Parallel solution of the Burgers equation:
Abstract: "When applying the method of lines to partial differential equations and using explicit methods for the time integration, the time step is usually severely restricted by stability conditions. In this paper, we focus on the Burgers equation and we try to relax the time step condition b...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam
1991
|
Schriftenreihe: | Report NM-R / Centrum voor Wiskunde en Informatica, Department of Numerical Mathematics
91,4 |
Schlagworte: | |
Zusammenfassung: | Abstract: "When applying the method of lines to partial differential equations and using explicit methods for the time integration, the time step is usually severely restricted by stability conditions. In this paper, we focus on the Burgers equation and we try to relax the time step condition by applying fractional step (or operator splitting) methods based on Runge-Kutta methods. Furthermore, we consider parallel versions with increased order of accuracy." |
Beschreibung: | 15 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035044178 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080909s1991 |||| 00||| eng d | ||
035 | |a (OCoLC)24807135 | ||
035 | |a (DE-599)BSZ025031163 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Houwen, Pieter J. van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parallel solution of the Burgers equation |c P. J. van der Houwen ; B. P. Sommeijer |
264 | 1 | |a Amsterdam |c 1991 | |
300 | |a 15 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Report NM-R / Centrum voor Wiskunde en Informatica, Department of Numerical Mathematics |v 91,4 | |
520 | 3 | |a Abstract: "When applying the method of lines to partial differential equations and using explicit methods for the time integration, the time step is usually severely restricted by stability conditions. In this paper, we focus on the Burgers equation and we try to relax the time step condition by applying fractional step (or operator splitting) methods based on Runge-Kutta methods. Furthermore, we consider parallel versions with increased order of accuracy." | |
650 | 4 | |a Burgers equation | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Stability | |
700 | 1 | |a Sommeijer, Ben P. |d ca. 20. Jh. |e Verfasser |0 (DE-588)132820269 |4 aut | |
810 | 2 | |a Centrum voor Wiskunde en Informatica, Department of Numerical Mathematics |t Report NM-R |v 91,4 |w (DE-604)BV010177152 |9 91,4 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-016712954 |
Datensatz im Suchindex
_version_ | 1804137980408889344 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh |
author_GND | (DE-588)132820269 |
author_facet | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh |
author_role | aut aut |
author_sort | Houwen, Pieter J. van der |
author_variant | p j v d h pjvd pjvdh b p s bp bps |
building | Verbundindex |
bvnumber | BV035044178 |
ctrlnum | (OCoLC)24807135 (DE-599)BSZ025031163 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01572nam a2200325 cb4500</leader><controlfield tag="001">BV035044178</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080909s1991 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)24807135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ025031163</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Houwen, Pieter J. van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel solution of the Burgers equation</subfield><subfield code="c">P. J. van der Houwen ; B. P. Sommeijer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Report NM-R / Centrum voor Wiskunde en Informatica, Department of Numerical Mathematics</subfield><subfield code="v">91,4</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "When applying the method of lines to partial differential equations and using explicit methods for the time integration, the time step is usually severely restricted by stability conditions. In this paper, we focus on the Burgers equation and we try to relax the time step condition by applying fractional step (or operator splitting) methods based on Runge-Kutta methods. Furthermore, we consider parallel versions with increased order of accuracy."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Burgers equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sommeijer, Ben P.</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132820269</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Centrum voor Wiskunde en Informatica, Department of Numerical Mathematics</subfield><subfield code="t">Report NM-R</subfield><subfield code="v">91,4</subfield><subfield code="w">(DE-604)BV010177152</subfield><subfield code="9">91,4</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016712954</subfield></datafield></record></collection> |
id | DE-604.BV035044178 |
illustrated | Not Illustrated |
index_date | 2024-07-02T21:54:12Z |
indexdate | 2024-07-09T21:20:55Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016712954 |
oclc_num | 24807135 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 15 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series2 | Report NM-R / Centrum voor Wiskunde en Informatica, Department of Numerical Mathematics |
spelling | Houwen, Pieter J. van der Verfasser aut Parallel solution of the Burgers equation P. J. van der Houwen ; B. P. Sommeijer Amsterdam 1991 15 S. txt rdacontent n rdamedia nc rdacarrier Report NM-R / Centrum voor Wiskunde en Informatica, Department of Numerical Mathematics 91,4 Abstract: "When applying the method of lines to partial differential equations and using explicit methods for the time integration, the time step is usually severely restricted by stability conditions. In this paper, we focus on the Burgers equation and we try to relax the time step condition by applying fractional step (or operator splitting) methods based on Runge-Kutta methods. Furthermore, we consider parallel versions with increased order of accuracy." Burgers equation Differential equations, Partial Stability Sommeijer, Ben P. ca. 20. Jh. Verfasser (DE-588)132820269 aut Centrum voor Wiskunde en Informatica, Department of Numerical Mathematics Report NM-R 91,4 (DE-604)BV010177152 91,4 |
spellingShingle | Houwen, Pieter J. van der Sommeijer, Ben P. ca. 20. Jh Parallel solution of the Burgers equation Burgers equation Differential equations, Partial Stability |
title | Parallel solution of the Burgers equation |
title_auth | Parallel solution of the Burgers equation |
title_exact_search | Parallel solution of the Burgers equation |
title_exact_search_txtP | Parallel solution of the Burgers equation |
title_full | Parallel solution of the Burgers equation P. J. van der Houwen ; B. P. Sommeijer |
title_fullStr | Parallel solution of the Burgers equation P. J. van der Houwen ; B. P. Sommeijer |
title_full_unstemmed | Parallel solution of the Burgers equation P. J. van der Houwen ; B. P. Sommeijer |
title_short | Parallel solution of the Burgers equation |
title_sort | parallel solution of the burgers equation |
topic | Burgers equation Differential equations, Partial Stability |
topic_facet | Burgers equation Differential equations, Partial Stability |
volume_link | (DE-604)BV010177152 |
work_keys_str_mv | AT houwenpieterjvander parallelsolutionoftheburgersequation AT sommeijerbenp parallelsolutionoftheburgersequation |