Introduction to the numerical analysis of incompressible viscous flows:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Philadelphia
Society for Industrial and Applied Mathematics
2008
|
Schriftenreihe: | Computational science and engineering
6 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 213 S. Ill., graph. Darst. 26 cm |
ISBN: | 9780898716573 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035059010 | ||
003 | DE-604 | ||
005 | 20190322 | ||
007 | t | ||
008 | 080918s2008 ad|| |||| 00||| eng d | ||
010 | |a 2008018448 | ||
020 | |a 9780898716573 |9 978-0-898716-57-3 | ||
035 | |a (OCoLC)226304796 | ||
035 | |a (DE-599)GBV564718351 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-703 |a DE-83 |a DE-11 |a DE-188 |a DE-384 |a DE-634 | ||
050 | 0 | |a QA929 | |
082 | 0 | |a 532/.053301518 |2 22 | |
084 | |a UF 4050 |0 (DE-625)145581: |2 rvk | ||
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
084 | |a SK 900 |0 (DE-625)143268: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a MTA 309f |2 stub | ||
084 | |a MAT 650f |2 stub | ||
100 | 1 | |a Layton, William J. |e Verfasser |0 (DE-588)1020165960 |4 aut | |
245 | 1 | 0 | |a Introduction to the numerical analysis of incompressible viscous flows |c William Layton |
264 | 1 | |a Philadelphia |b Society for Industrial and Applied Mathematics |c 2008 | |
300 | |a XIX, 213 S. |b Ill., graph. Darst. |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Computational science and engineering |v 6 | |
650 | 0 | |a Viscous flow / Mathematical models | |
650 | 0 | |a Numerical analysis | |
650 | 0 | |a Fluid mechanics | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Fluid mechanics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Viscous flow |x Mathematical models | |
650 | 0 | 7 | |a Viskose Strömung |0 (DE-588)4226965-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | 1 | |a Viskose Strömung |0 (DE-588)4226965-9 |D s |
689 | 0 | 2 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Computational science and engineering |v 6 |w (DE-604)BV022382702 |9 6 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016727542&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016727542 |
Datensatz im Suchindex
_version_ | 1804138002411159552 |
---|---|
adam_text | Contents
List of
Figures
ix
Foreword
xi
Preface
xiii
I Mathematical Foundations
1
1
Mathematical Preliminaries: Energy and Stress
3
1.1
Finite Kinetic Energy: The Hilbert Space
Ζ,2(Ω)
............. 3
1.1.1
Other norms
............................ 7
1.2
Finite Stress: The Hilbert Space X
:=
//„ (Ω)
............... 8
1.2.1
Weak derivatives and some useful inequalities
.......... 10
1.3
Some Snapshots in the History of the Equations of Fluid Motion
..... 12
1.4
Remarks on Chapter
1........................... 15
1.5
Exercises
.................................. 15
2
Approximating Scalars
17
2.1
Introduction to Finite Element Spaces
................... 17
2.2
An Elliptic Boundary Value Problem
................... 26
2.3
The Galerkin-Finite Element Method
................... 30
2.4
Remarks on Chapter
2........................... 33
2.5
Exercises
.................................. 34
3
Vector and Tensor Analysis
37
3.1
Scalars, Vectors, and Tensors
....................... 37
3.2
Vector and Tensor Calculus
........................ 39
3.3
Conservation Laws
............................. 43
3.4
Remarks on Chapter
3........................... 48
3.5
Exercises
.................................. 49
v¡
Contents
II Steady Fluid Flow Phenomena
51
4
Approximating Vector Functions
53
4.1
Introduction to Mixed Methods for Creeping Row
............ 53
4.2
Variational Formulation of the Stokes Problem
.............. 56
4.3
The Galerkin Approximation
........................ 59
4.4
More About the Discrete Inf-Sup Condition
................ 63
4.4.1
Other div-stable elements
..................... 66
4.5
Remarks on Chapter
4........................... 66
4.6
Exercises
.................................. 68
5
The Equations of Fluid Motion
71
5.1
Conservation of Mass and Momentum
.................. 71
5.2
Stress and Strain in a Newtonian Fluid
.................. 74
5.2.1
More about internal forces
..................... 75
5.2.2
More about V
........................... 76
5.3
Boundary Conditions
............................ 78
5.4
The Reynolds Number
........................... 83
5.5
Boundary Layers
.............................. 87
5.6
An Example of Fluid Motion: The Taylor Experiment
.......... 91
5.7
Remarks on Chapter
5........................... 92
5.8
Exercises
.................................. 95
6
The Steady Navier-Stokes Equations
99
6.1
The Steady Navier-Stokes Equations
................... 99
6.2
Uniqueness for Small Data
......................... 106
6.2.1
The
Oseen
problem
........................ 108
6.3
Existence of Steady Solutions
....................... 110
6.4
The Structure of Steady Solutions
..................... 114
6.5
Remarks on Chapter
6 . . :........................ 117
6.6
Exercises
.................................. 117
7
Approximating Steady Flows
121
7.1
Formulation and Stability of the Approximation
............. 121
7.2
A Simple Example
............................. 124
7.3
Errors in Approximations of Steady Rows
................ 125
7.4
More on the Global Uniqueness Conditions
................131
7.5
Remarks on Chapter
7...........................132
7.6
Exercises
.................. ..... 133
III Time-Dependent Fluid Flow Phenomena
137
8
The Time-Dependent Navier-Stokes Equations
139
8.1
Introduction
................................139
8.2
Weak Solution of the NSE
.....................141
Contents
vii
8.3
Kinetic Energy and Energy Dissipation
..................145
8.4
Remarks on Chapter
8...........................147
8.5
Exercises
..................................148
9
Approximating Time-Dependent Flows
151
9.1
Introduction
................................ 151
9.2
Stability and Convergence of the
Semidiscrete
Approximations
..... 154
9.3
Rates of Convergence
........................... 158
9.4
Time-Stepping Schemes
.......................... 161
9.5
Convergence Analysis of the
Trapezoid
Rule
............... 165
9.5.1
Notation for the discrete time method
............... 165
9.5.2
Error analysis of the
trapezoid
rule
................ 168
9.6
Remarks on Chapter
9........................... 175
9.7
Exercises
.................................. 176
10
Models of Turbulent Flow
179
10.1
Introduction to Turbulence
.........................179
10.2
The K4
1
Theory of Homogeneous,
Isotropie
Turbulence
.........181
10.2.1
Fourier series
............................182
10.2.2
The
inerţial
range
.........................183
10.3
Models in Large Eddy Simulation
.....................186
10.3.1
A first choice of vT
.........................189
10.4
The Smagorinsky Model for vT
......................190
10.5
Near Wall Models: Boundary Conditions for the Large Eddies
......192
10.6
Remarks on Chapter
10..........................194
10.7
Exercises
..................................195
Appendix Nomenclature
197
A.I Vectors and Tensors
............................197
A.2 Fluid Variables
...............................197
A.3 Basic Function Spaces and Norms
.....................198
A.3.1 Other norms
............................198
A.4 Velocity and Pressure Spaces and Norms
.................199
A.5 Finite Element Notation
..........................200
A.6 Turbulence
.................................200
Bibliography
203
Index
211
|
adam_txt |
Contents
List of
Figures
ix
Foreword
xi
Preface
xiii
I Mathematical Foundations
1
1
Mathematical Preliminaries: Energy and Stress
3
1.1
Finite Kinetic Energy: The Hilbert Space
Ζ,2(Ω)
. 3
1.1.1
Other norms
. 7
1.2
Finite Stress: The Hilbert Space X
:=
//„'(Ω)
. 8
1.2.1
Weak derivatives and some useful inequalities
. 10
1.3
Some Snapshots in the History of the Equations of Fluid Motion
. 12
1.4
Remarks on Chapter
1. 15
1.5
Exercises
. 15
2
Approximating Scalars
17
2.1
Introduction to Finite Element Spaces
. 17
2.2
An Elliptic Boundary Value Problem
. 26
2.3
The Galerkin-Finite Element Method
. 30
2.4
Remarks on Chapter
2. 33
2.5
Exercises
. 34
3
Vector and Tensor Analysis
37
3.1
Scalars, Vectors, and Tensors
. 37
3.2
Vector and Tensor Calculus
. 39
3.3
Conservation Laws
. 43
3.4
Remarks on Chapter
3. 48
3.5
Exercises
. 49
v¡
Contents
II Steady Fluid Flow Phenomena
51
4
Approximating Vector Functions
53
4.1
Introduction to Mixed Methods for Creeping Row
. 53
4.2
Variational Formulation of the Stokes Problem
. 56
4.3
The Galerkin Approximation
. 59
4.4
More About the Discrete Inf-Sup Condition
. 63
4.4.1
Other div-stable elements
. 66
4.5
Remarks on Chapter
4. 66
4.6
Exercises
. 68
5
The Equations of Fluid Motion
71
5.1
Conservation of Mass and Momentum
. 71
5.2
Stress and Strain in a Newtonian Fluid
. 74
5.2.1
More about internal forces
. 75
5.2.2
More about V
. 76
5.3
Boundary Conditions
. 78
5.4
The Reynolds Number
. 83
5.5
Boundary Layers
. 87
5.6
An Example of Fluid Motion: The Taylor Experiment
. 91
5.7
Remarks on Chapter
5. 92
5.8
Exercises
. 95
6
The Steady Navier-Stokes Equations
99
6.1
The Steady Navier-Stokes Equations
. 99
6.2
Uniqueness for Small Data
. 106
6.2.1
The
Oseen
problem
. 108
6.3
Existence of Steady Solutions
. 110
6.4
The Structure of Steady Solutions
. 114
6.5
Remarks on Chapter
6 . . :. 117
6.6
Exercises
. 117
7
Approximating Steady Flows
121
7.1
Formulation and Stability of the Approximation
. 121
7.2
A Simple Example
. 124
7.3
Errors in Approximations of Steady Rows
. 125
7.4
More on the Global Uniqueness Conditions
.131
7.5
Remarks on Chapter
7.132
7.6
Exercises
. . 133
III Time-Dependent Fluid Flow Phenomena
137
8
The Time-Dependent Navier-Stokes Equations
139
8.1
Introduction
.139
8.2
Weak Solution of the NSE
.141
Contents
vii
8.3
Kinetic Energy and Energy Dissipation
.145
8.4
Remarks on Chapter
8.147
8.5
Exercises
.148
9
Approximating Time-Dependent Flows
151
9.1
Introduction
. 151
9.2
Stability and Convergence of the
Semidiscrete
Approximations
. 154
9.3
Rates of Convergence
. 158
9.4
Time-Stepping Schemes
. 161
9.5
Convergence Analysis of the
Trapezoid
Rule
. 165
9.5.1
Notation for the discrete time method
. 165
9.5.2
Error analysis of the
trapezoid
rule
. 168
9.6
Remarks on Chapter
9. 175
9.7
Exercises
. 176
10
Models of Turbulent Flow
179
10.1
Introduction to Turbulence
.179
10.2
The K4
1
Theory of Homogeneous,
Isotropie
Turbulence
.181
10.2.1
Fourier series
.182
10.2.2
The
inerţial
range
.183
10.3
Models in Large Eddy Simulation
.186
10.3.1
A first choice of vT
.189
10.4
The Smagorinsky Model for vT
.190
10.5
Near Wall Models: Boundary Conditions for the Large Eddies
.192
10.6
Remarks on Chapter
10.194
10.7
Exercises
.195
Appendix Nomenclature
197
A.I Vectors and Tensors
.197
A.2 Fluid Variables
.197
A.3 Basic Function Spaces and Norms
.198
A.3.1 Other norms
.198
A.4 Velocity and Pressure Spaces and Norms
.199
A.5 Finite Element Notation
.200
A.6 Turbulence
.200
Bibliography
203
Index
211 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Layton, William J. |
author_GND | (DE-588)1020165960 |
author_facet | Layton, William J. |
author_role | aut |
author_sort | Layton, William J. |
author_variant | w j l wj wjl |
building | Verbundindex |
bvnumber | BV035059010 |
callnumber-first | Q - Science |
callnumber-label | QA929 |
callnumber-raw | QA929 |
callnumber-search | QA929 |
callnumber-sort | QA 3929 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 4050 UF 4000 SK 900 SK 920 |
classification_tum | MTA 309f MAT 650f |
ctrlnum | (OCoLC)226304796 (DE-599)GBV564718351 |
dewey-full | 532/.053301518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.053301518 |
dewey-search | 532/.053301518 |
dewey-sort | 3532 853301518 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02262nam a2200565 cb4500</leader><controlfield tag="001">BV035059010</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190322 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080918s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008018448</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898716573</subfield><subfield code="9">978-0-898716-57-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)226304796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV564718351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA929</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.053301518</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4050</subfield><subfield code="0">(DE-625)145581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 900</subfield><subfield code="0">(DE-625)143268:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 309f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 650f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Layton, William J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1020165960</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the numerical analysis of incompressible viscous flows</subfield><subfield code="c">William Layton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia</subfield><subfield code="b">Society for Industrial and Applied Mathematics</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 213 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Computational science and engineering</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Viscous flow / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fluid mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscous flow</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Viskose Strömung</subfield><subfield code="0">(DE-588)4226965-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Computational science and engineering</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV022382702</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016727542&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016727542</subfield></datafield></record></collection> |
id | DE-604.BV035059010 |
illustrated | Illustrated |
index_date | 2024-07-02T21:59:48Z |
indexdate | 2024-07-09T21:21:16Z |
institution | BVB |
isbn | 9780898716573 |
language | English |
lccn | 2008018448 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016727542 |
oclc_num | 226304796 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-83 DE-11 DE-188 DE-384 DE-634 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-83 DE-11 DE-188 DE-384 DE-634 |
physical | XIX, 213 S. Ill., graph. Darst. 26 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Society for Industrial and Applied Mathematics |
record_format | marc |
series | Computational science and engineering |
series2 | Computational science and engineering |
spelling | Layton, William J. Verfasser (DE-588)1020165960 aut Introduction to the numerical analysis of incompressible viscous flows William Layton Philadelphia Society for Industrial and Applied Mathematics 2008 XIX, 213 S. Ill., graph. Darst. 26 cm txt rdacontent n rdamedia nc rdacarrier Computational science and engineering 6 Viscous flow / Mathematical models Numerical analysis Fluid mechanics Mathematisches Modell Viscous flow Mathematical models Viskose Strömung (DE-588)4226965-9 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 s Viskose Strömung (DE-588)4226965-9 s Numerische Mathematik (DE-588)4042805-9 s DE-604 Computational science and engineering 6 (DE-604)BV022382702 6 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016727542&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Layton, William J. Introduction to the numerical analysis of incompressible viscous flows Computational science and engineering Viscous flow / Mathematical models Numerical analysis Fluid mechanics Mathematisches Modell Viscous flow Mathematical models Viskose Strömung (DE-588)4226965-9 gnd Numerische Mathematik (DE-588)4042805-9 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
subject_GND | (DE-588)4226965-9 (DE-588)4042805-9 (DE-588)4077970-1 |
title | Introduction to the numerical analysis of incompressible viscous flows |
title_auth | Introduction to the numerical analysis of incompressible viscous flows |
title_exact_search | Introduction to the numerical analysis of incompressible viscous flows |
title_exact_search_txtP | Introduction to the numerical analysis of incompressible viscous flows |
title_full | Introduction to the numerical analysis of incompressible viscous flows William Layton |
title_fullStr | Introduction to the numerical analysis of incompressible viscous flows William Layton |
title_full_unstemmed | Introduction to the numerical analysis of incompressible viscous flows William Layton |
title_short | Introduction to the numerical analysis of incompressible viscous flows |
title_sort | introduction to the numerical analysis of incompressible viscous flows |
topic | Viscous flow / Mathematical models Numerical analysis Fluid mechanics Mathematisches Modell Viscous flow Mathematical models Viskose Strömung (DE-588)4226965-9 gnd Numerische Mathematik (DE-588)4042805-9 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
topic_facet | Viscous flow / Mathematical models Numerical analysis Fluid mechanics Mathematisches Modell Viscous flow Mathematical models Viskose Strömung Numerische Mathematik Strömungsmechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016727542&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022382702 |
work_keys_str_mv | AT laytonwilliamj introductiontothenumericalanalysisofincompressibleviscousflows |