210077 |
author_facet | Tartar, Luc 1946- |
author_role | aut |
author_sort | Tartar, Luc 1946- |
author_variant | l t lt |
building | Verbundindex |
bvnumber | BV035070327 |
callnumber-first | Q - Science |
callnumber-label | QA808 |
callnumber-raw | QA808.2 |
callnumber-search | QA808.2 |
callnumber-sort | QA 3808.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 560 |
ctrlnum | (OCoLC)209333412 (DE-599)BVBBV035070327 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01999nam a2200529 cb4500</leader><controlfield tag="001">BV035070327</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140715 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080925s2008 gw |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007942545</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540775614</subfield><subfield code="9">978-3-540-77561-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)209333412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035070327</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA808.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">82C40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Lxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tartar, Luc</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134210077</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From hyperbolic systems to kinetic theory</subfield><subfield code="b">a personalized quest</subfield><subfield code="c">Luc Tartar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 279 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 275 - 276</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic theory of gases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kinetische Theorie</subfield><subfield code="0">(DE-588)4030669-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kinetische Theorie</subfield><subfield code="0">(DE-588)4030669-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-77562-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV022297190</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016738720&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016738720</subfield></datafield></record></collection> |
id | DE-604.BV035070327 |
illustrated | Not Illustrated |
index_date | 2024-07-02T22:04:01Z |
indexdate | 2024-07-09T21:21:31Z |
institution | BVB |
isbn | 9783540775614 |
language | English |
lccn | 2007942545 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016738720 |
oclc_num | 209333412 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-11 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-11 DE-83 |
physical | XXVII, 279 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Lecture notes of the Unione Matematica Italiana |
series2 | Lecture notes of the Unione Matematica Italiana |
spelling | Tartar, Luc 1946- Verfasser (DE-588)134210077 aut From hyperbolic systems to kinetic theory a personalized quest Luc Tartar Berlin [u.a.] Springer 2008 XXVII, 279 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes of the Unione Matematica Italiana 6 Literaturverz. S. 275 - 276 Mathematische Physik Continuum mechanics Differential equations, Hyperbolic Kinetic theory of gases Dynamics Mathematical physics Kinetische Theorie (DE-588)4030669-0 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 s Kinetische Theorie (DE-588)4030669-0 s DE-604 Erscheint auch als Online-Ausgabe 978-3-540-77562-1 Lecture notes of the Unione Matematica Italiana 6 (DE-604)BV022297190 6 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016738720&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tartar, Luc 1946- From hyperbolic systems to kinetic theory a personalized quest Lecture notes of the Unione Matematica Italiana Mathematische Physik Continuum mechanics Differential equations, Hyperbolic Kinetic theory of gases Dynamics Mathematical physics Kinetische Theorie (DE-588)4030669-0 gnd Hyperbolisches System (DE-588)4191897-6 gnd |
subject_GND | (DE-588)4030669-0 (DE-588)4191897-6 |
title | From hyperbolic systems to kinetic theory a personalized quest |
title_auth | From hyperbolic systems to kinetic theory a personalized quest |
title_exact_search | From hyperbolic systems to kinetic theory a personalized quest |
title_exact_search_txtP | From hyperbolic systems to kinetic theory a personalized quest |
title_full | From hyperbolic systems to kinetic theory a personalized quest Luc Tartar |
title_fullStr | From hyperbolic systems to kinetic theory a personalized quest Luc Tartar |
title_full_unstemmed | From hyperbolic systems to kinetic theory a personalized quest Luc Tartar |
title_short | From hyperbolic systems to kinetic theory |
title_sort | from hyperbolic systems to kinetic theory a personalized quest |
title_sub | a personalized quest |
topic | Mathematische Physik Continuum mechanics Differential equations, Hyperbolic Kinetic theory of gases Dynamics Mathematical physics Kinetische Theorie (DE-588)4030669-0 gnd Hyperbolisches System (DE-588)4191897-6 gnd |
topic_facet | Mathematische Physik Continuum mechanics Differential equations, Hyperbolic Kinetic theory of gases Dynamics Mathematical physics Kinetische Theorie Hyperbolisches System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016738720&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022297190 |
work_keys_str_mv | AT tartarluc fromhyperbolicsystemstokinetictheoryapersonalizedquest |