Quantum nanoelectronics: an introduction to electronic nanotechnology and quantum computing
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2009
|
Schriftenreihe: | Physics Textbook
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVI, 456 S. Ill., graph. Darst. |
ISBN: | 9783527407491 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035035960 | ||
003 | DE-604 | ||
005 | 20100601 | ||
007 | t | ||
008 | 080903s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N24,1315 |2 dnb | ||
016 | 7 | |a 988809109 |2 DE-101 | |
020 | |a 9783527407491 |c Pb. : EUR 49.00 (freier Pr.), sfr 78.00 (freier Pr.) |9 978-3-527-40749-1 | ||
024 | 3 | |a 9783527407491 | |
028 | 5 | 2 | |a 1140749 000 |
035 | |a (OCoLC)318668746 | ||
035 | |a (DE-599)DNB988809109 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-355 |a DE-20 |a DE-29T |a DE-92 |a DE-703 |a DE-634 |a DE-573 |a DE-706 |a DE-19 |a DE-11 |a DE-91G | ||
050 | 0 | |a TK7874.84 | |
082 | 0 | |a 537.5 | |
084 | |a UH 5600 |0 (DE-625)145666: |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
084 | |a ELT 230f |2 stub | ||
100 | 1 | |a Wolf, E. L. |d 1936- |e Verfasser |0 (DE-588)129512176 |4 aut | |
245 | 1 | 0 | |a Quantum nanoelectronics |b an introduction to electronic nanotechnology and quantum computing |c Edward L. Wolf |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2009 | |
300 | |a XVI, 456 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Physics Textbook | |
650 | 4 | |a Nanoélectronique | |
650 | 4 | |a Électronique quantique | |
650 | 4 | |a Nanoelectronics |v Textbooks | |
650 | 4 | |a Quantum computers |v Textbooks | |
650 | 4 | |a Quantum electronics |v Textbooks | |
650 | 0 | 7 | |a Nanoelektronik |0 (DE-588)4732034-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanoelektronik |0 (DE-588)4732034-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3112946&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016704850&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016704850 |
Datensatz im Suchindex
_version_ | 1805091014426230784 |
---|---|
adam_text |
VII
Contents
Prefece
XV
1
Introduction
and Review of Electronic Technology
1
1.1
Introduction: Functions of Electronic Technology
6
1.1.1
Review of Electronic Devices
6
1.1.2
Sources of Current and Voltage: DC
6
1.1.2.1
Batteries: Lithium Ion, Ni-Cd, NiMH, and "Supercapacitors"
б
1.1.2.2
Thermionic Emitters
10
1.1.2.3
Field Emitters
13
1.1.2.4
Ferroelectric and Pyroelectric Devices
15
1.1.3
Generators of Alternating Current and Voltage: AC
16
1.1.3.1
Faraday Effect Devices
Í6
1.1.3.2
Crystal Oscillators
17
1.1.3.3
Gunn Diode Oscillators
ÍS
1.1.3.4
Esaki Diodes
19
1.1.3.5
Injection Lasers
20
1.1.3.6
Organic light Emitting Diodes
21
1.1.3.7
Blackbody
Emission of Radiation
22
1.1.4
Detectors
23
1.1.4.1
PhotomuMpKer and
Geiger
Counter
24
1.1.4.2
Photodetector, Solar Cell, and pn Junction
25
1.1.4.3
Imaging Detector,
CCD
Camera, and Channel Plate
26
1.1.4.4
SQUID Detector of Magnetic Field and Other Quantities
26
1.1.5
Two-Terminal Devices
27
1.1.5.1
Semiconductor pn Junction (Nonohmic)
27
1.1.5.2
Metal-Semiconductor Junction and Alternative Solar Cell
29
1.1.5.3
Tunnel Junction (An Ohmic Device)
30
1.1.5.4
Josephson
Junction
30
1.1.5.5
Resonant Tunnel Diode
(RTD, RITD)
33
1.1.5.6
Spin-Valve and Tunnel-Valve GMR Magnetic Field Detectors
33
1.1.6
Three-Terminal Devices
34
VIII Contents
1.1.6.1
Field Effect
Transistor 35
1.1.6.2
Bipolar Junction Transistors: npn and pnp
37
1.1.6.3
Resonant Tunneling Hot-Electron Transistor (RHET)
37
1.1.7
Four-Terminal Devices
38
1.1.7.1 Thyristors: npnp
and pnpn
38
1.1.7.2
Dynamic Random Access Memory
38
1.1.7.3
Triple-Barrier
RTD (TBRTD)
38
1.1.8
Data Storage Devices
38
1.1.8.1
Optical Memory Devices
38
1.1.8.2
Electrical Computer Memory Devices
39
References
40
2
From Electronics to Nanoelectronics: Particles, Waves, and
Schrödinger's
Equation
41
2.1
Transition from Diffusive Motion of Electron Fluid to Quantum
Behavior of Single Electrons
41
2.1.1
Vacuum
Triode
to Field Effect Transistor to Single Electron
Transistor
42
2.1.2
Crystal Detector Radio to Photomultiplier and Gamma Ray Detector
45
2.2
Particle (Quantum) Nature of Matter: Photons, Electrons, Atoms,
and Molecules
46
2.2.1
Photons
46
2.2.2
Electrons
47
2.2.3
Atoms, Bohr's Model
48
2.2.3.1
Quantization of Angular Momentum and Orbit Energy
49
2.2.3.2
light Absorption and Emission lines
50
2.2.3.3
Magnetic Moments of Orbiting Electrons
50
2.2.3.4
Stern-Gerlach Experiment and Electron Spin
51
2.3
Particle-Wave Nature of light and Matter,
De Broglie
Formulas
/. =
h/p, E=hv
52
2.3.1
Wavefunction
ψ,
Probability Density
ψ*ψ,
Traveling and
Standing Waves
53
2.4
Maxwell's Equations
54
2.5
The
Heisenberg
Uncertainty Principle
57
2.6 Schrödinger
Equation, Quantum States and Energies, Barrier
Tunneling
58
2.6.1 Schrödinger
Equations in One Dimension
59
2.6.2
The Trapped Particle in One Dimension
60
2.6.3
Reflection and Tunneling at a Potential Step
64
2.6.4
Penetration of a Barrier
66
2.6.5
Trapped Particles in Two and Three Dimensions: Quantum Dot
66
2.7
The Simple Harmonic Oscillator
67
2.8
Fermions,
Bosons, and Occupation Rules
69
2.9
A Bose
Particle System: Thermal Radiation in Equilibrium
70
References
72
Contents
IX
3 Quantum
Description
of
Atoms
and Molecules
75
3.1 Schrödinger
Equation in Spherical Polar Coordinates
75
3.1.1
The Hydrogen Atom, One-Electron Atoms
75
3.1.2
Positronium and
Excitons
79
3.1.3
Magnetization M, Magnetic Resonance, and Susceptibility
χ
81
3.1.4
Electric
Dipole
Emission Selection Rules for Atoms
82
3.1.5
Spontaneous and Stimulated Emission of light
83
3.2
Indistinguishable Particles and Their Exchange Symmetry
87
3.2.1
Symmetric and Antisymmetric Wavefunctions
87
3.2.2
Orbital and Spin Components of Wavefunction
SS
3.2.3 Pauli
Principle and Periodic Table of Elements
89
3.2.3.1
Filled Atomic Shells
89
3.2.3.2
Qualitative Aspects of Smallest Atoms
90
3.2.3.3
Alkali Atoms, Filled Core Plus One Electron
90
3.2.4
Carbon Atom 12.C Is22s22p2 ~0.07
пш
91
3.2.5
Cu, Ni, Xe, Hf
93
3.3
Molecules
95
3.3.1
Ionic Molecules
96
3.3.2
Covalent Bonding in Simple Molecules
97
3.3.2.1
Hydrogen Molecule Ion Hj
97
3.3.2.2
Hydrogen Molecule
99
3.3.2.3
Methane CH4, Ethane
С2Н6,
and Octane CgHlg
101
3.3.2.4
Ethylene C2H4,
Acetylene C2H2, and Benzene C6H6
102
3.3.2.5
Benzene Delocalized
Orbitals, Diamagnetism 104
3.3.2.6
Diamagnetic Susceptibility of Benzene
107
3.3.2.7
Modeling Delocalized Electrons in a Ring
110
3.3.2.8
Other Ring Compounds, Electronic Polarizability
120
3.3.3
С«,
Buckyball Molecule
124
References
127
4
Metals, Semiconductors, and junction Devices
129
4.1
Metals
129
4.1.1
Electronic Conduction
130
4.1.1.1
Resistivity, Mean Free Path
130
4.1.1.2
Hall Effect,
Magnetoresistance
23Í
4.1.2
Metals as Boxes of Free Electrons
131
4.1.2.1
Fermi Level, DOS, Dimensionality
131
4.2
Energy Bands in Periodic Structures
136
4.2.1
Model for Electron Bands and Gaps, Electrons and Holes
138
4.2.2
Si, GaAs, and InSb
142
4.2.3
Semiconductors and Insulators: Electron Bands
and Conduction
142
4.2.4
Hydrogenic Donors and
Excitons
in Semiconductors,
Direct and Indirect
Bandgaps
145
4.2.5
Carrier Concentrations in Semiconductors, Metallic Doping
146
X
Contents
4.3
ρη
Junctions, Diode I-V Characteristic, Photodetector, and
Injection Laser
150
4.3.1
Radiative Recombination of Electron-Hole Pairs, Emission
of light
151
4.3.2
pn Junction Injection Laser
153
4.3.2.1
Increasing Radiative Efficiency
η
of the Injection Laser
155
4.3.2.2
VCSEL: Vertical Cavity Surface Emitting Laser
157
4.4
Semiconductor Surface: Schottky Barrier
158
4.5
Ferromagnets
159
4.5.1
The Exchange Interaction
159
4.5.2
Magnetization and Critical Temperature
160
4.5.3
Smallest Magnetic Domain: Superparamagnet
162
4.5.4
Separate Bands for Spin-Up and Spin-Down
163
4.5.5
Hard and Soft Ferromagnets
164
4.5.6
Spin-Dependent Scattering, Resistivities of Spin-Up versus
Spin-Down
164
4.6
Piezoelectrics, Pyroelectrics, and Superconductors
166
4.6.1
Cooperative Distortions and Internal Fields
166
4.6.2
Piezoelectrics
166
4.6.3
Ferroelectrics and Pyroelectrics
167
4.6.4
Superconductors: Large-Scale Coherent Quantum
Systems
167
4.6.4.1
Superconductivity: a Macroscopic Quantum State
168
4.6.4.2
The Superconducting Magnetic Flux Quantum
168
4.6.4.3
Josephson
Junctions and the Superconducting Quantum
Interference Detector (SQUID)
170
References
173
5
Some Newer Building Blocks for Nanoelectronic Devices
175
5.1
The Benzene Ring, a Conceptual Basis
176
5.2
The Graphene sheet, a Second Conceptual Basis
177
5.2.1
Electronic Conduction in Graphene
177
5.2.2
Electronic Conduction in Epitaxial Bilayer Graphene
182
5.2.3
Device Potential for Graphene
184
5.3
Carbon Nanotubes and Related Materials
187
5.3.1
Rules and Nomenclature for Nanotubes
187
5.3.2
Physical Properties, Current Capacity
188
5.3.3
Electric Field Effects Based on Carbon Nanotubes
191
5.3.4
Ferromagnetic Nanotubes Controlled by Electron
or Hole Doping
192
5.4
Gold, Si, and CdS Nanowires and a Related Device
193
5.4.1
Rules for One-Dimensional Conductors
193
5.4.2
Gold Atom Nanowire Conductors
194
5.4.3
Proposed Benzene-Vanadium Ferromagnetic Nanowire
195
5.4.4
Single-Nanowire Electrically Pumped CdS Laser
196
Contents
XI
5.5 "Endohedral" C60 Buckyballs ~0.5 nm
and Related
Fullerene
Molecules
198
5.6 Quantum
Dots
199
5.7 Quantum Wells
and the
Two-Dimensional Electron Gas
Metal (2DEG)
205
5.7.1 Quantum
Well Infrared Photodetector
205
5.7.2 Two-Dimensional
Metallic
Electron Gas (2DEG) 206
5.8
Photonic Crystals
210
5.9
Organic Molecules and Conductive Polymers
213
5.9.1
Metallic Polymers
214
5.9.2
Semiconducting Polymers in Organic Light-Emitting Diodes
217
References
221
6
Fabrication and Characterization Methods
223
6.1
Introduction
223
6.2
Surface Structuring
223
6.2.1
Nanopore Arrays in Polycarbonate
224
6.2.2
Dendritic Growths: Anapore A12O3 and TiO2 Nanotube Arrays
224
6.2.3
Completely Absorbing Nanostructured Surfaces
226
6.3
Specialized Vapor Deposition Processes
228
6.3.1
Chemical Vapor Deposition Methods
228
6.3.1.1
Nanowire Growth by Laser-Assisted Chemical Vapor Deposition
229
6.3.1.2
Carbon Nanotube Growth
230
6.3.2
Vapor Growth of Conducting Organic Single Crystals
232
6.4
Silicon Technology. The INTEL-IBM Approach to Nanotechnology
233
6.4.1
Patterning, Masks, and Photolithography
233
6.4.2
Etching Silicon
234
6.4.3
Depositing Highly Conducting Electrode Regions
236
6.4.4
Methods of Deposition of Metal and Insulating Films
236
6.5
Advanced Patterning and Photolithography
239
6.5.1
Ultraviolet and
Х
-Ray lithography
239
6.5.2
Electron Beam Lithography
240
6.5.3
Sacrificial Layers, Suspended Bridges, Single-Electron
Transistors
241
6.6
Use of
DNA
Strands in Guiding Self-Assembly of
Nanometer-Size Structures
243
6.7
Scanning Probe Sensing and Fabrication Methods
245
6.7.1
Moving
Au
Atoms, Making Surface Molecules
247
6.7.2
Assembling Organic Molecules with an STM
248
6.7.3
Atomic Force Microscope Arrays
249
References
250
7
The Field Effect Transistor Size Limits
251
7.1
Metal-Oxide-Silicon Field-Effect Transistor
251
7.1.1
Operating Principles of MOSFET
251
XII Contents
7.1.2
Constant Electric
Field Scaling
253
7.1.3
Drain Currents at Present limits of Scaling
255
7.2
Small Size limits for the MOSFET
255
7.2.1
Nano-FET Drive Current I
256
7.2.2
Nano-FET Drive Current II
257
7.3
Present Status of MOSFET Fabrication and Performance
258
7.3.1
Working n- and p- MOSFET Devices with
5
nm Channel
Length
259
7.4
Alternative to Bulk Silicon: Buried Oxide BOX
261
7.5
Alternative to Bulk Silicon: Strain Engineering
262
7.6
The Benzene Molecule as a Field Effect Transistor
263
References
265
8
Devices Based upon Electron Tunneling: Resonant Tunnel Diodes
267
8.1
Introduction
267
8.2
Physical Basis of Tunneling Devices
267
8.2.1
Barrier Penetration and Trapped Particles
268
8.2.2
Escape Time from a Finite Well
270
8.2.3
Resonant Tunneling Diode
272
8.2.4
Time for Tunneling and Device Speed
272
8.2.5
Esaki Diode
275
8.3
Resonant Tunneling Diodes and Hot Electron Transistors
275
8.3.1
Three-Terminal Resonant Tunneling Device
276
8.3.2
"Resonant
Interband
Tunnel Diode": A Relative of
The Esaki Diode
277
8.4
Superconducting (RSFQ) Logic/Memory Computer Elements
279
8.5
Epitaxial MgO-Barrier Tunnel Junctions: Magnetic Field
Sensors
285
References
287
9
Single-Electron Transistors, Molecular and Hybrid Electronics
289
9.1
Introduction to Coulomb and Molecular Devices
289
9.2
Single-Electron (Coulomb) Transistor SET
290
9.2.1
Nanoscopic Source-Drain Channel: Two Tunnel Junctions
in Series
290
9.2.2
Single-Electron Transistor Model
292
9.2.3
A Single-Electron Transistor Based on a Single C6o Molecule
294
9.2.4
A Single-Electron Transistor Based on a Carbon Nanotube
294
9.2.5
The Radio Frequency Single-Electron Transistor (RFSET):
A Proven Research Tool
294
9.3
Single Molecules as Active Elements in Electronic Circuits
297
9.4
Hybrid Nanoelectronics Combining Si CMOS and Molecular
Electronics: CMOL
301
9.5
Carbon Nanotube Crossbar Arrays for
Ultradense, Ultrafast,
Nonvolatile Random Access Memory
302
Contents
XIII
9.6 Carbon Nanotube-Based Electromechanical Switch
Arrays for
Nonvolatile Random Access Memory
306
9.7
Proposed 16-bit Parallel Processing in a Molecular Assembly
307
References
309
10
Devices Based on Electron Spin and Ferromagnetism for
Storage and Logic
311
10.1
Hard and Soft Ferromagnets
312
10.2
The Origins of Giant
Magnetoresistance 313
10.2.1
Spin-Dependent Scattering of Electrons
314
10.2.2
The GMR Spin Valve, a Nanoscale
Magnetoresistance
Sensor
315
10.2.3
The Tunnel Valve, a Better (TMR) Magnetic Field Sensor
316
10.3
Magnetic Random Access Memory
319
10.4
Hybrid Ferromagnet-Semiconductor Nonvolatile Hall Effect
Gate Devices
320
10.5
Spin Injection: The Johnson-Silsbee Effect
321
10.5.1
Apparent Spin Injection from a Ferromagnet into a Carbon
Nanotube
323
10.6
Imaging a Single Electron Spin by a Magnetic Resonance AFM
323
10.7
Magnetic Logic Devices: A Majority Universal Logic Gate
327
10.8
Magnetic Domain Wall Racetrack Memory
329
References
332
Π
Qubits Versus Binary Bits in a Quantum Computer
333
11.1
Introduction
333
11.1.1
Binary Bits and Qubits
333
11.2
Electron and Nuclear Spins and Their Interaction
337
11.3
A Spin-Based Quantum Computer Using STM
340
11.4
Double-Well Potential Charge Qubits
341
11.4.1
Coherent Bonding and AntiBonding States in Artificial Structure
341
11.4.2
Silicon-Based Quantum Computer Qubits
344
11.4.3
Experimental Approaches to the Double-Well Charge Qubit
345
11.4.4
Coupling of Two-Charge Qubits in a Solid-State (Superconducting)
Context
349
11.5
Ion Trap on a GaAs Chip, Pointing to a New Qubit
351
11.6
Adiabatic Quantum Computation
353
11.6.1
An Example of an Optimization Problem
355
11.6.2
Demonstration of Adiabatic Quantum Computation
356
11.6.3
Flux Qubits as a Scalable Approach to Quantum Computation
357
References
362
12
Applications of Nanoelectronic Technology to Energy Issues
365
12.1
Introduction
365
12.1.1
Limitation of Oil Resources
365
12.1.2
Alteration of Atmosphere
366
XIV Contents
12.1.3
Improving Performance of Energy Components via
Nanoelectronic Technology
366
12.1.4
Topics of Opportunity from Nanoelectronic Perspective
366
12.2
Solar Energy and Its Conversion
367
12.2.1
Photovoltaic Solar Cells
367
12.2.2
Thin Film Solar Cells Versus Crystalline Cells
375
12.2.3
CIGS (CuIni_xGaxSe2) Thin Film Solar Cells
375
12.2.4
Dye-Sensitized Solar Cells
382
12.2.5
Polymer Organic Solar Cells
385
12.2.6
Comments on Cells and on Solar Power Versus Wind Power
389
12.3
Hydrogen Production (Solar) for Energy Transport
390
12.3.1
Economics of Hydrogen at Present
390
12.3.2
Hydrogen as Potential Intermediate in US Electricity Distribution
391
12.3.3
Efficient Photocatalytic Dissociation of Water into Hydrogen
and Oxygen
393
12.3.4
С
-Doped TiO2 Nanotube Arrays for Dissociating H2O by Light
401
12.4
Storage and Transport of Hydrogen as a Potential Fuel
403
12.5
Surface Adsorption as a Method of Storing Hydrogen
in High Density
404
References
407
13
Future of Nanoelectronic Technology
411
13.1
Silicon Devices
411
13.1.1
Power Density and Power Usage
423
13.1.2
Opportunity for Innovation in Large-Scale Computation
424
13.2
Solar Energy Conversion with Printed Solar Cells
4Í6
13.2.1
Capita] Costs per Unit Area for CIGS Cells
416
13.3
Emergence of Nanoimprinting Methods
420
13.4
Self-Assembly of Nanostructured Electrodes
422
13.5
Emerging Methods in Nanoelectronic Technology
424
References
426
Exercises
429
Abbreviations
439
Some Useful Constants
443
Index
445 |
adam_txt |
VII
Contents
Prefece
XV
1
Introduction
and Review of Electronic Technology
1
1.1
Introduction: Functions of Electronic Technology
6
1.1.1
Review of Electronic Devices
6
1.1.2
Sources of Current and Voltage: DC
6
1.1.2.1
Batteries: Lithium Ion, Ni-Cd, NiMH, and "Supercapacitors"
б
1.1.2.2
Thermionic Emitters
10
1.1.2.3
Field Emitters
13
1.1.2.4
Ferroelectric and Pyroelectric Devices
15
1.1.3
Generators of Alternating Current and Voltage: AC
16
1.1.3.1
Faraday Effect Devices
Í6
1.1.3.2
Crystal Oscillators
17
1.1.3.3
Gunn Diode Oscillators
ÍS
1.1.3.4
Esaki Diodes
19
1.1.3.5
Injection Lasers
20
1.1.3.6
Organic light Emitting Diodes
21
1.1.3.7
Blackbody
Emission of Radiation
22
1.1.4
Detectors
23
1.1.4.1
PhotomuMpKer and
Geiger
Counter
24
1.1.4.2
Photodetector, Solar Cell, and pn Junction
25
1.1.4.3
Imaging Detector,
CCD
Camera, and Channel Plate
26
1.1.4.4
SQUID Detector of Magnetic Field and Other Quantities
26
1.1.5
Two-Terminal Devices
27
1.1.5.1
Semiconductor pn Junction (Nonohmic)
27
1.1.5.2
Metal-Semiconductor Junction and Alternative Solar Cell
29
1.1.5.3
Tunnel Junction (An Ohmic Device)
30
1.1.5.4
Josephson
Junction
30
1.1.5.5
Resonant Tunnel Diode
(RTD, RITD)
33
1.1.5.6
Spin-Valve and Tunnel-Valve GMR Magnetic Field Detectors
33
1.1.6
Three-Terminal Devices
34
VIII Contents
1.1.6.1
Field Effect
Transistor 35
1.1.6.2
Bipolar Junction Transistors: npn and pnp
37
1.1.6.3
Resonant Tunneling Hot-Electron Transistor (RHET)
37
1.1.7
Four-Terminal Devices
38
1.1.7.1 Thyristors: npnp
and pnpn
38
1.1.7.2
Dynamic Random Access Memory
38
1.1.7.3
Triple-Barrier
RTD (TBRTD)
38
1.1.8
Data Storage Devices
38
1.1.8.1
Optical Memory Devices
38
1.1.8.2
Electrical Computer Memory Devices
39
References
40
2
From Electronics to Nanoelectronics: Particles, Waves, and
Schrödinger's
Equation
41
2.1
Transition from Diffusive Motion of Electron Fluid to Quantum
Behavior of Single Electrons
41
2.1.1
Vacuum
Triode
to Field Effect Transistor to Single Electron
Transistor
42
2.1.2
Crystal Detector Radio to Photomultiplier and Gamma Ray Detector
45
2.2
Particle (Quantum) Nature of Matter: Photons, Electrons, Atoms,
and Molecules
46
2.2.1
Photons
46
2.2.2
Electrons
47
2.2.3
Atoms, Bohr's Model
48
2.2.3.1
Quantization of Angular Momentum and Orbit Energy
49
2.2.3.2
light Absorption and Emission lines
50
2.2.3.3
Magnetic Moments of Orbiting Electrons
50
2.2.3.4
Stern-Gerlach Experiment and Electron Spin
51
2.3
Particle-Wave Nature of light and Matter,
De Broglie
Formulas
/. =
h/p, E=hv
52
2.3.1
Wavefunction
ψ,
Probability Density
ψ*ψ,
Traveling and
Standing Waves
53
2.4
Maxwell's Equations
54
2.5
The
Heisenberg
Uncertainty Principle
57
2.6 Schrödinger
Equation, Quantum States and Energies, Barrier
Tunneling
58
2.6.1 Schrödinger
Equations in One Dimension
59
2.6.2
The Trapped Particle in One Dimension
60
2.6.3
Reflection and Tunneling at a Potential Step
64
2.6.4
Penetration of a Barrier
66
2.6.5
Trapped Particles in Two and Three Dimensions: Quantum Dot
66
2.7
The Simple Harmonic Oscillator
67
2.8
Fermions,
Bosons, and Occupation Rules
69
2.9
A Bose
Particle System: Thermal Radiation in Equilibrium
70
References
72
Contents
IX
3 Quantum
Description
of
Atoms
and Molecules
75
3.1 Schrödinger
Equation in Spherical Polar Coordinates
75
3.1.1
The Hydrogen Atom, One-Electron Atoms
75
3.1.2
Positronium and
Excitons
79
3.1.3
Magnetization M, Magnetic Resonance, and Susceptibility
χ
81
3.1.4
Electric
Dipole
Emission Selection Rules for Atoms
82
3.1.5
Spontaneous and Stimulated Emission of light
83
3.2
Indistinguishable Particles and Their Exchange Symmetry
87
3.2.1
Symmetric and Antisymmetric Wavefunctions
87
3.2.2
Orbital and Spin Components of Wavefunction
SS
3.2.3 Pauli
Principle and Periodic Table of Elements
89
3.2.3.1
Filled Atomic Shells
89
3.2.3.2
Qualitative Aspects of Smallest Atoms
90
3.2.3.3
Alkali Atoms, Filled Core Plus One Electron
90
3.2.4
Carbon Atom 12.C Is22s22p2 ~0.07
пш
91
3.2.5
Cu, Ni, Xe, Hf
93
3.3
Molecules
95
3.3.1
Ionic Molecules
96
3.3.2
Covalent Bonding in Simple Molecules
97
3.3.2.1
Hydrogen Molecule Ion Hj
97
3.3.2.2
Hydrogen Molecule
99
3.3.2.3
Methane CH4, Ethane
С2Н6,
and Octane CgHlg
101
3.3.2.4
Ethylene C2H4,
Acetylene C2H2, and Benzene C6H6
102
3.3.2.5
Benzene Delocalized
Orbitals, Diamagnetism 104
3.3.2.6
Diamagnetic Susceptibility of Benzene
107
3.3.2.7
Modeling Delocalized Electrons in a Ring
110
3.3.2.8
Other Ring Compounds, Electronic Polarizability
120
3.3.3
С«,
Buckyball Molecule
124
References
127
4
Metals, Semiconductors, and junction Devices
129
4.1
Metals
129
4.1.1
Electronic Conduction
130
4.1.1.1
Resistivity, Mean Free Path
130
4.1.1.2
Hall Effect,
Magnetoresistance
23Í
4.1.2
Metals as Boxes of Free Electrons
131
4.1.2.1
Fermi Level, DOS, Dimensionality
131
4.2
Energy Bands in Periodic Structures
136
4.2.1
Model for Electron Bands and Gaps, Electrons and Holes
138
4.2.2
Si, GaAs, and InSb
142
4.2.3
Semiconductors and Insulators: Electron Bands
and Conduction
142
4.2.4
Hydrogenic Donors and
Excitons
in Semiconductors,
Direct and Indirect
Bandgaps
145
4.2.5
Carrier Concentrations in Semiconductors, Metallic Doping
146
X
Contents
4.3
ρη
Junctions, Diode I-V Characteristic, Photodetector, and
Injection Laser
150
4.3.1
Radiative Recombination of Electron-Hole Pairs, Emission
of light
151
4.3.2
pn Junction Injection Laser
153
4.3.2.1
Increasing Radiative Efficiency
η
of the Injection Laser
155
4.3.2.2
VCSEL: Vertical Cavity Surface Emitting Laser
157
4.4
Semiconductor Surface: Schottky Barrier
158
4.5
Ferromagnets
159
4.5.1
The Exchange Interaction
159
4.5.2
Magnetization and Critical Temperature
160
4.5.3
Smallest Magnetic Domain: Superparamagnet
162
4.5.4
Separate Bands for Spin-Up and Spin-Down
163
4.5.5
Hard and Soft Ferromagnets
164
4.5.6
Spin-Dependent Scattering, Resistivities of Spin-Up versus
Spin-Down
164
4.6
Piezoelectrics, Pyroelectrics, and Superconductors
166
4.6.1
Cooperative Distortions and Internal Fields
166
4.6.2
Piezoelectrics
166
4.6.3
Ferroelectrics and Pyroelectrics
167
4.6.4
Superconductors: Large-Scale Coherent Quantum
Systems
167
4.6.4.1
Superconductivity: a Macroscopic Quantum State
168
4.6.4.2
The Superconducting Magnetic Flux Quantum
168
4.6.4.3
Josephson
Junctions and the Superconducting Quantum
Interference Detector (SQUID)
170
References
173
5
Some Newer Building Blocks for Nanoelectronic Devices
175
5.1
The Benzene Ring, a Conceptual Basis
176
5.2
The Graphene sheet, a Second Conceptual Basis
177
5.2.1
Electronic Conduction in Graphene
177
5.2.2
Electronic Conduction in Epitaxial Bilayer Graphene
182
5.2.3
Device Potential for Graphene
184
5.3
Carbon Nanotubes and Related Materials
187
5.3.1
Rules and Nomenclature for Nanotubes
187
5.3.2
Physical Properties, Current Capacity
188
5.3.3
Electric Field Effects Based on Carbon Nanotubes
191
5.3.4
Ferromagnetic Nanotubes Controlled by Electron
or Hole Doping
192
5.4
Gold, Si, and CdS Nanowires and a Related Device
193
5.4.1
Rules for One-Dimensional Conductors
193
5.4.2
Gold Atom Nanowire Conductors
194
5.4.3
Proposed Benzene-Vanadium Ferromagnetic Nanowire
195
5.4.4
Single-Nanowire Electrically Pumped CdS Laser
196
Contents
XI
5.5 "Endohedral" C60 Buckyballs ~0.5 nm
and Related
Fullerene
Molecules
198
5.6 Quantum
Dots
199
5.7 Quantum Wells
and the
Two-Dimensional Electron Gas
Metal (2DEG)
205
5.7.1 Quantum
Well Infrared Photodetector
205
5.7.2 Two-Dimensional
Metallic
Electron Gas (2DEG) 206
5.8
Photonic Crystals
210
5.9
Organic Molecules and Conductive Polymers
213
5.9.1
Metallic Polymers
214
5.9.2
Semiconducting Polymers in Organic Light-Emitting Diodes
217
References
221
6
Fabrication and Characterization Methods
223
6.1
Introduction
223
6.2
Surface Structuring
223
6.2.1
Nanopore Arrays in Polycarbonate
224
6.2.2
Dendritic Growths: Anapore A12O3 and TiO2 Nanotube Arrays
224
6.2.3
Completely Absorbing Nanostructured Surfaces
226
6.3
Specialized Vapor Deposition Processes
228
6.3.1
Chemical Vapor Deposition Methods
228
6.3.1.1
Nanowire Growth by Laser-Assisted Chemical Vapor Deposition
229
6.3.1.2
Carbon Nanotube Growth
230
6.3.2
Vapor Growth of Conducting Organic Single Crystals
232
6.4
Silicon Technology. The INTEL-IBM Approach to Nanotechnology
233
6.4.1
Patterning, Masks, and Photolithography
233
6.4.2
Etching Silicon
234
6.4.3
Depositing Highly Conducting Electrode Regions
236
6.4.4
Methods of Deposition of Metal and Insulating Films
236
6.5
Advanced Patterning and Photolithography
239
6.5.1
Ultraviolet and
Х
-Ray lithography
239
6.5.2
Electron Beam Lithography
240
6.5.3
Sacrificial Layers, Suspended Bridges, Single-Electron
Transistors
241
6.6
Use of
DNA
Strands in Guiding Self-Assembly of
Nanometer-Size Structures
243
6.7
Scanning Probe Sensing and Fabrication Methods
245
6.7.1
Moving
Au
Atoms, Making Surface Molecules
247
6.7.2
Assembling Organic Molecules with an STM
248
6.7.3
Atomic Force Microscope Arrays
249
References
250
7
The Field Effect Transistor Size Limits
251
7.1
Metal-Oxide-Silicon Field-Effect Transistor
251
7.1.1
Operating Principles of MOSFET
251
XII Contents
7.1.2
Constant Electric
Field Scaling
253
7.1.3
Drain Currents at Present limits of Scaling
255
7.2
Small Size limits for the MOSFET
255
7.2.1
Nano-FET Drive Current I
256
7.2.2
Nano-FET Drive Current II
257
7.3
Present Status of MOSFET Fabrication and Performance
258
7.3.1
Working n- and p- MOSFET Devices with
5
nm Channel
Length
259
7.4
Alternative to Bulk Silicon: Buried Oxide BOX
261
7.5
Alternative to Bulk Silicon: Strain Engineering
262
7.6
The Benzene Molecule as a Field Effect Transistor
263
References
265
8
Devices Based upon Electron Tunneling: Resonant Tunnel Diodes
267
8.1
Introduction
267
8.2
Physical Basis of Tunneling Devices
267
8.2.1
Barrier Penetration and Trapped Particles
268
8.2.2
Escape Time from a Finite Well
270
8.2.3
Resonant Tunneling Diode
272
8.2.4
Time for Tunneling and Device Speed
272
8.2.5
Esaki Diode
275
8.3
Resonant Tunneling Diodes and Hot Electron Transistors
275
8.3.1
Three-Terminal Resonant Tunneling Device
276
8.3.2
"Resonant
Interband
Tunnel Diode": A Relative of
The Esaki Diode
277
8.4
Superconducting (RSFQ) Logic/Memory Computer Elements
279
8.5
Epitaxial MgO-Barrier Tunnel Junctions: Magnetic Field
Sensors
285
References
287
9
Single-Electron Transistors, Molecular and Hybrid Electronics
289
9.1
Introduction to Coulomb and Molecular Devices
289
9.2
Single-Electron (Coulomb) Transistor SET
290
9.2.1
Nanoscopic Source-Drain Channel: Two Tunnel Junctions
in Series
290
9.2.2
Single-Electron Transistor Model
292
9.2.3
A Single-Electron Transistor Based on a Single C6o Molecule
294
9.2.4
A Single-Electron Transistor Based on a Carbon Nanotube
294
9.2.5
The Radio Frequency Single-Electron Transistor (RFSET):
A Proven Research Tool
294
9.3
Single Molecules as Active Elements in Electronic Circuits
297
9.4
Hybrid Nanoelectronics Combining Si CMOS and Molecular
Electronics: CMOL
301
9.5
Carbon Nanotube Crossbar Arrays for
Ultradense, Ultrafast,
Nonvolatile Random Access Memory
302
Contents
XIII
9.6 Carbon Nanotube-Based Electromechanical Switch
Arrays for
Nonvolatile Random Access Memory
306
9.7
Proposed 16-bit Parallel Processing in a Molecular Assembly
307
References
309
10
Devices Based on Electron Spin and Ferromagnetism for
Storage and Logic
311
10.1
Hard and Soft Ferromagnets
312
10.2
The Origins of Giant
Magnetoresistance 313
10.2.1
Spin-Dependent Scattering of Electrons
314
10.2.2
The GMR Spin Valve, a Nanoscale
Magnetoresistance
Sensor
315
10.2.3
The Tunnel Valve, a Better (TMR) Magnetic Field Sensor
316
10.3
Magnetic Random Access Memory
319
10.4
Hybrid Ferromagnet-Semiconductor Nonvolatile Hall Effect
Gate Devices
320
10.5
Spin Injection: The Johnson-Silsbee Effect
321
10.5.1
Apparent Spin Injection from a Ferromagnet into a Carbon
Nanotube
323
10.6
Imaging a Single Electron Spin by a Magnetic Resonance AFM
323
10.7
Magnetic Logic Devices: A Majority Universal Logic Gate
327
10.8
Magnetic Domain Wall Racetrack Memory
329
References
332
Π
Qubits Versus Binary Bits in a Quantum Computer
333
11.1
Introduction
333
11.1.1
Binary Bits and Qubits
333
11.2
Electron and Nuclear Spins and Their Interaction
337
11.3
A Spin-Based Quantum Computer Using STM
340
11.4
Double-Well Potential Charge Qubits
341
11.4.1
Coherent Bonding and AntiBonding States in Artificial Structure
341
11.4.2
Silicon-Based Quantum Computer Qubits
344
11.4.3
Experimental Approaches to the Double-Well Charge Qubit
345
11.4.4
Coupling of Two-Charge Qubits in a Solid-State (Superconducting)
Context
349
11.5
Ion Trap on a GaAs Chip, Pointing to a New Qubit
351
11.6
Adiabatic Quantum Computation
353
11.6.1
An Example of an Optimization Problem
355
11.6.2
Demonstration of Adiabatic Quantum Computation
356
11.6.3
Flux Qubits as a Scalable Approach to Quantum Computation
357
References
362
12
Applications of Nanoelectronic Technology to Energy Issues
365
12.1
Introduction
365
12.1.1
Limitation of Oil Resources
365
12.1.2
Alteration of Atmosphere
366
XIV Contents
12.1.3
Improving Performance of Energy Components via
Nanoelectronic Technology
366
12.1.4
Topics of Opportunity from Nanoelectronic Perspective
366
12.2
Solar Energy and Its Conversion
367
12.2.1
Photovoltaic Solar Cells
367
12.2.2
Thin Film Solar Cells Versus Crystalline Cells
375
12.2.3
CIGS (CuIni_xGaxSe2) Thin Film Solar Cells
375
12.2.4
Dye-Sensitized Solar Cells
382
12.2.5
Polymer Organic Solar Cells
385
12.2.6
Comments on Cells and on Solar Power Versus Wind Power
389
12.3
Hydrogen Production (Solar) for Energy Transport
390
12.3.1
Economics of Hydrogen at Present
390
12.3.2
Hydrogen as Potential Intermediate in US Electricity Distribution
391
12.3.3
Efficient Photocatalytic Dissociation of Water into Hydrogen
and Oxygen
393
12.3.4
С
-Doped TiO2 Nanotube Arrays for Dissociating H2O by Light
401
12.4
Storage and Transport of Hydrogen as a Potential Fuel
403
12.5
Surface Adsorption as a Method of Storing Hydrogen
in High Density
404
References
407
13
Future of Nanoelectronic Technology
411
13.1
Silicon Devices
411
13.1.1
Power Density and Power Usage
423
13.1.2
Opportunity for Innovation in Large-Scale Computation
424
13.2
Solar Energy Conversion with Printed Solar Cells
4Í6
13.2.1
Capita] Costs per Unit Area for CIGS Cells
416
13.3
Emergence of Nanoimprinting Methods
420
13.4
Self-Assembly of Nanostructured Electrodes
422
13.5
Emerging Methods in Nanoelectronic Technology
424
References
426
Exercises
429
Abbreviations
439
Some Useful Constants
443
Index
445 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Wolf, E. L. 1936- |
author_GND | (DE-588)129512176 |
author_facet | Wolf, E. L. 1936- |
author_role | aut |
author_sort | Wolf, E. L. 1936- |
author_variant | e l w el elw |
building | Verbundindex |
bvnumber | BV035035960 |
callnumber-first | T - Technology |
callnumber-label | TK7874 |
callnumber-raw | TK7874.84 |
callnumber-search | TK7874.84 |
callnumber-sort | TK 47874.84 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | UH 5600 ZN 3700 |
classification_tum | ELT 230f |
ctrlnum | (OCoLC)318668746 (DE-599)DNB988809109 |
dewey-full | 537.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.5 |
dewey-search | 537.5 |
dewey-sort | 3537.5 |
dewey-tens | 530 - Physics |
discipline | Maschinenbau / Maschinenwesen Physik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Maschinenbau / Maschinenwesen Physik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV035035960</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100601</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080903s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N24,1315</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">988809109</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527407491</subfield><subfield code="c">Pb. : EUR 49.00 (freier Pr.), sfr 78.00 (freier Pr.)</subfield><subfield code="9">978-3-527-40749-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527407491</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1140749 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)318668746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB988809109</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7874.84</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5600</subfield><subfield code="0">(DE-625)145666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 230f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wolf, E. L.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129512176</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum nanoelectronics</subfield><subfield code="b">an introduction to electronic nanotechnology and quantum computing</subfield><subfield code="c">Edward L. Wolf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 456 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics Textbook</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoélectronique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Électronique quantique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoelectronics</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computers</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum electronics</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanoelektronik</subfield><subfield code="0">(DE-588)4732034-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanoelektronik</subfield><subfield code="0">(DE-588)4732034-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3112946&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016704850&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016704850</subfield></datafield></record></collection> |
id | DE-604.BV035035960 |
illustrated | Illustrated |
index_date | 2024-07-02T21:51:34Z |
indexdate | 2024-07-20T09:48:57Z |
institution | BVB |
isbn | 9783527407491 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016704850 |
oclc_num | 318668746 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-29T DE-92 DE-703 DE-634 DE-573 DE-706 DE-19 DE-BY-UBM DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-29T DE-92 DE-703 DE-634 DE-573 DE-706 DE-19 DE-BY-UBM DE-11 DE-91G DE-BY-TUM |
physical | XVI, 456 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | WILEY-VCH |
record_format | marc |
series2 | Physics Textbook |
spelling | Wolf, E. L. 1936- Verfasser (DE-588)129512176 aut Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing Edward L. Wolf Weinheim WILEY-VCH 2009 XVI, 456 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Physics Textbook Nanoélectronique Électronique quantique Nanoelectronics Textbooks Quantum computers Textbooks Quantum electronics Textbooks Nanoelektronik (DE-588)4732034-5 gnd rswk-swf Nanoelektronik (DE-588)4732034-5 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3112946&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016704850&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wolf, E. L. 1936- Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing Nanoélectronique Électronique quantique Nanoelectronics Textbooks Quantum computers Textbooks Quantum electronics Textbooks Nanoelektronik (DE-588)4732034-5 gnd |
subject_GND | (DE-588)4732034-5 |
title | Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing |
title_auth | Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing |
title_exact_search | Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing |
title_exact_search_txtP | Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing |
title_full | Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing Edward L. Wolf |
title_fullStr | Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing Edward L. Wolf |
title_full_unstemmed | Quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing Edward L. Wolf |
title_short | Quantum nanoelectronics |
title_sort | quantum nanoelectronics an introduction to electronic nanotechnology and quantum computing |
title_sub | an introduction to electronic nanotechnology and quantum computing |
topic | Nanoélectronique Électronique quantique Nanoelectronics Textbooks Quantum computers Textbooks Quantum electronics Textbooks Nanoelektronik (DE-588)4732034-5 gnd |
topic_facet | Nanoélectronique Électronique quantique Nanoelectronics Textbooks Quantum computers Textbooks Quantum electronics Textbooks Nanoelektronik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3112946&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016704850&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wolfel quantumnanoelectronicsanintroductiontoelectronicnanotechnologyandquantumcomputing |