Multiscale methods: averaging and homogenization
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
[2008]
|
Schriftenreihe: | Texts in applied mathematics
53 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Publisher description Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XVIII, 307 S. graph. Darst. |
ISBN: | 9780387738284 0387738282 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV035052459 | ||
003 | DE-604 | ||
005 | 20221128 | ||
007 | t | ||
008 | 080915s2008 xxud||| |||| 00||| eng d | ||
010 | |a 2007941385 | ||
015 | |a GBA768518 |2 dnb | ||
020 | |a 9780387738284 |c hbk. |9 978-0-387-73828-4 | ||
020 | |a 0387738282 |c hbk. |9 0-387-73828-2 | ||
035 | |a (OCoLC)166384346 | ||
035 | |a (DE-599)BVBBV035052459 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-355 |a DE-83 |a DE-29T |a DE-11 |a DE-20 |a DE-188 | ||
050 | 0 | |a QA371 | |
082 | 0 | |a 515.35 | |
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a 34C29 |2 msc | ||
084 | |a 35B27 |2 msc | ||
100 | 1 | |a Pavliotis, Grigorios A. |e Verfasser |0 (DE-588)1274035414 |4 aut | |
245 | 1 | 0 | |a Multiscale methods |b averaging and homogenization |c Grigorios A. Pavliotis ; Andrew M. Stuart |
264 | 1 | |a New York, NY |b Springer |c [2008] | |
300 | |a XVIII, 307 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Texts in applied mathematics |v 53 | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Équations aux dérivées partielles | |
650 | 4 | |a Équations différentielles | |
650 | 4 | |a Differential equations | |
650 | 4 | |a Differential equations, Partial | |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrskalenanalyse |0 (DE-588)4416235-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Mehrskalenanalyse |0 (DE-588)4416235-2 |D s |
689 | 0 | 1 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Stuart, Andrew |e Verfasser |0 (DE-588)1078856400 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-73829-1 |z 0-387-73829-0 |
830 | 0 | |a Texts in applied mathematics |v 53 |w (DE-604)BV002476038 |9 53 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2990945&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0829/2007941385-d.html |3 Publisher description | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016721106&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016721106 |
Datensatz im Suchindex
_version_ | 1805091061474787328 |
---|---|
adam_text |
Contents
Series
Preface
.
V
Preface
.
IX
1
Introduction
. 1
1.1
Overview
. 1
1.2
Motivating Examples
. 1
1.2.1
Example I: Steady Heat Conduction in a Composite Material
2
1.2.2
Example II: Homogenization for Advection-Diffusion
Equations
. 3
1.2.3
Example III: Averaging, Homogenization, and Dynamics
. 4
1.2.4
Example IV: Dimension Reduction in Dynamical Systems
. 5
1.3
Averaging Versus Homogenization
. 6
1.3.1
Averaging for Systems of Linear Equations
. 7
1.3.2
Homogenization for Systems of Linear Equations
. 8
1.4
Discussion and Bibliography
. 9
Parti Background
2
Analysis
. 13
2.1
Setup
. 13
2.2
Notation
. 14
2.3
Banach and Hubert Spaces
. 16
2.3.1
Banach Spaces
. 16
2.3.2
Hubert Spaces
. 18
2.4
Function Spaces
. 18
2.4.1
Spaces of Continuous Functions
. 18
2.4.2
IP Spaces
. 19
2.4.3
Sobolev Spaces
. 21
2.4.4
Banach
Space-Vaîued
Spaces
. 22
2.4.5
Sobolev Spaces of Periodic Functions
. 23
XIV Contents
2.5
Two-Scale Convergence
. 25
2.5.1
Two-Scale Convergence for Steady Problems
. 25
2.5.2
Two-Scale Convergence for Time-Dependent Problems
----- 28
2.6
Equations in Hubert Spaces
. 29
2.6.1
Lax-Milgram Theory
. 30
2.6.2
The
Fredholm
Alternative
. 31
2.7
Discussion and Bibliography
. 32
2.8
Exercises
. 34
3
Probability Theory and Stochastic Processes
. 37
3.1
Setup
. 37
3.2
Probability, Expectation, and Conditional Expectation
. 37
3.3
Stochastic Processes
. 40
3.4
Martingales and Stochastic Integrals
. 46
3.4.1
Martingales
. 46
3.4.2
The
Ito
Stochastic Integral
. 47
3.4.3
The Stratonovich Stochastic Integral
. 49
3.5
Weak Convergence of Probability Measures
. 49
3.6
Discussion and Bibliography
. 54
3.7
Exercises
. 56
4
Ordinary Differential Equations
. 59
4.1
Setup
. 59
4.2
Existence and Uniqueness
. 59
4.3
The Generator
. 62
4.4
Ergodicity
. 66
4.5
Discussion and Bibliography
. 72
4.6
Exercises
. 72
5
Markov Chains
. 73
5.1
Setup
. 73
5.2
Discrete-Time Markov Chains
. 73
5.3
Continuous-Time Markov Chains
. 75
5.4
The Generator
. 76
5.5
Existence and Uniqueness
. 80
5.6
Ergodicity
. 81
5.7
Discussion and Bibliography
. 83
5.8
Exercises
. 84
6
Stochastic Differential Equations
. 85
6.1
Setup
. 85
6.2
Existence and Uniqueness
. 86
6.3
The Generator
. 88
6.4
Ergodicity
. 94
6.5
Discussion and Bibliography
. 99
6.6
Exercises
. 100
Contents
XV
7
Partial
Differential
Equations
. 103
7.1 Setup. 103
7.2
Elliptic PDEs
. 104
7.2.1 The Dirichlet Problem. 105
7.2.2
The Periodic
Problem . 107
7.2.3 The Fredholm Alternative. 107
7.2.4 The Maximum
Principle
. 113
7.3
Parabolic PDEs
. 114
7.3.1
Bounded Domains
. 114
7.3.2
The Maximum Principle
. 115
7.3.3
Unbounded Domains: The Cauchy Problem
. 117
7.4
Transport PDEs
. 118
7.5
Semigroups
. 121
7.6
Discussion and Bibliography
. 122
7.7
Exercises
. 123
Part II Perturbation Expansions
8
Invariant Manifolds for ODEs
. 127
8.1
Introduction
. 127
8.2
Full Equations
. 127
8.3
Simplified Equations
. 128
8.4
Derivation
. 129
8.5
Applications
. 130
8.5.1
Linear Fast Dynamics
. 130
8.5.2
Large Time Dynamics
. 131
8.5.3
Center Manifold
. 131
8.6
Discussion and Bibliography
. 133
8.7
Exercises
. 134
9
Averaging for Markov Chains
. 137
9.1
Introduction
. 137
9.2
Full Equations
. 137
9.3
Simplified Equations
. 139
9.4
Derivation
. 140
9.5
Application
. 141
9.6
Discussion and Bibliography
. 142
9.7
Exercises
. 142
10
Averaging for ODEs and SDEs
. 145
10.1
Introduction
. 145
10.2
Full Equations
. 145
10.3
Simplified Equations
. 146
10.4
Derivation
. 147
XVI Contents
10.5
Deterministic Problems
. 148
10.6
Applications
. 149
10.6.1
A Skew-Product SDE
. 149
10.6.2
Hamiltonian Mechanics
. 150
10.7
Discussion and Bibliography
. 153
10.8
Exercises
. 155
11
Homogenization for ODEs and SDEs
. 157
11.1
Introduction
. 157
11.2
Full Equations
. 158
11.3
Simplified Equations
. 159
11.4
Derivation
. 160
11.5
Properties of the Simplified Equations
. 162
11.6
Deterministic Problems
. 163
11.7
Applications
. 166
11.7.1
Fast Ornstein-Uhlenbeck Noise
. 166
11.7.2
Fast Chaotic Noise
. 169
11.7.3
Stratonovich Corrections
. 170
11.7.4
Stokes' Law
. 171
11.7.5
Green-Kubo Formula
. 173
11.7.6
Neither
Ito
nor Stratonovich
. 174
11.7.7
The Levy Area Correction
. 176
11.8
Discussion and Bibliography
. 177
11.9
Exercises
. 180
12
Homogenization for Elliptic PDEs
. 183
12.1
Introduction
. 183
12.2
Full Equations
. 183
12.3
Simplified Equations
. 184
12.4
Derivation
. 185
12.5
Properties of the Simplified Equations
. 188
12.6
Applications
. 191
12.6.1
The One-Dimensional Case
. 191
12.6.2
Layered Materials
. 193
12.7
Discussion and Bibliography
. 195
12.8
Exercises
. 199
13
Homogenization for Parabolic PDEs
. 203
13.1
Introduction
. 203
13.2
Full Equations
. 203
13.3
Simplified Equations
. 205
13.4
Derivation
. 206
13.5
Properties of the Simplified Equations
. 207
13.6
Applications
. 209
13.6.1
Gradient Vector Fields
. 209
13.6.2
Divergence-Free Fields
. 214
Contents XVII
13.7
The Connection to SDEs
. 221
13.8
Discussion and Bibliography
. 222
13.9
Exercises
. 224
14
Averaging for Linear Transport and Parabolic PDEs
. 227
14.1
Introduction
. 227
14.2
Full Equations
. 227
14.3
Simplified Equations
. 228
14.4
Derivation
. 229
14.5
Transport Equations:
D
= 0. 230
14.5.1
The One-Dimensional Case
. 231
14.5.2
Divergence-Free Velocity Fields
. 232
14.6
The Connection to ODEs and SDEs
. 233
14.7
Discussion and Bibliography
. 235
14.8
Exercises
. 236
Partili
Theory
15
Invariant Manifolds for ODEs: The Convergence Theorem
. 239
15.1
Introduction
. 239
15.2
The Theorem
. 239
15.3
The Proof
. 241
15.4
Discussion and Bibliography
. 242
15.5
Exercises
. 243
16
Averaging for Markov Chains: The Convergence Theorem
. 245
16.1
Introduction
. 245
16.2
The Theorem
. 245
16.3
The Proof
. 246
16.4
Discussion and Bibliography
. 247
16.5
Exercises
. 248
17
Averaging for SDEs: The Convergence Theorem
. 249
17.1
Introduction
. 249
17.2
The Theorem
. 249
17.3
The Proof
. 250
17.4
Discussion and Bibliography
. 253
17.5
Exercises
. 253
18
Homogenization for SDEs: The Convergence Theorem
. 255
18.1
Introduction
. 255
18.2
The Theorem
. 255
18.3
The Proof
. 25?
18.4
Discussion and Bibliography
. 261
18.5
Exercises
.
261
XVIII
Contents
19
Homogenization
for Elliptic PDEs: The Convergence Theorem
. 263
19.1
Introduction
. 263
19.2
The Theorems
. 263
19.3
The Proof: Strong Convergence in L2
. 264
19.4
The Proof: Strong Convergence in H1
. 268
19.5
Discussion and Bibliography
. 270
19.6
Exercises
. 271
20
Homogenization for Parabolic PDEs: The Convergence Theorem
_ 273
20.1
Introduction
. 273
20.2
The Theorem
. 273
20.3
The Proof
. 274
20.4
Discussion and Bibliography
. 277
20.5
Exercises
. 278
21
Averaging for Linear Transport and Parabolic PDEs: The
Convergence Theorem
. 279
21.1
Introduction
. 279
21.2
The Theorems
. 279
21.3
The Proof:
D
> 0. 281
21.4
The Proof:
D
= 0. 282
21.5
Discussion and Bibliography
. 284
21.6
Exercises
. 285
References
. 287
Index
. 303 |
adam_txt |
Contents
Series
Preface
.
V
Preface
.
IX
1
Introduction
. 1
1.1
Overview
. 1
1.2
Motivating Examples
. 1
1.2.1
Example I: Steady Heat Conduction in a Composite Material
2
1.2.2
Example II: Homogenization for Advection-Diffusion
Equations
. 3
1.2.3
Example III: Averaging, Homogenization, and Dynamics
. 4
1.2.4
Example IV: Dimension Reduction in Dynamical Systems
. 5
1.3
Averaging Versus Homogenization
. 6
1.3.1
Averaging for Systems of Linear Equations
. 7
1.3.2
Homogenization for Systems of Linear Equations
. 8
1.4
Discussion and Bibliography
. 9
Parti Background
2
Analysis
. 13
2.1
Setup
. 13
2.2
Notation
. 14
2.3
Banach and Hubert Spaces
. 16
2.3.1
Banach Spaces
. 16
2.3.2
Hubert Spaces
. 18
2.4
Function Spaces
. 18
2.4.1
Spaces of Continuous Functions
. 18
2.4.2
IP Spaces
. 19
2.4.3
Sobolev Spaces
. 21
2.4.4
Banach
Space-Vaîued
Spaces
. 22
2.4.5
Sobolev Spaces of Periodic Functions
. 23
XIV Contents
2.5
Two-Scale Convergence
. 25
2.5.1
Two-Scale Convergence for Steady Problems
. 25
2.5.2
Two-Scale Convergence for Time-Dependent Problems
----- 28
2.6
Equations in Hubert Spaces
. 29
2.6.1
Lax-Milgram Theory
. 30
2.6.2
The
Fredholm
Alternative
. 31
2.7
Discussion and Bibliography
. 32
2.8
Exercises
. 34
3
Probability Theory and Stochastic Processes
. 37
3.1
Setup
. 37
3.2
Probability, Expectation, and Conditional Expectation
. 37
3.3
Stochastic Processes
. 40
3.4
Martingales and Stochastic Integrals
. 46
3.4.1
Martingales
. 46
3.4.2
The
Ito
Stochastic Integral
. 47
3.4.3
The Stratonovich Stochastic Integral
. 49
3.5
Weak Convergence of Probability Measures
. 49
3.6
Discussion and Bibliography
. 54
3.7
Exercises
. 56
4
Ordinary Differential Equations
. 59
4.1
Setup
. 59
4.2
Existence and Uniqueness
. 59
4.3
The Generator
. 62
4.4
Ergodicity
. 66
4.5
Discussion and Bibliography
. 72
4.6
Exercises
. 72
5
Markov Chains
. 73
5.1
Setup
. 73
5.2
Discrete-Time Markov Chains
. 73
5.3
Continuous-Time Markov Chains
. 75
5.4
The Generator
. 76
5.5
Existence and Uniqueness
. 80
5.6
Ergodicity
. 81
5.7
Discussion and Bibliography
. 83
5.8
Exercises
. 84
6
Stochastic Differential Equations
. 85
6.1
Setup
. 85
6.2
Existence and Uniqueness
. 86
6.3
The Generator
. 88
6.4
Ergodicity
. 94
6.5
Discussion and Bibliography
. 99
6.6
Exercises
. 100
Contents
XV
7
Partial
Differential
Equations
. 103
7.1 Setup. 103
7.2
Elliptic PDEs
. 104
7.2.1 The Dirichlet Problem. 105
7.2.2
The Periodic
Problem . 107
7.2.3 The Fredholm Alternative. 107
7.2.4 The Maximum
Principle
. 113
7.3
Parabolic PDEs
. 114
7.3.1
Bounded Domains
. 114
7.3.2
The Maximum Principle
. 115
7.3.3
Unbounded Domains: The Cauchy Problem
. 117
7.4
Transport PDEs
. 118
7.5
Semigroups
. 121
7.6
Discussion and Bibliography
. 122
7.7
Exercises
. 123
Part II Perturbation Expansions
8
Invariant Manifolds for ODEs
. 127
8.1
Introduction
. 127
8.2
Full Equations
. 127
8.3
Simplified Equations
. 128
8.4
Derivation
. 129
8.5
Applications
. 130
8.5.1
Linear Fast Dynamics
. 130
8.5.2
Large Time Dynamics
. 131
8.5.3
Center Manifold
. 131
8.6
Discussion and Bibliography
. 133
8.7
Exercises
. 134
9
Averaging for Markov Chains
. 137
9.1
Introduction
. 137
9.2
Full Equations
. 137
9.3
Simplified Equations
. 139
9.4
Derivation
. 140
9.5
Application
. 141
9.6
Discussion and Bibliography
. 142
9.7
Exercises
. 142
10
Averaging for ODEs and SDEs
. 145
10.1
Introduction
. 145
10.2
Full Equations
. 145
10.3
Simplified Equations
. 146
10.4
Derivation
. 147
XVI Contents
10.5
Deterministic Problems
. 148
10.6
Applications
. 149
10.6.1
A Skew-Product SDE
. 149
10.6.2
Hamiltonian Mechanics
. 150
10.7
Discussion and Bibliography
. 153
10.8
Exercises
. 155
11
Homogenization for ODEs and SDEs
. 157
11.1
Introduction
. 157
11.2
Full Equations
. 158
11.3
Simplified Equations
. 159
11.4
Derivation
. 160
11.5
Properties of the Simplified Equations
. 162
11.6
Deterministic Problems
. 163
11.7
Applications
. 166
11.7.1
Fast Ornstein-Uhlenbeck Noise
. 166
11.7.2
Fast Chaotic Noise
. 169
11.7.3
Stratonovich Corrections
. 170
11.7.4
Stokes' Law
. 171
11.7.5
Green-Kubo Formula
. 173
11.7.6
Neither
Ito
nor Stratonovich
. 174
11.7.7
The Levy Area Correction
. 176
11.8
Discussion and Bibliography
. 177
11.9
Exercises
. 180
12
Homogenization for Elliptic PDEs
. 183
12.1
Introduction
. 183
12.2
Full Equations
. 183
12.3
Simplified Equations
. 184
12.4
Derivation
. 185
12.5
Properties of the Simplified Equations
. 188
12.6
Applications
. 191
12.6.1
The One-Dimensional Case
. 191
12.6.2
Layered Materials
. 193
12.7
Discussion and Bibliography
. 195
12.8
Exercises
. 199
13
Homogenization for Parabolic PDEs
. 203
13.1
Introduction
. 203
13.2
Full Equations
. 203
13.3
Simplified Equations
. 205
13.4
Derivation
. 206
13.5
Properties of the Simplified Equations
. 207
13.6
Applications
. 209
13.6.1
Gradient Vector Fields
. 209
13.6.2
Divergence-Free Fields
. 214
Contents XVII
13.7
The Connection to SDEs
. 221
13.8
Discussion and Bibliography
. 222
13.9
Exercises
. 224
14
Averaging for Linear Transport and Parabolic PDEs
. 227
14.1
Introduction
. 227
14.2
Full Equations
. 227
14.3
Simplified Equations
. 228
14.4
Derivation
. 229
14.5
Transport Equations:
D
= 0. 230
14.5.1
The One-Dimensional Case
. 231
14.5.2
Divergence-Free Velocity Fields
. 232
14.6
The Connection to ODEs and SDEs
. 233
14.7
Discussion and Bibliography
. 235
14.8
Exercises
. 236
Partili
Theory
15
Invariant Manifolds for ODEs: The Convergence Theorem
. 239
15.1
Introduction
. 239
15.2
The Theorem
. 239
15.3
The Proof
. 241
15.4
Discussion and Bibliography
. 242
15.5
Exercises
. 243
16
Averaging for Markov Chains: The Convergence Theorem
. 245
16.1
Introduction
. 245
16.2
The Theorem
. 245
16.3
The Proof
. 246
16.4
Discussion and Bibliography
. 247
16.5
Exercises
. 248
17
Averaging for SDEs: The Convergence Theorem
. 249
17.1
Introduction
. 249
17.2
The Theorem
. 249
17.3
The Proof
. 250
17.4
Discussion and Bibliography
. 253
17.5
Exercises
. 253
18
Homogenization for SDEs: The Convergence Theorem
. 255
18.1
Introduction
. 255
18.2
The Theorem
. 255
18.3
The Proof
. 25?
18.4
Discussion and Bibliography
. 261
18.5
Exercises
.
261
XVIII
Contents
19
Homogenization
for Elliptic PDEs: The Convergence Theorem
. 263
19.1
Introduction
. 263
19.2
The Theorems
. 263
19.3
The Proof: Strong Convergence in L2
. 264
19.4
The Proof: Strong Convergence in H1
. 268
19.5
Discussion and Bibliography
. 270
19.6
Exercises
. 271
20
Homogenization for Parabolic PDEs: The Convergence Theorem
_ 273
20.1
Introduction
. 273
20.2
The Theorem
. 273
20.3
The Proof
. 274
20.4
Discussion and Bibliography
. 277
20.5
Exercises
. 278
21
Averaging for Linear Transport and Parabolic PDEs: The
Convergence Theorem
. 279
21.1
Introduction
. 279
21.2
The Theorems
. 279
21.3
The Proof:
D
> 0. 281
21.4
The Proof:
D
= 0. 282
21.5
Discussion and Bibliography
. 284
21.6
Exercises
. 285
References
. 287
Index
. 303 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Pavliotis, Grigorios A. Stuart, Andrew |
author_GND | (DE-588)1274035414 (DE-588)1078856400 |
author_facet | Pavliotis, Grigorios A. Stuart, Andrew |
author_role | aut aut |
author_sort | Pavliotis, Grigorios A. |
author_variant | g a p ga gap a s as |
building | Verbundindex |
bvnumber | BV035052459 |
callnumber-first | Q - Science |
callnumber-label | QA371 |
callnumber-raw | QA371 |
callnumber-search | QA371 |
callnumber-sort | QA 3371 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 500 |
ctrlnum | (OCoLC)166384346 (DE-599)BVBBV035052459 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV035052459</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221128</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080915s2008 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007941385</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA768518</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387738284</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-0-387-73828-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387738282</subfield><subfield code="c">hbk.</subfield><subfield code="9">0-387-73828-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)166384346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035052459</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA371</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">34C29</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35B27</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pavliotis, Grigorios A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1274035414</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale methods</subfield><subfield code="b">averaging and homogenization</subfield><subfield code="c">Grigorios A. Pavliotis ; Andrew M. Stuart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">[2008]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 307 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">53</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations aux dérivées partielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrskalenanalyse</subfield><subfield code="0">(DE-588)4416235-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrskalenanalyse</subfield><subfield code="0">(DE-588)4416235-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stuart, Andrew</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1078856400</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-73829-1</subfield><subfield code="z">0-387-73829-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">53</subfield><subfield code="w">(DE-604)BV002476038</subfield><subfield code="9">53</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2990945&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0829/2007941385-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016721106&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016721106</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV035052459 |
illustrated | Illustrated |
index_date | 2024-07-02T21:57:08Z |
indexdate | 2024-07-20T09:49:43Z |
institution | BVB |
isbn | 9780387738284 0387738282 |
language | English |
lccn | 2007941385 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016721106 |
oclc_num | 166384346 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-83 DE-29T DE-11 DE-20 DE-188 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-83 DE-29T DE-11 DE-20 DE-188 |
physical | XVIII, 307 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Texts in applied mathematics |
series2 | Texts in applied mathematics |
spelling | Pavliotis, Grigorios A. Verfasser (DE-588)1274035414 aut Multiscale methods averaging and homogenization Grigorios A. Pavliotis ; Andrew M. Stuart New York, NY Springer [2008] XVIII, 307 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Texts in applied mathematics 53 Includes bibliographical references and index Équations aux dérivées partielles Équations différentielles Differential equations Differential equations, Partial Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Mehrskalenanalyse (DE-588)4416235-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Mehrskalenanalyse (DE-588)4416235-2 s Differentialgleichung (DE-588)4012249-9 s DE-604 Stuart, Andrew Verfasser (DE-588)1078856400 aut Erscheint auch als Online-Ausgabe 978-0-387-73829-1 0-387-73829-0 Texts in applied mathematics 53 (DE-604)BV002476038 53 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2990945&prov=M&dok_var=1&dok_ext=htm Inhaltstext http://www.loc.gov/catdir/enhancements/fy0829/2007941385-d.html Publisher description Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016721106&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pavliotis, Grigorios A. Stuart, Andrew Multiscale methods averaging and homogenization Texts in applied mathematics Équations aux dérivées partielles Équations différentielles Differential equations Differential equations, Partial Differentialgleichung (DE-588)4012249-9 gnd Mehrskalenanalyse (DE-588)4416235-2 gnd |
subject_GND | (DE-588)4012249-9 (DE-588)4416235-2 (DE-588)4123623-3 |
title | Multiscale methods averaging and homogenization |
title_auth | Multiscale methods averaging and homogenization |
title_exact_search | Multiscale methods averaging and homogenization |
title_exact_search_txtP | Multiscale methods averaging and homogenization |
title_full | Multiscale methods averaging and homogenization Grigorios A. Pavliotis ; Andrew M. Stuart |
title_fullStr | Multiscale methods averaging and homogenization Grigorios A. Pavliotis ; Andrew M. Stuart |
title_full_unstemmed | Multiscale methods averaging and homogenization Grigorios A. Pavliotis ; Andrew M. Stuart |
title_short | Multiscale methods |
title_sort | multiscale methods averaging and homogenization |
title_sub | averaging and homogenization |
topic | Équations aux dérivées partielles Équations différentielles Differential equations Differential equations, Partial Differentialgleichung (DE-588)4012249-9 gnd Mehrskalenanalyse (DE-588)4416235-2 gnd |
topic_facet | Équations aux dérivées partielles Équations différentielles Differential equations Differential equations, Partial Differentialgleichung Mehrskalenanalyse Lehrbuch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2990945&prov=M&dok_var=1&dok_ext=htm http://www.loc.gov/catdir/enhancements/fy0829/2007941385-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016721106&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002476038 |
work_keys_str_mv | AT pavliotisgrigoriosa multiscalemethodsaveragingandhomogenization AT stuartandrew multiscalemethodsaveragingandhomogenization |