The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, R.I.
American Mathematical Society
2008
|
Schriftenreihe: | Memoirs of the American Mathematical Society
917 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | "Volume 196, number 917 (fourth of 5 numbers)." Includes bibliographical references |
Beschreibung: | VI, 105 S. graph. Darst. |
ISBN: | 9780821842508 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035041796 | ||
003 | DE-604 | ||
005 | 20150324 | ||
007 | t | ||
008 | 080908s2008 xxud||| |||| 00||| eng d | ||
010 | |a 2008030290 | ||
020 | |a 9780821842508 |c alk. paper |9 978-0-8218-4250-8 | ||
035 | |a (OCoLC)233798882 | ||
035 | |a (DE-599)BVBBV035041796 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-384 |a DE-355 |a DE-29T |a DE-11 |a DE-188 |a DE-83 | ||
050 | 0 | |a QA274.25 | |
082 | 0 | |a 519.2 | |
100 | 1 | |a Mohammed, Salah-Eldin A. |e Verfasser |0 (DE-588)120795841 |4 aut | |
245 | 1 | 0 | |a The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations |c Salah-Eldin Mohammed ; Tusheng Zhang ; Huaizhong Zhao |
264 | 1 | |a Providence, R.I. |b American Mathematical Society |c 2008 | |
300 | |a VI, 105 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v 917 | |
500 | |a "Volume 196, number 917 (fourth of 5 numbers)." | ||
500 | |a Includes bibliographical references | ||
650 | 4 | |a Stochastic partial differential equations | |
650 | 4 | |a Stochastic integral equations | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Evolution equations | |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 0 | 1 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zhang, Tusheng |d 1963- |e Sonstige |0 (DE-588)137051581 |4 oth | |
700 | 1 | |a Zhao, Huaizhong |d 1964- |e Sonstige |0 (DE-588)136718124 |4 oth | |
830 | 0 | |a Memoirs of the American Mathematical Society |v 917 |w (DE-604)BV008000141 |9 917 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016710618&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016710618 |
Datensatz im Suchindex
_version_ | 1804137976876236800 |
---|---|
adam_text | Contents
Introduction 1
Part 1. The stochastic semiflow
§1.1 Basic concepts 6
§1.2 Flows and cocycles of semilinear see s 7
(a) Linear see s 8
(b) Semilinear see s 27
§1.3 Semilinear spde s: Lipschitz nonlinearity 35
§1.4 Semilinear spde s: Non-Lipschitz nonlinearity 44
(a) Stochastic reaction diffusion equations 44
(b) Burgers equation with additive noise 58
Part 2. Existence of stable and unstable manifolds
§2.1 Hyperbolicity of a stationary trajectory 69
§2.2 The nonlinear ergodic theorem 73
§2.3 Proof of the local stable manifold theorem 77
§2.4 The local stable manifold theorem for see s and spde s 95
(a) See s: Additive noise 95
(b) Semilinear see s: Linear noise 98
(c) Semilinear parabolic spde s: Lipschitz nonlinearity 100
(d) Stochastic reaction diffusion equations: Dissipative nonlinearity 100
(e) Stochastic Burgers equation: Additive noise 101
Acknowledgments 102
Bibliography 103
v
|
adam_txt |
Contents
Introduction 1
Part 1. The stochastic semiflow
§1.1 Basic concepts 6
§1.2 Flows and cocycles of semilinear see's 7
(a) Linear see's 8
(b) Semilinear see's 27
§1.3 Semilinear spde's: Lipschitz nonlinearity 35
§1.4 Semilinear spde's: Non-Lipschitz nonlinearity 44
(a) Stochastic reaction diffusion equations 44
(b) Burgers equation with additive noise 58
Part 2. Existence of stable and unstable manifolds
§2.1 Hyperbolicity of a stationary trajectory 69
§2.2 The nonlinear ergodic theorem 73
§2.3 Proof of the local stable manifold theorem 77
§2.4 The local stable manifold theorem for see's and spde's 95
(a) See's: Additive noise 95
(b) Semilinear see's: Linear noise 98
(c) Semilinear parabolic spde's: Lipschitz nonlinearity 100
(d) Stochastic reaction diffusion equations: Dissipative nonlinearity 100
(e) Stochastic Burgers equation: Additive noise 101
Acknowledgments 102
Bibliography 103
v |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Mohammed, Salah-Eldin A. |
author_GND | (DE-588)120795841 (DE-588)137051581 (DE-588)136718124 |
author_facet | Mohammed, Salah-Eldin A. |
author_role | aut |
author_sort | Mohammed, Salah-Eldin A. |
author_variant | s e a m sea seam |
building | Verbundindex |
bvnumber | BV035041796 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.25 |
callnumber-search | QA274.25 |
callnumber-sort | QA 3274.25 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)233798882 (DE-599)BVBBV035041796 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02188nam a2200493 cb4500</leader><controlfield tag="001">BV035041796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150324 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080908s2008 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008030290</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821842508</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8218-4250-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)233798882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035041796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.25</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mohammed, Salah-Eldin A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120795841</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations</subfield><subfield code="c">Salah-Eldin Mohammed ; Tusheng Zhang ; Huaizhong Zhao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 105 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">917</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Volume 196, number 917 (fourth of 5 numbers)."</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Tusheng</subfield><subfield code="d">1963-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)137051581</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Huaizhong</subfield><subfield code="d">1964-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136718124</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">917</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">917</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016710618&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016710618</subfield></datafield></record></collection> |
id | DE-604.BV035041796 |
illustrated | Illustrated |
index_date | 2024-07-02T21:53:22Z |
indexdate | 2024-07-09T21:20:51Z |
institution | BVB |
isbn | 9780821842508 |
language | English |
lccn | 2008030290 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016710618 |
oclc_num | 233798882 |
open_access_boolean | |
owner | DE-384 DE-355 DE-BY-UBR DE-29T DE-11 DE-188 DE-83 |
owner_facet | DE-384 DE-355 DE-BY-UBR DE-29T DE-11 DE-188 DE-83 |
physical | VI, 105 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | American Mathematical Society |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Mohammed, Salah-Eldin A. Verfasser (DE-588)120795841 aut The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations Salah-Eldin Mohammed ; Tusheng Zhang ; Huaizhong Zhao Providence, R.I. American Mathematical Society 2008 VI, 105 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society 917 "Volume 196, number 917 (fourth of 5 numbers)." Includes bibliographical references Stochastic partial differential equations Stochastic integral equations Manifolds (Mathematics) Evolution equations Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Stochastische Differentialgleichung (DE-588)4057621-8 s Mannigfaltigkeit (DE-588)4037379-4 s DE-604 Zhang, Tusheng 1963- Sonstige (DE-588)137051581 oth Zhao, Huaizhong 1964- Sonstige (DE-588)136718124 oth Memoirs of the American Mathematical Society 917 (DE-604)BV008000141 917 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016710618&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mohammed, Salah-Eldin A. The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations Memoirs of the American Mathematical Society Stochastic partial differential equations Stochastic integral equations Manifolds (Mathematics) Evolution equations Stochastische Differentialgleichung (DE-588)4057621-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4057621-8 (DE-588)4037379-4 |
title | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations |
title_auth | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations |
title_exact_search | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations |
title_exact_search_txtP | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations |
title_full | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations Salah-Eldin Mohammed ; Tusheng Zhang ; Huaizhong Zhao |
title_fullStr | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations Salah-Eldin Mohammed ; Tusheng Zhang ; Huaizhong Zhao |
title_full_unstemmed | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations Salah-Eldin Mohammed ; Tusheng Zhang ; Huaizhong Zhao |
title_short | The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations |
title_sort | the stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations |
topic | Stochastic partial differential equations Stochastic integral equations Manifolds (Mathematics) Evolution equations Stochastische Differentialgleichung (DE-588)4057621-8 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Stochastic partial differential equations Stochastic integral equations Manifolds (Mathematics) Evolution equations Stochastische Differentialgleichung Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016710618&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT mohammedsalaheldina thestablemanifoldtheoremforsemilinearstochasticevolutionequationsandstochasticpartialdifferentialequations AT zhangtusheng thestablemanifoldtheoremforsemilinearstochasticevolutionequationsandstochasticpartialdifferentialequations AT zhaohuaizhong thestablemanifoldtheoremforsemilinearstochasticevolutionequationsandstochasticpartialdifferentialequations |