Voltage-sensitive ion channels: biophysics of molecular excitability
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XXI, 529 S. Ill., graph. Darst. |
ISBN: | 9781402055249 1402055242 9781402055256 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035035666 | ||
003 | DE-604 | ||
005 | 20100624 | ||
007 | t | ||
008 | 080903s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N40,0655 |2 dnb | ||
016 | 7 | |a 981185061 |2 DE-101 | |
020 | |a 9781402055249 |c Gb. : ca. EUR 187.25 (freier Pr.), ca. sfr 296.00 (freier Pr.) |9 978-1-402-05524-9 | ||
020 | |a 1402055242 |c Gb. : ca. EUR 187.25 (freier Pr.), ca. sfr 296.00 (freier Pr.) |9 1-402-05524-2 | ||
020 | |a 9781402055256 |9 978-1-4020-5525-6 | ||
035 | |a (OCoLC)255830820 | ||
035 | |a (DE-599)BVBBV035035666 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 |a DE-11 |a DE-188 | ||
082 | 0 | |a 572.3 | |
084 | |a WE 5460 |0 (DE-625)148311: |2 rvk | ||
084 | |a 570 |2 sdnb | ||
100 | 1 | |a Leuchtag, H. Richard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Voltage-sensitive ion channels |b biophysics of molecular excitability |c H. Richard Leuchtag |
264 | 1 | |a Dordrecht |b Springer |c 2008 | |
300 | |a XXI, 529 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Ion Channels |2 cabt | |
650 | 7 | |a Biophysics |2 cabt | |
650 | 0 | 7 | |a Spannungskontrollierter Ionenkanal |0 (DE-588)4717815-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biophysik |0 (DE-588)4006891-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spannungskontrollierter Ionenkanal |0 (DE-588)4717815-2 |D s |
689 | 0 | 1 | |a Biophysik |0 (DE-588)4006891-2 |D s |
689 | 0 | |C b |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2853504&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016704562&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016704562 |
Datensatz im Suchindex
_version_ | 1805091012468539392 |
---|---|
adam_text |
Contents
Preface
xxiii
Ch.
1
EXPLORING EXCITABILITY
1
1.
NERVE IMPULSES AND THE BRAIN
1
1.1.
Molecular excitability
1
1.2.
Point-to-point communication
2
1.3.
Propagation of an impulse
3
1.4.
Sodium and potassium channels
5
1.5.
The action potential
5
1.6.
What is a voltage-sensitive ion channel?
1
2.
SEAMLESS NATURE, FRAGMENTED SCIENCE
9
2.1.
Physics
9
2.2.
Chemistry
11
2.3.
Biology
14
3.
THE INTERDISCIPLINARY CHALLENGE
18
3.1.
Worlds apart
18
3.2.
Complex systems
18
3.3.
Interdisciplinary sciences bridge the gap
19
Ch.2 INFORMATION IN THE LIVING BODY
21
1.
HOW BACTERIA SWIM TOWARD A FOOD SOURCE
21
2.
INFORMATION AND ENTROPY
24
3.
INFORMATION TRANSFER AT ORGAN LEVEL
25
3.1.
Sensory organs
25
3.2.
Effectors: Muscles, glands,
electr
oplax
26
3.3.
Using the brain
27
3.4.
Analyzing the brain
28
4.
INFORMATION TRANSFER AT TISSUE LEVEL
29
5.
INFORMATION TRANSFER AT CELL LEVEL
30
5.1.
The cell
30
5.2.
Cells of the nervous system
31
5.3.
The neuron
31
5.4.
Crossing the synapse
34
5.5.
The "psychic" neuron
35
5.6.
Two-state model "neurons"
35
5.7.
Sensory cells
36
5.8.
Effector cells
38
6.
INFORMATION TRANSFER AT MEMBRANE LEVEL
39
6.1.
Membrane structure
39
6.2.
G
proteins and second messengers
3 9
7.
INFORMATION TRANSFER AT MOLECULAR LEVEL
40
7.1.
Chirality
40
7.2.
Carbohydrates
42
vii
viii
Contents
7.3.
Lipids
42
7.4.
Nucleic
acids and
genetic
information
43
7.5.
Proteins
43
8.
INFORMATION FLOW AND ORDER
44
8.1.
Information flow and time scales
45
8.2.
The emergence of order
45
Ch.3 ANIMAL ELECTRICITY
47
1.
DO ANIMALS PRODUCE ELECTRICITY?
47
1.1.
Galvani'
s
"
'animalelectricity"
48
1.2.
Volta's
battery
48
1.3. Du Bois-Reymond's "negative
variation"
49
2. THE NERVE IMPULSE 49
2.1. Helmholtz
and conduction speed
49
2.2. Pflüger
evokes
nerve
conduction
49
2.3.
Larger fibers conduct faster
-
but not always
50
2.4.
Refractory period and abolition of action potential
50
2.5.
Solitary rider, solitary wave
50
3.
BIOELECTRICITY AND REGENERATION
51
3.1.
Regeneration and the injury current
51
3.2.
Bone healing and electrical stimulation
52
3.3.
Neuron healing
52
4.
MEMBRANES AND ELECTRICITY
53
4.1.
Bernstein's membrane theory
53
4.2.
Quantitative models
53
4.3.
The colloid chemical theory
54
4.4.
Membrane impedance studies
54
4.5.
Liquid crystals and membranes
5 5
5.
ION CURRENTS TO ACTION POTENTIALS
56
5.1.
The role of sodium
56
5.2.
Isotope tracer studies
57
5.3.
Hodgkin
and Huxley model the action potential
57
5.4.
Membrane noise
58
5.5.
The patch clamp and single-channel pulses
59
6.
GENETICS REVEALS CHANNEL STRUCTURE
59
6.1.
Channel isolation
59
6.2.
Genetic techniques
59
6.3.
Modeling channel structure
60
7.
HOW DOES A CHANNEL FUNCTION?
60
7.1.
The hypothesis of movable gates
60
7.2.
The phase-transition hypothesis
60
7.3.
Electrodiffusion reconsidered
60
7.4.
Ferroelectric liquid crystals as channel models
61
Ch.4 ELECTROPHYSIOLOGY OF THE AXON
63
I
.
EXCITABLE CELL PREPARATIONS
63
Contents ix
/. /.
A squid giant axon experiment
64
1.2.
Node ofRanvier
65
1.3.
Molluscan neuron
66
2.
TECHNIQUES AND MEASUREMENTS
66
2.1.
Space clamp
67
2.2.
Current clamp
68
2.3.
Voltage clamp
68
2.4.
Internal
perfusion
68
3.
RESPONSES TO VOLTAGE STEPS
69
3.1.
The current—voltage curves
69
3.2.
Step clamps and ramp clamps
69
3.3.
Repetitive firing
70
3.4.
The geometry of the nerve impulse
72
4.
VARYING THE ION CONCENTRATIONS
73
4.1.
The early current
73
4.2.
The delayed current
74
4.3.
Divalent ions
74
4.4.
Hydrogen ions
74
4.5.
Varying the ionic environments
75
5.
MOLECULAR TOOLS
76
5.1.
The trouble withfiigu
76
5.2.
Lipid-soluble alkaloids
11
5.3.
Quaternary ammonium ions
11
5.4.
Peptide
toxins
78
6.
THERMAL PROPERTIES
79
6.1.
Effect of temperature on electrical activity
79
6.2.
Effect of temperature on conduction speed
80
6.3.
Excitation threshold, temperature and accommodation
80
6.4.
Stability and thermal hysteresis
80
6.5.
Temperature effects on current-voltage characteristics
81
6.6.
Temperature pulses modify ion currents
83
6.7.
Temperature and membrane capacitance
84
6.8.
Heat generation during an impulse
84
7.
OPTICAL PROPERTIES
84
7.1.
Membrane birefringence
84
7.2.
Ultraviolet effects
85
8.
MECHANICAL PROPERTIES
85
8.1.
Membrane swelling
85
8.2.
Mechanoreception
86
Ch.
5
ASPECTS OF CONDENSED MATTER
89
1.
THE LANGUAGE OF PHYSICS
89
1.1.
The
Schrödinger
equation
89
1.2.
The Uncertainty Principle
90
χ
Contents
1.3.
Spin and the hydrogen atom
91
1.4.
Identical particles
—
why matter exists
92
7.5.
Tunneling
93
1.6.
Quantum mechanics and classical mechanics
93
/. 7.
Quantum mechanics and ion channels
94
2.
CONDENSED MATTER
95
2.1.
Liquids and solids
95
2.2.
Polymorphism
96
2.3.
Quasicrystals
97
2.4.
Phonons
97
2.5.
Liquid crystals
98
3.
REVIEW OF THERMODYNAMICS
99
3.1.
Laws of thermodynamics
99
3.2.
Characteristic functions
102
4.
PHASE TRANSITIONS
103
4.1.
Phase transitions in thermodynamics
103
4.2.
Transitions of first order
104
4.3.
Chemical potentials, metastability and phase diagrams
105
4.4.
Transitions of second order
106
4.5.
Qualitative aspects of phase transitions
108
5.
FROM STATISTICS TO THERMODYNAMICS
108
5.1.
Phase space
108
5.2.
The
canonical
distribution
110
5.3.
Open systems
110
5.4.
Thermodynamics of quantum systems 111
5.5.
Phase transitions in statistical mechanics
112
5.6.
Structural transitions in ion channels
113
Ch.
6
IONS IN THE ELECTRIC FIELD
115
1.
REVIEW OF ELECTROSTATICS
115
1.1.
Forces, fields and media
115
1.2.
The laws of electrostatics
117
2.
MOVEMENT OF IONS IN AN ELECTRIC FIELD
119
2.1.
Current
119
2.2.
Ohm's law
119
2.3.
Capacitance and inductance
121
2.4.
Circuits and membrane models
122
3.
CABLE THEORY
123
3.1.
The cable equations
123
3.2.
Application to the squid axon
125
4.
THERMODYNAMICS OF DIELECTRICS
126
4.1.
Electrochemical potential
126
4.2.
The Nernst-Planck equation
126
4.3.
Thermodynamics of electric displacement and field
127
4.4.
Electrets
128
Contents xi
5.
MOTIONS
OF CELLS IN ELECTRIC FIELDS
129
5.1.
Dielectrophoresis
129
5.2.
Electrorotation
130
6.
MOVEMENT OF IONS THROUGH MATTER
130
6.1.
Movement of ions through liquid solutions
130
6.2.
Surface effects
131
6.3.
Movement of ions through solids
131
6.4.
Ionic switches
132
6.5.
Ionic polarons and
excitons
132
7.
SUPERIONIC CONDUCTION
132
7.1.
Sodium-ion conductors
133
7.2.
Superionic conduction in polymers and elastomers
136
7.3.
Are ion channels superionic conductors?
137
Ch.
7
IONS DRIFT AND DIFFUSE
139
1.
THE ELECTRODIFFUSION MODEL
139
1.1.
The postulates of the model
140
1.2.
A mathematical membrane
141
1.3.
Boundary conditions
141
2.
ONE ION SPECIES, STEADY STATE
142
2.1.
The Nernst-Planck equation
142
2.2.
Electrical equilibrium
144
3.
THE CONSTANT FIELD APPROXIMATION
146
3.1.
Linearizing the equations
147
3.2.
The current-voltage relationship
148
3.3.
Comparison with data
149
4.
AN EXACT SOLUTION
151
4.1.
One-ion steady-state electrodijfusion
151
4.2.
Finite current
152
4.3.
Reclaiming the dimensions
156
4.4.
Electrical equilibrium
156
4.5.
Applying the boundary conditions
159
4.6.
Equal potassium concentrations
161
Ch.8 MULTI-ION AND TRANSIENT ELECTRODIFFUSION
163
1.
MULTIPLE SPECIES OF PERMEANT IONS
163
1.1.
Ions of the same charge
163
/. 2.
Ions of different charges
164
1.3.
The Goldman—Hodgkin-Katz equation
165
2.
TIME-DEPENDENT ELECTRODIFFUSION
166
2.1.
Scaling of variables
168
2.2.
The Burgers equation
168
2.3.
A simple case
169
3.
CRITIQUE OF THE CLASSICAL MODEL
170
xii Contents
Ch.
9 MODELS
OF
MEMBRANE
EXCITABILITY
173
1.
THE MODEL OF
HODGKIN
AND HUXLEY
173
1.1.
Ion-current separation and ion conductances
174
1.2.
The current equation
174
1.3.
The independence principle
175
1.4.
Linear kinetic functions \16
1.5.
Activation and inactivation
176
1.6.
The partial differential equation of
Hodgkin
and Huxley
178
1.7.
Closing the circle
178
2.
EXTENSIONS AND INTERPRETATIONS
179
2.1.
The gating current
179
2.2.
Probability interpretation of the conductance functions
180
2.3.
The Cole-Moore shift
180
2.4.
Mathematical extensions of the Hodgkin-Huxley
equations
182
2.5.
The propagated action potential is a soliton
182
2.6.
Action potential as a vortex pair
183
2.7.
Catastrophe theory version of the model
183
2.8.
Beyond the squid axon
185
3.
EVALUATION OF THE HODGKIN-HUXLEY MODEL
186
3.1.
Current separation
187
3.2.
Voltage dependence of the conductances
187
3.3.
Time variation of the conductances
189
3.4.
The separation of ion kinetics
189
3.5.
We're not out of'the woods yet
190
4.
THE CONCEPT OF AN ION CHANNEL
190
4.1.
Pore or carrier
—
or what?
190
4.2.
"Pore" and "channel": Shifting meanings
192
4.3.
Limitations of the phenomenological approach
192
Ch.
10
ADMITTANCE TO THE SEMICIRCLE
195
1.
OSCILLATIONS, NORMAL MODES AND WAVES
195
1.1.
Simple pendulum
195
1.2.
Normal modes
197
1.3.
The wave equation
197
1.4.
Fourier series
198
7.5.
The Fourier transform of a vibrating string
198
2.
MEMBRANE IMPEDANCE AND ADMITTANCE
199
2.1.
Impedance decreases during an impulse
199
2.2.
Inductive reactance
201
2.3.
A simple circuit model
202
3.
TIME DOMAIN AND FREQUENCY DOMAIN
203
3.1.
Fourier analysis
203
3.2.
The complex admittance
205
3.3.
Constant-phase-angle capacitance
206
Contents xiii
4.
DIELECTRIC
RELAXATION 207
4.1.
The origin of electric polarization
207
4.2.
Local fields affect permittivity
208
4.3.
Dielectric relaxation and loss
209
4.4.
Cole—Cole analysis
211
5.
FREQUENCY-DOMAIN MEASUREMENTS
212
5.1.
Linearizing the model of
Hodgkin
and Huxley
213
5.2.
Frequency response of the axonal impedance
214
5.5.
Pararesonance
216
5.4.
Impedance of the
Hodgkin—
Huxley axon membrane lib
5.5.
Generation of harmonics
217
?5.
6.
Data fits to squid-axon sodium system
217
5.7.
Admittance under suppressed ion conduction
217
Ch.
11
WHAT'S THAT NOISE?
221
1.
STOCHASTIC PROCESSES AND STATISTICAL LAWS
221
1.1.
Stochastic processes
222
1.2.
Stationarity and ergodicity
224
1.3.
Markov processes
224
2.
NOISE MEASUREMENT AND ANALYSIS TECHNIQUES
225
2.1.
Application of Fourier analysis to noise problems
225
2.2.
Spectral density and autocorrelation
226
2.3.
White noise
227
3.
EFFECTS OF NOISE ON NONLINEAR DYNAMICS
228
3.1.
An aperiodic fluctuation
228
3.2.
The
Langevin
equation
228
4.
NOISE IN EXCITABLE MEMBRANES
230
4.1.
A nuisance becomes a technique
230
4.2.
Fluctuation phenomena in membranes
230
4.3.
1/f noise
231
4.4.
Lorentzian spectra
231
4.5.
Multiple Lorentzians
233
4.6.
Nonstationary noise
234
4.7.
Light scattering spectra
235
5.
IS THE SODIUM CHANNEL A LINEAR SYSTEM?
235
5.1.
Sodium-current characteristics
235
5.2.
Admittance and noise
238
6.
MINIMIZING MEASUREMENT AREA
239
6.1.
Patch clamping
240
6.2.
Elementary stochastic fluctuations in ion channels
240
Ch.
12
ION CHANNELS, PROTEINS AND TRANSITIONS
243
1.
THE NICOTINIC ACETYLCHOLINE RECEPTOR
244
2.
CULTURED CELLS AND
LIPOSOMES
245
2.1.
Sealing the pipette to the membrane
245
2.2.
Reconstitution
of channels in bilayers
246
2.3.
Reconstitution
of sodium channels
247
xiv Contents
3. SINGLE-CHANNEL
CURRENTS
248
3.1.
Unitary potassium currents
249
3.2.
Unitary sodium currents
249
4.
MACROSCOPIC CURRENTS FROM CHANNEL
TRANSITIONS
249
4.1.
The two-state model
250
4.2.
Ohmic one-ion channels
250
4.3.
Time dependence
252
4.4.
Critique of the methodology
253
5.
PROTEIN STRUCTURES
253
5.1.
Amino
acids: Building blocks of proteins
253
5.2.
Primary structure
255
5.3.
Levels of structural organization
256
5.4.
The alpha helix
257
5.5.
The beta sheet
259
5.6.
Domains and loop regions
259
5.7.
Structure classifications and representations
260
5.8.
Alpha-domain structures
260
5.9.
Alpha/beta structures
262
5.10. Antiparallel
beta structures: jelly rolls and barrels
263
6.
METALLOPROTEINS
263
6.1. Metalloproteins in
physiology and toxicology
264
6.2.
Voltage-sensitive ion channels as
metalloproteins
265
7.
MEMBRANE PROTEINS
265
7.1.
Membrane-spanning protein molecules
265
7.2.
Crystallization of membrane proteins
266
7.2.
Biosynthesis of membrane proteins
267
8.
TRANSITIONS IN PROTEINS
267
8.1.
Vibrations and conformational transitions
268
8.2.
Allosteric transitions in myoglobin and hemoglobin
268
8.3.
Allostery in ion channels
268
Ch.
13
DIVERSITY AND STRUCTURES OF ION CHANNELS
271
1.
THE ROLE OF STRUCTURE
271
2.
FAMILIES OF ION CHANNELS
272
2.1
Molecular biology
272
2.2.
Evolution of voltage-sensitive ion channels
272
3.
MOLECULAR BIOLOGY PROBES CHANNEL STRUCTURE
273
3.1.
Genetic engineering of ion channels
273
3.2.
Obtaining the primary structure
273
3.3.
Hydropathy analysis
273
3.4.
Site-directed mutagenesis
21
A
4.
CLASSIFICATION OF ION CHANNELS
275
4.1.
Nomenclature
275
4.2.
Classification criteria
275
4.3.
Toxins and pharmacology
276
4.4.
Voltage-sensitive ion channels and disease
276
Contents xv
5.
POTASSIUM
CHANNELS:
A LARGE FAMILY
277
5.1.
Shaker
and related
mutations
of
Drosophila
277
5.2.
Diversity of potassium channels
277
5.3.
Three groups of
К
channels
279
5.4.
Voltage-sensitive potassium channels
279
5.5.
Auxiliary subunits
282
5.6.
Inward rectifiers
282
5.7.
Potassium channels and disease
284
6.
VOLTAGE-SENSITIVE SODIUM CHANNELS: FAST ON
THE TRIGGER
284
6.1.
Neurotoxins of VLG Na channels
285
6.2.
Types of VLG Na channels
285
6.3.
Positively charged membrane-spanning segments
285
6.4.
Proton access to channel residues
287
6.5.
Mutations in sodium channels
288
7.
CALCIUM CHANNELS: LONG-LASTING CURRENTS
288
7. /.
Function of VLG Ca channels
289
7.2.
Structure of VLG Ca channels
290
7.3.
Types of VLG Ca channels
291
7.4.
Calcium-channel diseases
291
8.
H+-GATED CATION CHANNELS: THE ACID TEST
292
9.
CHLORIDE CHANNELS: ACCENTUATE THE NEGATIVE
293
9.1.
Structure and function of chloride channels
293
9.2.
Chloride-channel diseases
294
10.
HYPERPOLARIZATION-ACTIVATED CHANNELS:
IT'S TIME
294
11.
CYCLIC NUCLEOTIDE GATED CHANNELS
295
12.
MITOCHONDRIAL CHANNELS
295
13.
FUNGAL ION CHANNELS-ALAMETHICIN
297
14.
THE STRUCTURE OF A BACTERIAL
298
POTASSIUM CHANNEL
Ch.
14
MICROSCOPIC MODELS OF CHANNEL FUNCTION
301
1.
GATED STRUCTURAL PORE MODELS
301
1.1.
Structural gated pores
301
1.2.
Selectivity filter and selectivity sequences
304
1.3.
Independence of ion fluxes
304
1.4.
Gates
305
1.5.
A "paradox" of ion channels
306
1.6.
Bacterial modelpores andporins
306
1.7.
Water through the voltage-sensitive ion channel?
307
1.8.
Molecular dynamics simulations
307
2.
MODELS OF ACTIVATION AND INACTIVATION
308
2.1.
Armstrong model
309
2.2.
Barrier-and-well models of the channel
309
2.3.
The inactivation gate
311
2.4.
Beyond the gated pore
312
xvi
Contents
3.
ORGANOMETALLIC CHEMISTRY
313
3.1.
Types of intermolecular interactions
313
3.2.
Organometallic receptors
314
5.3.
Supramolecular self-assembly by
π
interactions
316
4.
PLANAR ORGANIC CONDUCTORS
317
5.
ALTERNATIVE GATING MODELS
318
5. 1.
The theories ofOnsager and Holland
318
5.2.
Ion exchange models
320
5.3.
Hydrogen dissociation and hydrogen exchange
321
5.4.
Dipolar gating mechanisms
322
5.5.
A global transition with two stable states
322
5.6.
Aggregation models
322
5.7.
Condensed state models
323
5.8.
Coherent excitation models
323
5.9.
Liquid crystal models
324
6.
REEXAMINATION OF ELECTRODIFFUSION
324
6.1.
Classical electrodiffusion
—
what went wrong?
325
6.2.
Are the "constants" constant?
325
7.
ORDER FROM DISORDER?
326
Ch.
15
ORDER FROM DISORDER
329
1.
COMPLEXITY AND CRITICALITY
329
1.1.
The emergence of complexity
330
/. 2.
Power laws and scaling in physical statistics
331
1.3.
Universality
332
1.4.
Emergent phenomena
333
2.
FRACTALS
334
2.1.
Self-similarity
334
2.2.
Scaling and fractal dimension
334
2.3.
Fractals in time: 1/f noise
335
2.4.
Fractal transport in super ionic conductors
336
2.5.
Self-organized criticality
337
3.
ORDER, DISORDER AND COOPERATIVE BEHAVIOR
338
3.1.
Temperature and entropy
338
3.2.
The perfect spin gas
339
3.3.
Thermodynamic functions of a spin gas
341
3.4.
Spontaneous order in a real spin gas
342
4.
FLUCTUATIONS, STABILITY, MACROSCOPIC TRANSITIONS
343
4.1.
Fluctuations and instabilities
343
4.2.
Convective and electrohydrodynamic instabilities
ЪАА
4.3.
Spin waves and quasiparticles
345
4.4.
Thephonongas
346
4.5.
The spontaneous ordering of matter
347
5.
PHASE TRANSITIONS
347
5.1.
Order variables and parameters
348
5.2.
Mean field theories
349
5.3.
Critical slowing down and vortex unbinding
350
Contents xvii
6. DISSIPATIVE
STRUCTURES
351
6.1.
Thermodynamics of
irreversible
processes
351
6.2. Evolution
of order
35
1
6.3.
Synergetics
352
6.4.
A model of membrane excitability
352
Ch.
16
POLAR PHASES
355
1.
ORIENTATIONAL POLAR STATES IN CRYSTALS
355
1.1.
Piezoelectricity
356
1.2.
Pyroelectricity
356
1.3.
The strange behavior of
Rochelle
salt
357
1.4.
Transition temperature and Curie-Weiss law
357
7.5.
Hysteresis
358
1.6.
Ferroic effects
358
2.
THERMODYNAMICS OF FERROELECTRICS
359
2.1.
A nonlinear dielectric equation of state
360
2.2.
Second order transitions
3 61
2.3.
Field and pressure effects
3 62
2.4.
Chirality and self-bias
363
2.5.
Admittance and noise in ferroelectrics
ЪЬА
3.
STRUCTURAL PHASE TRANSITIONS IN FERROELECTRICS
365
3.1.
Order-disorder and displacive transitions
365
3.2.
Spontaneous electrical pulses
366
3.3.
Sofi
lattice modes
366
3.4.
Hydrogen-bonded ferroelectrics
367
4.
FERROELECTRIC PHASE TRANSITIONS AND CONDUCTION
369
4.1.
Tris-sarcosine calcium chloride
369
4.2.
Betaine calcium chloride dihydrate
369
4.3.
Dielectric relaxation in structural transitions
370
4.4.
Cole-Cole dispersion; critical slowing down
371
4.5.
From ferroelectric order to super ionic conduction
371
4.6.
Ferroelectric semiconductors
373
5.
PIEZO- AND PYROELECTRICITY IN BIOLOGICAL TISSUES
374
5. 1.
Pyroelectric properties of biological tissues
374
5.2.
Piezoelectricity in biological materials
375
6.
PROPOSED FERROELECTRIC CHANNEL UNIT
IN MEMBRANES
375
6.1.
Early ferroelectric proposals for membrane excitability
375
6.2.
The ferroelectric-superionic transition model
378
6.3.
Field-induced birefringence in axonal membranes
380
6.4.
Membrane capacitance versus temperature
380
6.5.
Surface charge
380
6.6.
Field effect and the function of the resting potential
3 81
6.7.
Phase pinning and the action of tetrodotoxin
382
7.
THE CHANNEL IS NOT CRYSTALLINE
383
xviii Contents
Ch.
17
DELICATE
PHASES AND THEIR TRANSITIONS
387
1.
MESOPHASES: PHASES BETWEEN LIQUID AND CRYSTAL
387
1. 1.
Nematics andsmectics
387
1.2.
Calamitic and discotic liquid crystals
388
1.3.
Helical structures: Cholesterics and blue phases
388
1.4.
Columnar liquid crystals
391
2.
STATES AND PHASE TRANSITIONS OF LIQUID CRYSTALS
392
2.1.
Correlation functions in liquid crystals
393
2.2.
Symmetry, molecular orientation and order parameter
394
2.3.
Free energy of the inhomogeneous
orientational structure
394
2.4.
Modulated orientational structure
395
2.5.
Free energy of a smectic liquid crystal of type A
396
2.6.
Stability of the smectic phase
397
2.7.
Phase transitions between smectic forms
398
2.8.
Inversions in
chir
al
liquid crystals
399
3.
ORDER PARAMETERS UNDER EQUILIBRIUM CONDITIONS
399
3.1.
Biaxial smectics
399
3.2.
The role of fluctuations
400
3.3.
Effect of impurities
401
4.
FIELD-INDUCED PHASE TRANSFORMATIONS
401
4.1.
Dielectric permittivity of liquid crystals
402
4.2.
Unwinding the helix
402
4.3.
The Fredericks transition
403
5.
POLARIZED STATES IN LIQUID CRYSTALS
404
5.7.
Flexoelectric effects in nematics andtype-A smectics
405
5.2.
Flexoelectric deformations
405
5.3.
The flexoelectric effect in cholesterics
406
5.4.
Polarization and piezoelectric effects in
chir
ál
smectics
407
5.5.
The electroclinic effect
408
5.6.
The electrochiral effect
408
6.
THE FERROELECTRIC STATE OF A CHIRAL SMECTIC
408
6.1.
Behavior of a liquid ferroelectric in an external field
409
6.2.
Polarization and orientational perturbation
411
6.3.
Surface-stabilized ferroelectric liquid crystals
413
Ch.
18
PROPAGATION AND PERCOLATION IN A CHANNEL
415
1. SOLITONS IN
LIQUID CRYSTALS
415
1.1.
Water waves to nerve impulses
416
1.2.
Korteweg-deVries equation
417
1.3.
Nonlinear
Schrödinger
equation
418
1.4.
The sine-Gordon equation
419
1.5.
Three-dimensional solitons
420
Contents xix
1.6.
Localized instabilities in nematic liquid crystals
421
1.7.
Electric-field-induced solitons
422
1.8.
Solitons in smectic liquid crystals
422
2.
SELF-ORGANIZED WAVES
422
2.1.
The broken symmetries of life
422
2.2.
Autowaves
424
2.3.
Catastrophe theory model based on a
ferroelectric channe
425
2.4.
The action potential as a polarization soliton
427
3.
BILAYER AND CHANNELS FORM A HOST-GUEST PHASE
429
3.1.
Protein distribution by molecular shape
429
3.2.
Flexoelectric responses in hair cells
430
4.
PERCOLATION THEORY
430
4.1.
Cutting bonds
431
4.2.
Site percolation and bond percolation
433
4.3.
Two conductors
434
4.4.
Directed percolation
435
4.5.
Percolation in ion channels
436
5.
MOVEMENT OF IONS THROUGH LIQUID CRYSTALS
437
5.1.
Chiral smectic
С
elastomers
437
5.2.
Metallomesogens
43 8
5.3.
Ionomers
439
5.4.
Protons,
H
bonds and cooperative phenomena
439
Ch.
19
SCREWS AND HELICES
443
1.
THE SCREW-HELICAL GATING HYPOTHESIS
443
2.
ORDER AND ION CHANNELS
445
2.1.
Threshold responses in biological membranes
445
2.2.
Mean field theories of excitable membranes
446
2.3.
Constant phase capacitance obeys a power law
447
2.4.
The open channel is an open system
447
2.5.
Self-similarity in currents through ion channels
447
3.
FERROELECTRIC BEHAVIOR IN MODEL SYSTEMS
448
3.1.
Ferroelectricity in Langmuir-Blodgettfilms
448
3.2.
Observations in bacteriorhodopsin
449
3.3.
Ferroelectricity in microtubules
450
4.
SIZING UP THE CHANNEL MOLECULE
451
4.1.
The
ske
problem in crystalline ferroelectrics
452
4.2.
Size is a parameter
452
5.
THE DIPOLAR ALPHA HELIX
453
5.1.
Structure of the a helix
453
5.2.
Helix-coil transition
454
5.3. Dipole
moment of the a helix
454
5.4.
а
-Helix solitons in protein
454
5.5.
Temperature effects in Davydov solitons
457
xx Contents
6. ALPHA
HELICES
IN
VOLTAGE-SENSITIVE ION
CHANNELS 459
6.1.
The a-helical framework of ion channels
459
6.2.
Channel gating as a transition in an a helix
460
6.3.
Water in the channel
—
again?
461
Ch.
20
VOLTAGE-INDUCED GATING OF ION CHANNELS
465
1.
ION CHANNEL: A FERROELECTRIC LIQUID CRYSTAL?
465
1.1.
Electroelastic model of channel gating
465
1.2.
Cole-Cole curves in a ferroelectric liquid crystal
466
1.3
A voltage-sensitive transition in a liquid crystal
467
2.
ELECTRIC CONDUCTION ALONG THE ALPHA HELIX
468
2.1.
Electron transfer by solitons
468
2.2.
Proton conduction in hydrogen-bonded networks
469
2.3.
Dynamics of the alpha helix
469
3.
ION EXCHANGE MODEL OF CONDUCTION
470
3.1.
Expansion of
H
bonds and ion replacement
471
3.2.
Can sodium ions travel across an alpha helix?
471
3.3.
Relay mechanism
472
3.4.
Metal ions can replace protons in
H
bonds
of ion channels
475
4.
GATELESS GATING
477
4.1.
How does a depolarization change an ion conductance? All
4.2.
Enzymatic dehydration of ions All
4.3.
Hopping conduction
478
5.
INACTIVATION AND RESTORATION OF EXCITABILITY
478
5.
Λ
Inactivation as a surface interaction
479
5.2.
Restoration of excitability
480
Ch.21 BRANCHING OUT
483
1.
FERROELECTRIC LIQUID CRYSTALS WITH
AMINO
ACIDS
484
1.1.
Amino
acids with branched sidechains
484
1.2.
Relaxation of linear electroclinic coupling
486
/. 3.
Electrical switching near the SmA *—SmC*
phase transition
486
1.4.
Two-dimensional smectic C* films
487
2.
FORCES BETWEEN CHARGED RESIDUES WIDEN
Η
BONDS
488
2.1.
Electrostatics and the stability ofS4 segments
489
2.2.
Changes in bond length and ion percolation
491
2.3.
Replacement of charged residues with neutrals
492
3.
MICROSCOPIC CHANNEL FUNCTION
492
3.1.
Tilted segments in voltage-sensitive channels
492
3.2.
Segment tilt and channel activation
494
3.3.
Chirality and bend
495
4.
CRITICAL ROLES OF
PROLINE
AND BRANCHED
SIDECHAINS
496
4.1.
The role of
proline
496
Contents xxi
4.2.
The role of branched
nonpolar
amino
acids
497
4.3.
Substitution leads to loss of voltage sensitivity
498
4.4.
Whole channel experiments
500
5.
NEW DATA NEW MODELS
5.1.
Amino
acids dissociate from the helix
501
5.2.
A twisted pathway in a resting channel
503
5.3.
A prokaryotic voltage-sensitive sodium channel
503
5.4.
Interactions with bilayer charges
503
6.
TOWARD A THEORY OF VOLTAGE-SENSITIVE ION
CHANNELS
504
6.1.
The hierarchy of excitability
505
6.2.
Block polymers
506
6.3.
Coupling the S4 segments to the electric field
506
6.4.
A new picture is emerging
506
INDEX
509 |
adam_txt |
Contents
Preface
xxiii
Ch.
1
EXPLORING EXCITABILITY
1
1.
NERVE IMPULSES AND THE BRAIN
1
1.1.
Molecular excitability
1
1.2.
Point-to-point communication
2
1.3.
Propagation of an impulse
3
1.4.
Sodium and potassium channels
5
1.5.
The action potential
5
1.6.
What is a voltage-sensitive ion channel?
1
2.
SEAMLESS NATURE, FRAGMENTED SCIENCE
9
2.1.
Physics
9
2.2.
Chemistry
11
2.3.
Biology
14
3.
THE INTERDISCIPLINARY CHALLENGE
18
3.1.
Worlds apart
18
3.2.
Complex systems
18
3.3.
Interdisciplinary sciences bridge the gap
19
Ch.2 INFORMATION IN THE LIVING BODY
21
1.
HOW BACTERIA SWIM TOWARD A FOOD SOURCE
21
2.
INFORMATION AND ENTROPY
24
3.
INFORMATION TRANSFER AT ORGAN LEVEL
25
3.1.
Sensory organs
25
3.2.
Effectors: Muscles, glands,
electr
oplax
26
3.3.
Using the brain
27
3.4.
Analyzing the brain
28
4.
INFORMATION TRANSFER AT TISSUE LEVEL
29
5.
INFORMATION TRANSFER AT CELL LEVEL
30
5.1.
The cell
30
5.2.
Cells of the nervous system
31
5.3.
The neuron
31
5.4.
Crossing the synapse
34
5.5.
The "psychic" neuron
35
5.6.
Two-state model "neurons"
35
5.7.
Sensory cells
36
5.8.
Effector cells
38
6.
INFORMATION TRANSFER AT MEMBRANE LEVEL
39
6.1.
Membrane structure
39
6.2.
G
proteins and second messengers
3 9
7.
INFORMATION TRANSFER AT MOLECULAR LEVEL
40
7.1.
Chirality
40
7.2.
Carbohydrates
42
vii
viii
Contents
7.3.
Lipids
42
7.4.
Nucleic
acids and
genetic
information
43
7.5.
Proteins
43
8.
INFORMATION FLOW AND ORDER
44
8.1.
Information flow and time scales
45
8.2.
The emergence of order
45
Ch.3 ANIMAL ELECTRICITY
47
1.
DO ANIMALS PRODUCE ELECTRICITY?
47
1.1.
Galvani'
s
"
'animalelectricity"
48
1.2.
Volta's
battery
48
1.3. Du Bois-Reymond's "negative
variation"
49
2. THE NERVE IMPULSE 49
2.1. Helmholtz
and conduction speed
49
2.2. Pflüger
evokes
nerve
conduction
49
2.3.
Larger fibers conduct faster
-
but not always
50
2.4.
Refractory period and abolition of action potential
50
2.5.
Solitary rider, solitary wave
50
3.
BIOELECTRICITY AND REGENERATION
51
3.1.
Regeneration and the injury current
51
3.2.
Bone healing and electrical stimulation
52
3.3.
Neuron healing
52
4.
MEMBRANES AND ELECTRICITY
53
4.1.
Bernstein's membrane theory
53
4.2.
Quantitative models
53
4.3.
The colloid chemical theory
54
4.4.
Membrane impedance studies
54
4.5.
Liquid crystals and membranes
5 5
5.
ION CURRENTS TO ACTION POTENTIALS
56
5.1.
The role of sodium
56
5.2.
Isotope tracer studies
57
5.3.
Hodgkin
and Huxley model the action potential
57
5.4.
Membrane noise
58
5.5.
The patch clamp and single-channel pulses
59
6.
GENETICS REVEALS CHANNEL STRUCTURE
59
6.1.
Channel isolation
59
6.2.
Genetic techniques
59
6.3.
Modeling channel structure
60
7.
HOW DOES A CHANNEL FUNCTION?
60
7.1.
The hypothesis of movable gates
60
7.2.
The phase-transition hypothesis
60
7.3.
Electrodiffusion reconsidered
60
7.4.
Ferroelectric liquid crystals as channel models
61
Ch.4 ELECTROPHYSIOLOGY OF THE AXON
63
I
.
EXCITABLE CELL PREPARATIONS
63
Contents ix
/. /.
A squid giant axon experiment
64
1.2.
Node ofRanvier
65
1.3.
Molluscan neuron
66
2.
TECHNIQUES AND MEASUREMENTS
66
2.1.
Space clamp
67
2.2.
Current clamp
68
2.3.
Voltage clamp
68
2.4.
Internal
perfusion
68
3.
RESPONSES TO VOLTAGE STEPS
69
3.1.
The current—voltage curves
69
3.2.
Step clamps and ramp clamps
69
3.3.
Repetitive firing
70
3.4.
The geometry of the nerve impulse
72
4.
VARYING THE ION CONCENTRATIONS
73
4.1.
The early current
73
4.2.
The delayed current
74
4.3.
Divalent ions
74
4.4.
Hydrogen ions
74
4.5.
Varying the ionic environments
75
5.
MOLECULAR TOOLS
76
5.1.
The trouble withfiigu
76
5.2.
Lipid-soluble alkaloids
11
5.3.
Quaternary ammonium ions
11
5.4.
Peptide
toxins
78
6.
THERMAL PROPERTIES
79
6.1.
Effect of temperature on electrical activity
79
6.2.
Effect of temperature on conduction speed
80
6.3.
Excitation threshold, temperature and accommodation
80
6.4.
Stability and thermal hysteresis
80
6.5.
Temperature effects on current-voltage characteristics
81
6.6.
Temperature pulses modify ion currents
83
6.7.
Temperature and membrane capacitance
84
6.8.
Heat generation during an impulse
84
7.
OPTICAL PROPERTIES
84
7.1.
Membrane birefringence
84
7.2.
Ultraviolet effects
85
8.
MECHANICAL PROPERTIES
85
8.1.
Membrane swelling
85
8.2.
Mechanoreception
86
Ch.
5
ASPECTS OF CONDENSED MATTER
89
1.
THE LANGUAGE OF PHYSICS
89
1.1.
The
Schrödinger
equation
89
1.2.
The Uncertainty Principle
90
χ
Contents
1.3.
Spin and the hydrogen atom
91
1.4.
Identical particles
—
why matter exists
92
7.5.
Tunneling
93
1.6.
Quantum mechanics and classical mechanics
93
/. 7.
Quantum mechanics and ion channels
94
2.
CONDENSED MATTER
95
2.1.
Liquids and solids
95
2.2.
Polymorphism
96
2.3.
Quasicrystals
97
2.4.
Phonons
97
2.5.
Liquid crystals
98
3.
REVIEW OF THERMODYNAMICS
99
3.1.
Laws of thermodynamics
99
3.2.
Characteristic functions
102
4.
PHASE TRANSITIONS
103
4.1.
Phase transitions in thermodynamics
103
4.2.
Transitions of first order
104
4.3.
Chemical potentials, metastability and phase diagrams
105
4.4.
Transitions of second order
106
4.5.
Qualitative aspects of phase transitions
108
5.
FROM STATISTICS TO THERMODYNAMICS
108
5.1.
Phase space
108
5.2.
The
canonical
distribution
110
5.3.
Open systems
110
5.4.
Thermodynamics of quantum systems 111
5.5.
Phase transitions in statistical mechanics
112
5.6.
Structural transitions in ion channels
113
Ch.
6
IONS IN THE ELECTRIC FIELD
115
1.
REVIEW OF ELECTROSTATICS
115
1.1.
Forces, fields and media
115
1.2.
The laws of electrostatics
117
2.
MOVEMENT OF IONS IN AN ELECTRIC FIELD
119
2.1.
Current
119
2.2.
Ohm's law
119
2.3.
Capacitance and inductance
121
2.4.
Circuits and membrane models
122
3.
CABLE THEORY
123
3.1.
The cable equations
123
3.2.
Application to the squid axon
125
4.
THERMODYNAMICS OF DIELECTRICS
126
4.1.
Electrochemical potential
126
4.2.
The Nernst-Planck equation
126
4.3.
Thermodynamics of electric displacement and field
127
4.4.
Electrets
128
Contents xi
5.
MOTIONS
OF CELLS IN ELECTRIC FIELDS
129
5.1.
Dielectrophoresis
129
5.2.
Electrorotation
130
6.
MOVEMENT OF IONS THROUGH MATTER
130
6.1.
Movement of ions through liquid solutions
130
6.2.
Surface effects
131
6.3.
Movement of ions through solids
131
6.4.
Ionic switches
132
6.5.
Ionic polarons and
excitons
132
7.
SUPERIONIC CONDUCTION
132
7.1.
Sodium-ion conductors
133
7.2.
Superionic conduction in polymers and elastomers
136
7.3.
Are ion channels superionic conductors?
137
Ch.
7
IONS DRIFT AND DIFFUSE
139
1.
THE ELECTRODIFFUSION MODEL
139
1.1.
The postulates of the model
140
1.2.
A mathematical membrane
141
1.3.
Boundary conditions
141
2.
ONE ION SPECIES, STEADY STATE
142
2.1.
The Nernst-Planck equation
142
2.2.
Electrical equilibrium
144
3.
THE CONSTANT FIELD APPROXIMATION
146
3.1.
Linearizing the equations
147
3.2.
The current-voltage relationship
148
3.3.
Comparison with data
149
4.
AN EXACT SOLUTION
151
4.1.
One-ion steady-state electrodijfusion
151
4.2.
Finite current
152
4.3.
Reclaiming the dimensions
156
4.4.
Electrical equilibrium
156
4.5.
Applying the boundary conditions
159
4.6.
Equal potassium concentrations
161
Ch.8 MULTI-ION AND TRANSIENT ELECTRODIFFUSION
163
1.
MULTIPLE SPECIES OF PERMEANT IONS
163
1.1.
Ions of the same charge
163
/. 2.
Ions of different charges
164
1.3.
The Goldman—Hodgkin-Katz equation
165
2.
TIME-DEPENDENT ELECTRODIFFUSION
166
2.1.
Scaling of variables
168
2.2.
The Burgers equation
168
2.3.
A simple case
169
3.
CRITIQUE OF THE CLASSICAL MODEL
170
xii Contents
Ch.
9 MODELS
OF
MEMBRANE
EXCITABILITY
173
1.
THE MODEL OF
HODGKIN
AND HUXLEY
173
1.1.
Ion-current separation and ion conductances
174
1.2.
The current equation
174
1.3.
The independence principle
175
1.4.
Linear kinetic functions \16
1.5.
Activation and inactivation
176
1.6.
The partial differential equation of
Hodgkin
and Huxley
178
1.7.
Closing the circle
178
2.
EXTENSIONS AND INTERPRETATIONS
179
2.1.
The gating current
179
2.2.
Probability interpretation of the conductance functions
180
2.3.
The Cole-Moore shift
180
2.4.
Mathematical extensions of the Hodgkin-Huxley
equations
182
2.5.
The propagated action potential is a soliton
182
2.6.
Action potential as a vortex pair
183
2.7.
Catastrophe theory version of the model
183
2.8.
Beyond the squid axon
185
3.
EVALUATION OF THE HODGKIN-HUXLEY MODEL
186
3.1.
Current separation
187
3.2.
Voltage dependence of the conductances
187
3.3.
Time variation of the conductances
189
3.4.
The separation of ion kinetics
189
3.5.
We're not out of'the woods yet
190
4.
THE CONCEPT OF AN ION CHANNEL
190
4.1.
Pore or carrier
—
or what?
190
4.2.
"Pore" and "channel": Shifting meanings
192
4.3.
Limitations of the phenomenological approach
192
Ch.
10
ADMITTANCE TO THE SEMICIRCLE
195
1.
OSCILLATIONS, NORMAL MODES AND WAVES
195
1.1.
Simple pendulum
195
1.2.
Normal modes
197
1.3.
The wave equation
197
1.4.
Fourier series
198
7.5.
The Fourier transform of a vibrating string
198
2.
MEMBRANE IMPEDANCE AND ADMITTANCE
199
2.1.
Impedance decreases during an impulse
199
2.2.
Inductive reactance
201
2.3.
A simple circuit model
202
3.
TIME DOMAIN AND FREQUENCY DOMAIN
203
3.1.
Fourier analysis
203
3.2.
The complex admittance
205
3.3.
Constant-phase-angle capacitance
206
Contents xiii
4.
DIELECTRIC
RELAXATION 207
4.1.
The origin of electric polarization
207
4.2.
Local fields affect permittivity
208
4.3.
Dielectric relaxation and loss
209
4.4.
Cole—Cole analysis
211
5.
FREQUENCY-DOMAIN MEASUREMENTS
212
5.1.
Linearizing the model of
Hodgkin
and Huxley
213
5.2.
Frequency response of the axonal impedance
214
5.5.
Pararesonance
216
5.4.
Impedance of the
Hodgkin—
Huxley axon membrane lib
5.5.
Generation of harmonics
217
?5.
6.
Data fits to squid-axon sodium system
217
5.7.
Admittance under suppressed ion conduction
217
Ch.
11
WHAT'S THAT NOISE?
221
1.
STOCHASTIC PROCESSES AND STATISTICAL LAWS
221
1.1.
Stochastic processes
222
1.2.
Stationarity and ergodicity
224
1.3.
Markov processes
224
2.
NOISE MEASUREMENT AND ANALYSIS TECHNIQUES
225
2.1.
Application of Fourier analysis to noise problems
225
2.2.
Spectral density and autocorrelation
226
2.3.
White noise
227
3.
EFFECTS OF NOISE ON NONLINEAR DYNAMICS
228
3.1.
An aperiodic fluctuation
228
3.2.
The
Langevin
equation
228
4.
NOISE IN EXCITABLE MEMBRANES
230
4.1.
A nuisance becomes a technique
230
4.2.
Fluctuation phenomena in membranes
230
4.3.
1/f noise
231
4.4.
Lorentzian spectra
231
4.5.
Multiple Lorentzians
233
4.6.
Nonstationary noise
234
4.7.
Light scattering spectra
235
5.
IS THE SODIUM CHANNEL A LINEAR SYSTEM?
235
5.1.
Sodium-current characteristics
235
5.2.
Admittance and noise
238
6.
MINIMIZING MEASUREMENT AREA
239
6.1.
Patch clamping
240
6.2.
Elementary stochastic fluctuations in ion channels
240
Ch.
12
ION CHANNELS, PROTEINS AND TRANSITIONS
243
1.
THE NICOTINIC ACETYLCHOLINE RECEPTOR
244
2.
CULTURED CELLS AND
LIPOSOMES
245
2.1.
Sealing the pipette to the membrane
245
2.2.
Reconstitution
of channels in bilayers
246
2.3.
Reconstitution
of sodium channels
247
xiv Contents
3. SINGLE-CHANNEL
CURRENTS
248
3.1.
Unitary potassium currents
249
3.2.
Unitary sodium currents
249
4.
MACROSCOPIC CURRENTS FROM CHANNEL
TRANSITIONS
249
4.1.
The two-state model
250
4.2.
Ohmic one-ion channels
250
4.3.
Time dependence
252
4.4.
Critique of the methodology
253
5.
PROTEIN STRUCTURES
253
5.1.
Amino
acids: Building blocks of proteins
253
5.2.
Primary structure
255
5.3.
Levels of structural organization
256
5.4.
The alpha helix
257
5.5.
The beta sheet
259
5.6.
Domains and loop regions
259
5.7.
Structure classifications and representations
260
5.8.
Alpha-domain structures
260
5.9.
Alpha/beta structures
262
5.10. Antiparallel
beta structures: jelly rolls and barrels
263
6.
METALLOPROTEINS
263
6.1. Metalloproteins in
physiology and toxicology
264
6.2.
Voltage-sensitive ion channels as
metalloproteins
265
7.
MEMBRANE PROTEINS
265
7.1.
Membrane-spanning protein molecules
265
7.2.
Crystallization of membrane proteins
266
7.2.
Biosynthesis of membrane proteins
267
8.
TRANSITIONS IN PROTEINS
267
8.1.
Vibrations and conformational transitions
268
8.2.
Allosteric transitions in myoglobin and hemoglobin
268
8.3.
Allostery in ion channels
268
Ch.
13
DIVERSITY AND STRUCTURES OF ION CHANNELS
271
1.
THE ROLE OF STRUCTURE
271
2.
FAMILIES OF ION CHANNELS
272
2.1
Molecular biology
272
2.2.
Evolution of voltage-sensitive ion channels
272
3.
MOLECULAR BIOLOGY PROBES CHANNEL STRUCTURE
273
3.1.
Genetic engineering of ion channels
273
3.2.
Obtaining the primary structure
273
3.3.
Hydropathy analysis
273
3.4.
Site-directed mutagenesis
21
A
4.
CLASSIFICATION OF ION CHANNELS
275
4.1.
Nomenclature
275
4.2.
Classification criteria
275
4.3.
Toxins and pharmacology
276
4.4.
Voltage-sensitive ion channels and disease
276
Contents xv
5.
POTASSIUM
CHANNELS:
A LARGE FAMILY
277
5.1.
Shaker
and related
mutations
of
Drosophila
277
5.2.
Diversity of potassium channels
277
5.3.
Three groups of
К
channels
279
5.4.
Voltage-sensitive potassium channels
279
5.5.
Auxiliary subunits
282
5.6.
Inward rectifiers
282
5.7.
Potassium channels and disease
284
6.
VOLTAGE-SENSITIVE SODIUM CHANNELS: FAST ON
THE TRIGGER
284
6.1.
Neurotoxins of VLG Na channels
285
6.2.
Types of VLG Na channels
285
6.3.
Positively charged membrane-spanning segments
285
6.4.
Proton access to channel residues
287
6.5.
Mutations in sodium channels
288
7.
CALCIUM CHANNELS: LONG-LASTING CURRENTS
288
7. /.
Function of VLG Ca channels
289
7.2.
Structure of VLG Ca channels
290
7.3.
Types of VLG Ca channels
291
7.4.
Calcium-channel diseases
291
8.
H+-GATED CATION CHANNELS: THE ACID TEST
292
9.
CHLORIDE CHANNELS: ACCENTUATE THE NEGATIVE
293
9.1.
Structure and function of chloride channels
293
9.2.
Chloride-channel diseases
294
10.
HYPERPOLARIZATION-ACTIVATED CHANNELS:
IT'S TIME
294
11.
CYCLIC NUCLEOTIDE GATED CHANNELS
295
12.
MITOCHONDRIAL CHANNELS
295
13.
FUNGAL ION CHANNELS-ALAMETHICIN
297
14.
THE STRUCTURE OF A BACTERIAL
298
POTASSIUM CHANNEL
Ch.
14
MICROSCOPIC MODELS OF CHANNEL FUNCTION
301
1.
GATED STRUCTURAL PORE MODELS
301
1.1.
Structural gated pores
301
1.2.
Selectivity filter and selectivity sequences
304
1.3.
Independence of ion fluxes
304
1.4.
Gates
305
1.5.
A "paradox" of ion channels
306
1.6.
Bacterial modelpores andporins
306
1.7.
Water through the voltage-sensitive ion channel?
307
1.8.
Molecular dynamics simulations
307
2.
MODELS OF ACTIVATION AND INACTIVATION
308
2.1.
Armstrong model
309
2.2.
Barrier-and-well models of the channel
309
2.3.
The inactivation gate
311
2.4.
Beyond the gated pore
312
xvi
Contents
3.
ORGANOMETALLIC CHEMISTRY
313
3.1.
Types of intermolecular interactions
313
3.2.
Organometallic receptors
314
5.3.
Supramolecular self-assembly by
π
interactions
316
4.
PLANAR ORGANIC CONDUCTORS
317
5.
ALTERNATIVE GATING MODELS
318
5. 1.
The theories ofOnsager and Holland
318
5.2.
Ion exchange models
320
5.3.
Hydrogen dissociation and hydrogen exchange
321
5.4.
Dipolar gating mechanisms
322
5.5.
A global transition with two stable states
322
5.6.
Aggregation models
322
5.7.
Condensed state models
323
5.8.
Coherent excitation models
323
5.9.
Liquid crystal models
324
6.
REEXAMINATION OF ELECTRODIFFUSION
324
6.1.
Classical electrodiffusion
—
what went wrong?
325
6.2.
Are the "constants" constant?
325
7.
ORDER FROM DISORDER?
326
Ch.
15
ORDER FROM DISORDER
329
1.
COMPLEXITY AND CRITICALITY
329
1.1.
The emergence of complexity
330
/. 2.
Power laws and scaling in physical statistics
331
1.3.
Universality
332
1.4.
Emergent phenomena
333
2.
FRACTALS
334
2.1.
Self-similarity
334
2.2.
Scaling and fractal dimension
334
2.3.
Fractals in time: 1/f noise
335
2.4.
Fractal transport in super ionic conductors
336
2.5.
Self-organized criticality
337
3.
ORDER, DISORDER AND COOPERATIVE BEHAVIOR
338
3.1.
Temperature and entropy
338
3.2.
The perfect spin gas
339
3.3.
Thermodynamic functions of a spin gas
341
3.4.
Spontaneous order in a real spin gas
342
4.
FLUCTUATIONS, STABILITY, MACROSCOPIC TRANSITIONS
343
4.1.
Fluctuations and instabilities
343
4.2.
Convective and electrohydrodynamic instabilities
ЪАА
4.3.
Spin waves and quasiparticles
345
4.4.
Thephonongas
346
4.5.
The spontaneous ordering of matter
347
5.
PHASE TRANSITIONS
347
5.1.
Order variables and parameters
348
5.2.
Mean field theories
349
5.3.
Critical slowing down and vortex unbinding
350
Contents xvii
6. DISSIPATIVE
STRUCTURES
351
6.1.
Thermodynamics of
irreversible
processes
351
6.2. Evolution
of order
35
1
6.3.
Synergetics
352
6.4.
A model of membrane excitability
352
Ch.
16
POLAR PHASES
355
1.
ORIENTATIONAL POLAR STATES IN CRYSTALS
355
1.1.
Piezoelectricity
356
1.2.
Pyroelectricity
356
1.3.
The strange behavior of
Rochelle
salt
357
1.4.
Transition temperature and Curie-Weiss law
357
7.5.
Hysteresis
358
1.6.
Ferroic effects
358
2.
THERMODYNAMICS OF FERROELECTRICS
359
2.1.
A nonlinear dielectric equation of state
360
2.2.
Second order transitions
3 61
2.3.
Field and pressure effects
3 62
2.4.
Chirality and self-bias
363
2.5.
Admittance and noise in ferroelectrics
ЪЬА
3.
STRUCTURAL PHASE TRANSITIONS IN FERROELECTRICS
365
3.1.
Order-disorder and displacive transitions
365
3.2.
Spontaneous electrical pulses
366
3.3.
Sofi
lattice modes
366
3.4.
Hydrogen-bonded ferroelectrics
367
4.
FERROELECTRIC PHASE TRANSITIONS AND CONDUCTION
369
4.1.
Tris-sarcosine calcium chloride
369
4.2.
Betaine calcium chloride dihydrate
369
4.3.
Dielectric relaxation in structural transitions
370
4.4.
Cole-Cole dispersion; critical slowing down
371
4.5.
From ferroelectric order to super ionic conduction
371
4.6.
Ferroelectric semiconductors
373
5.
PIEZO- AND PYROELECTRICITY IN BIOLOGICAL TISSUES
374
5. 1.
Pyroelectric properties of biological tissues
374
5.2.
Piezoelectricity in biological materials
375
6.
PROPOSED FERROELECTRIC CHANNEL UNIT
IN MEMBRANES
375
6.1.
Early ferroelectric proposals for membrane excitability
375
6.2.
The ferroelectric-superionic transition model
378
6.3.
Field-induced birefringence in axonal membranes
380
6.4.
Membrane capacitance versus temperature
380
6.5.
Surface charge
380
6.6.
Field effect and the function of the resting potential
3 81
6.7.
Phase pinning and the action of tetrodotoxin
382
7.
THE CHANNEL IS NOT CRYSTALLINE
383
xviii Contents
Ch.
17
DELICATE
PHASES AND THEIR TRANSITIONS
387
1.
MESOPHASES: PHASES BETWEEN LIQUID AND CRYSTAL
387
1. 1.
Nematics andsmectics
387
1.2.
Calamitic and discotic liquid crystals
388
1.3.
Helical structures: Cholesterics and blue phases
388
1.4.
Columnar liquid crystals
391
2.
STATES AND PHASE TRANSITIONS OF LIQUID CRYSTALS
392
2.1.
Correlation functions in liquid crystals
393
2.2.
Symmetry, molecular orientation and order parameter
394
2.3.
Free energy of the inhomogeneous
orientational structure
394
2.4.
Modulated orientational structure
395
2.5.
Free energy of a smectic liquid crystal of type A
396
2.6.
Stability of the smectic phase
397
2.7.
Phase transitions between smectic forms
398
2.8.
Inversions in
chir
al
liquid crystals
399
3.
ORDER PARAMETERS UNDER EQUILIBRIUM CONDITIONS
399
3.1.
Biaxial smectics
399
3.2.
The role of fluctuations
400
3.3.
Effect of impurities
401
4.
FIELD-INDUCED PHASE TRANSFORMATIONS
401
4.1.
Dielectric permittivity of liquid crystals
402
4.2.
Unwinding the helix
402
4.3.
The Fredericks transition
403
5.
POLARIZED STATES IN LIQUID CRYSTALS
404
5.7.
Flexoelectric effects in nematics andtype-A smectics
405
5.2.
Flexoelectric deformations
405
5.3.
The flexoelectric effect in cholesterics
406
5.4.
Polarization and piezoelectric effects in
chir
ál
smectics
407
5.5.
The electroclinic effect
408
5.6.
The electrochiral effect
408
6.
THE FERROELECTRIC STATE OF A CHIRAL SMECTIC
408
6.1.
Behavior of a liquid ferroelectric in an external field
409
6.2.
Polarization and orientational perturbation
411
6.3.
Surface-stabilized ferroelectric liquid crystals
413
Ch.
18
PROPAGATION AND PERCOLATION IN A CHANNEL
415
1. SOLITONS IN
LIQUID CRYSTALS
415
1.1.
Water waves to nerve impulses
416
1.2.
Korteweg-deVries equation
417
1.3.
Nonlinear
Schrödinger
equation
418
1.4.
The sine-Gordon equation
419
1.5.
Three-dimensional solitons
420
Contents xix
1.6.
Localized instabilities in nematic liquid crystals
421
1.7.
Electric-field-induced solitons
422
1.8.
Solitons in smectic liquid crystals
422
2.
SELF-ORGANIZED WAVES
422
2.1.
The broken symmetries of life
422
2.2.
Autowaves
424
2.3.
Catastrophe theory model based on a
ferroelectric channe
425
2.4.
The action potential as a polarization soliton
427
3.
BILAYER AND CHANNELS FORM A HOST-GUEST PHASE
429
3.1.
Protein distribution by molecular shape
429
3.2.
Flexoelectric responses in hair cells
430
4.
PERCOLATION THEORY
430
4.1.
Cutting bonds
431
4.2.
Site percolation and bond percolation
433
4.3.
Two conductors
434
4.4.
Directed percolation
435
4.5.
Percolation in ion channels
436
5.
MOVEMENT OF IONS THROUGH LIQUID CRYSTALS
437
5.1.
Chiral smectic
С
elastomers
437
5.2.
Metallomesogens
43 8
5.3.
Ionomers
439
5.4.
Protons,
H
bonds and cooperative phenomena
439
Ch.
19
SCREWS AND HELICES
443
1.
THE SCREW-HELICAL GATING HYPOTHESIS
443
2.
ORDER AND ION CHANNELS
445
2.1.
Threshold responses in biological membranes
445
2.2.
Mean field theories of excitable membranes
446
2.3.
Constant phase capacitance obeys a power law
447
2.4.
The open channel is an open system
447
2.5.
Self-similarity in currents through ion channels
447
3.
FERROELECTRIC BEHAVIOR IN MODEL SYSTEMS
448
3.1.
Ferroelectricity in Langmuir-Blodgettfilms
448
3.2.
Observations in bacteriorhodopsin
449
3.3.
Ferroelectricity in microtubules
450
4.
SIZING UP THE CHANNEL MOLECULE
451
4.1.
The
ske
problem in crystalline ferroelectrics
452
4.2.
Size is a parameter
452
5.
THE DIPOLAR ALPHA HELIX
453
5.1.
Structure of the a helix
453
5.2.
Helix-coil transition
454
5.3. Dipole
moment of the a helix
454
5.4.
а
-Helix solitons in protein
454
5.5.
Temperature effects in Davydov solitons
457
xx Contents
6. ALPHA
HELICES
IN
VOLTAGE-SENSITIVE ION
CHANNELS 459
6.1.
The a-helical framework of ion channels
459
6.2.
Channel gating as a transition in an a helix
460
6.3.
Water in the channel
—
again?
461
Ch.
20
VOLTAGE-INDUCED GATING OF ION CHANNELS
465
1.
ION CHANNEL: A FERROELECTRIC LIQUID CRYSTAL?
465
1.1.
Electroelastic model of channel gating
465
1.2.
Cole-Cole curves in a ferroelectric liquid crystal
466
1.3
A voltage-sensitive transition in a liquid crystal
467
2.
ELECTRIC CONDUCTION ALONG THE ALPHA HELIX
468
2.1.
Electron transfer by solitons
468
2.2.
Proton conduction in hydrogen-bonded networks
469
2.3.
Dynamics of the alpha helix
469
3.
ION EXCHANGE MODEL OF CONDUCTION
470
3.1.
Expansion of
H
bonds and ion replacement
471
3.2.
Can sodium ions travel across an alpha helix?
471
3.3.
Relay mechanism
472
3.4.
Metal ions can replace protons in
H
bonds
of ion channels
475
4.
GATELESS GATING
477
4.1.
How does a depolarization change an ion conductance? All
4.2.
Enzymatic dehydration of ions All
4.3.
Hopping conduction
478
5.
INACTIVATION AND RESTORATION OF EXCITABILITY
478
5.
Λ
Inactivation as a surface interaction
479
5.2.
Restoration of excitability
480
Ch.21 BRANCHING OUT
483
1.
FERROELECTRIC LIQUID CRYSTALS WITH
AMINO
ACIDS
484
1.1.
Amino
acids with branched sidechains
484
1.2.
Relaxation of linear electroclinic coupling
486
/. 3.
Electrical switching near the SmA *—SmC*
phase transition
486
1.4.
Two-dimensional smectic C* films
487
2.
FORCES BETWEEN CHARGED RESIDUES WIDEN
Η
BONDS
488
2.1.
Electrostatics and the stability ofS4 segments
489
2.2.
Changes in bond length and ion percolation
491
2.3.
Replacement of charged residues with neutrals
492
3.
MICROSCOPIC CHANNEL FUNCTION
492
3.1.
Tilted segments in voltage-sensitive channels
492
3.2.
Segment tilt and channel activation
494
3.3.
Chirality and bend
495
4.
CRITICAL ROLES OF
PROLINE
AND BRANCHED
SIDECHAINS
496
4.1.
The role of
proline
496
Contents xxi
4.2.
The role of branched
nonpolar
amino
acids
497
4.3.
Substitution leads to loss of voltage sensitivity
498
4.4.
Whole channel experiments
500
5.
NEW DATA NEW MODELS
5.1.
Amino
acids dissociate from the helix
501
5.2.
A twisted pathway in a resting channel
503
5.3.
A prokaryotic voltage-sensitive sodium channel
503
5.4.
Interactions with bilayer charges
503
6.
TOWARD A THEORY OF VOLTAGE-SENSITIVE ION
CHANNELS
504
6.1.
The hierarchy of excitability
505
6.2.
Block polymers
506
6.3.
Coupling the S4 segments to the electric field
506
6.4.
A new picture is emerging
506
INDEX
509 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Leuchtag, H. Richard |
author_facet | Leuchtag, H. Richard |
author_role | aut |
author_sort | Leuchtag, H. Richard |
author_variant | h r l hr hrl |
building | Verbundindex |
bvnumber | BV035035666 |
classification_rvk | WE 5460 |
ctrlnum | (OCoLC)255830820 (DE-599)BVBBV035035666 |
dewey-full | 572.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.3 |
dewey-search | 572.3 |
dewey-sort | 3572.3 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV035035666</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100624</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080903s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N40,0655</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">981185061</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402055249</subfield><subfield code="c">Gb. : ca. EUR 187.25 (freier Pr.), ca. sfr 296.00 (freier Pr.)</subfield><subfield code="9">978-1-402-05524-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402055242</subfield><subfield code="c">Gb. : ca. EUR 187.25 (freier Pr.), ca. sfr 296.00 (freier Pr.)</subfield><subfield code="9">1-402-05524-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402055256</subfield><subfield code="9">978-1-4020-5525-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255830820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035035666</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 5460</subfield><subfield code="0">(DE-625)148311:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leuchtag, H. Richard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Voltage-sensitive ion channels</subfield><subfield code="b">biophysics of molecular excitability</subfield><subfield code="c">H. Richard Leuchtag</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 529 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ion Channels</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biophysics</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spannungskontrollierter Ionenkanal</subfield><subfield code="0">(DE-588)4717815-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biophysik</subfield><subfield code="0">(DE-588)4006891-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spannungskontrollierter Ionenkanal</subfield><subfield code="0">(DE-588)4717815-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biophysik</subfield><subfield code="0">(DE-588)4006891-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2853504&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016704562&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016704562</subfield></datafield></record></collection> |
id | DE-604.BV035035666 |
illustrated | Illustrated |
index_date | 2024-07-02T21:51:29Z |
indexdate | 2024-07-20T09:48:56Z |
institution | BVB |
isbn | 9781402055249 1402055242 9781402055256 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016704562 |
oclc_num | 255830820 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-188 |
physical | XXI, 529 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Leuchtag, H. Richard Verfasser aut Voltage-sensitive ion channels biophysics of molecular excitability H. Richard Leuchtag Dordrecht Springer 2008 XXI, 529 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Ion Channels cabt Biophysics cabt Spannungskontrollierter Ionenkanal (DE-588)4717815-2 gnd rswk-swf Biophysik (DE-588)4006891-2 gnd rswk-swf Spannungskontrollierter Ionenkanal (DE-588)4717815-2 s Biophysik (DE-588)4006891-2 s b DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2853504&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016704562&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Leuchtag, H. Richard Voltage-sensitive ion channels biophysics of molecular excitability Ion Channels cabt Biophysics cabt Spannungskontrollierter Ionenkanal (DE-588)4717815-2 gnd Biophysik (DE-588)4006891-2 gnd |
subject_GND | (DE-588)4717815-2 (DE-588)4006891-2 |
title | Voltage-sensitive ion channels biophysics of molecular excitability |
title_auth | Voltage-sensitive ion channels biophysics of molecular excitability |
title_exact_search | Voltage-sensitive ion channels biophysics of molecular excitability |
title_exact_search_txtP | Voltage-sensitive ion channels biophysics of molecular excitability |
title_full | Voltage-sensitive ion channels biophysics of molecular excitability H. Richard Leuchtag |
title_fullStr | Voltage-sensitive ion channels biophysics of molecular excitability H. Richard Leuchtag |
title_full_unstemmed | Voltage-sensitive ion channels biophysics of molecular excitability H. Richard Leuchtag |
title_short | Voltage-sensitive ion channels |
title_sort | voltage sensitive ion channels biophysics of molecular excitability |
title_sub | biophysics of molecular excitability |
topic | Ion Channels cabt Biophysics cabt Spannungskontrollierter Ionenkanal (DE-588)4717815-2 gnd Biophysik (DE-588)4006891-2 gnd |
topic_facet | Ion Channels Biophysics Spannungskontrollierter Ionenkanal Biophysik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2853504&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016704562&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT leuchtaghrichard voltagesensitiveionchannelsbiophysicsofmolecularexcitability |