Convergence and Applications of Newton-type Iterations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XV, 506 S. 235 mm x 155 mm |
ISBN: | 9780387727417 9780387727431 0387727418 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035031734 | ||
003 | DE-604 | ||
005 | 20220504 | ||
007 | t | ||
008 | 080901s2008 |||| 00||| eng d | ||
015 | |a 07,N20,0948 |2 dnb | ||
016 | 7 | |a 983915091 |2 DE-101 | |
020 | |a 9780387727417 |c Gb. (Pr. in Vorb.) |9 978-0-387-72741-7 | ||
020 | |a 9780387727431 |c ebook |9 978-0-387-72743-1 | ||
020 | |a 0387727418 |c Gb. (Pr. in Vorb.) |9 0-387-72741-8 | ||
024 | 3 | |a 9780387727417 | |
028 | 5 | 2 | |a 11014553 |
035 | |a (OCoLC)427558622 | ||
035 | |a (DE-599)DNB983915091 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-188 | ||
050 | 0 | |a QA295 | |
082 | 0 | |a 518.26 |2 22 | |
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a SK 900 |0 (DE-625)143268: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Argyros, Ioannis K. |e Verfasser |0 (DE-588)14160820X |4 aut | |
245 | 1 | 0 | |a Convergence and Applications of Newton-type Iterations |c Ioannis K. Argyros |
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XV, 506 S. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Convergencia | |
650 | 4 | |a Método de Newton-Raphson | |
650 | 4 | |a Métodos iterativos (Matemáticas) | |
650 | 4 | |a Convergence | |
650 | 4 | |a Iterative methods (Mathematics) | |
650 | 4 | |a Newton-Raphson method | |
650 | 0 | 7 | |a Iteration |0 (DE-588)4123457-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvergenz |0 (DE-588)4032326-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Newton-Verfahren |0 (DE-588)4171693-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Newton-Verfahren |0 (DE-588)4171693-0 |D s |
689 | 0 | 1 | |a Konvergenz |0 (DE-588)4032326-2 |D s |
689 | 0 | 2 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2944732&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016700708 |
Datensatz im Suchindex
_version_ | 1805091002633945088 |
---|---|
adam_text |
Contents
Introduction
. xi
1 Operators
and Equations
. 1
1.1
Operators on linear spaces
. 1
1.2
Divided differences of operators
. 9
1.3
Fixed points of operators
. 25
1.4
Exercises
. 29
2
The Newton-Kantorovich (NK) Method
. 41
2.1
Linearization of equations
. 41
2.2
Semilocal convergence of the NK method
. 42
2.3
New sufficient conditions for the secant method
. 54
2.4
Concerning the "terra incognita" between convergence regions of
two Newton methods
. 62
2.5
Enlarging the convergence domain of the NK method under regular
smoothness conditions
. 75
2.6
Convergence of NK method and operators with values in a cone
. 80
2.7
Convergence theorems involving center-Lipschitz conditions
. 84
2.8
The radius of convergence for the NK method
. 90
2.9
On a weak NK method
. 102
2.10
Bounds on manifolds
. 103
2.11
The radius of convergence and one-parameter operator embedding
. 106
2.12
NK method and Riemannian manifolds
. 110
2.13
Computation of shadowing orbits
. 113
2.14
Computation of continuation curves
. 116
2.15
Gauss-Newton method
. 121
2.16
Exercises
. 125
3
Applications of the Weaker Version of the NK Theorem
. 133
3.1
Comparison of Kantorovich and Moore theorems
. 133
3.2
Comparison of Kantorovich and Miranda theorems
. 137
viii Contents
3.3
The secant method and nonsmooth equations
. 142
3.4
Improvements on curve tracing of the homotopy method
. 153
3.5
Nonlinear finite element analysis
. 157
3.6
Convergence of the structured PSB update in Hubert space
. 162
3.7
On the shadowing lemma for operators with chaotic behavior
. 166
3.8
The mesh independence principle and optimal shape design
problems
. 170
3.9
The conditioning of
semidefinite
programs
. 180
3.10
Exercises
. 186
4
Special Methods
. 193
4.1
Broyden's method
. 193
4.2
Stirling's method
. 202
4.3
Steffensen's method
. 207
4.4
Computing zeros of operator satisfying autonomous differential
equations
. 215
4.5
The method of tangent hyperbolas
. 219
4.6
A modified secant method and function optimization
. 230
4.7
Local convergence of a King-Werner-type method
. 233
4.8
Secant-type methods
. 235
4.9
Exercises
. 239
5
Newton-like Methods
. 261
5.1
Newton-like methods of "bounded deterioration"
. 261
5.2
Weak conditions for the convergence of a certain class of iterative
methods
. 269
5.3
Unifying convergence analysis for two-point Newton methods
. 275
5.4
On a two-point method of convergent order two
. 290
5.5
Exercises
. 304
6
Analytic Computational Complexity: We Are Concerned with the
Choice of Initial Approximations
. 325
6.1
The general problem
. 325
6.2
Obtaining good starting points for Newton's method
. 328
6.3
Exercises
. 336
7
Variational Inequalities
. 339
7.1
Variational inequalities and partially relaxed monotone mapping
. 339
7.2
Monotonicity and solvability of nonlinear variational inequalities
. 345
7.3
Generalized variational inequalities
. 352
7.4
Semilocal convergence
. 354
7.5
Results on generalized equations
. 358
7.6
Semilocal convergence for quasivariational inequalities
. 362
7.7
Generalized equations in Hubert space
. 365
7.8
Exercises
. 371
Contents ix
8
Convergence
Involving Operators with Outer or Generalized Inverses
379
8.1
Convergence with no Lipschitz conditions
. 379
8.2
Exercises
. 388
9
Convergence on Generalized Banach Spaces: Improving Error
Bounds and Weakening of Convergence Conditions
. 395
9.1
íT-normed
spaces
. 395
9.2
Generalized Banach spaces
. 408
9.3
Inexact Newton-like methods on Banach spaces with a convergence
structure
. 417
9.4
Exercises
. 436
10
Point-to-Set-Mappings
. 445
10.1
Algorithmic models
. 445
10.2
A general convergence theorem
. 449
10.3
Convergence of
ł-step
methods
. 451
10.4
Convergence of single-step methods
. 454
10.5
Convergence of single-step methods with differentiable iteration
functions
. 458
10.6
Monotone convergence
. 468
10.7
Exercises
. 471
11
The Newton-Kantorovich Theorem and Mathematical Programming
475
11.1
Case
1:
Interior point methods
. 475
11.2
Case
2:
LP methods
. 482
11.3
Exercises
. 489
References
. 493
Glossary of Symbols
. 503
Index
. 505 |
adam_txt |
Contents
Introduction
. xi
1 Operators
and Equations
. 1
1.1
Operators on linear spaces
. 1
1.2
Divided differences of operators
. 9
1.3
Fixed points of operators
. 25
1.4
Exercises
. 29
2
The Newton-Kantorovich (NK) Method
. 41
2.1
Linearization of equations
. 41
2.2
Semilocal convergence of the NK method
. 42
2.3
New sufficient conditions for the secant method
. 54
2.4
Concerning the "terra incognita" between convergence regions of
two Newton methods
. 62
2.5
Enlarging the convergence domain of the NK method under regular
smoothness conditions
. 75
2.6
Convergence of NK method and operators with values in a cone
. 80
2.7
Convergence theorems involving center-Lipschitz conditions
. 84
2.8
The radius of convergence for the NK method
. 90
2.9
On a weak NK method
. 102
2.10
Bounds on manifolds
. 103
2.11
The radius of convergence and one-parameter operator embedding
. 106
2.12
NK method and Riemannian manifolds
. 110
2.13
Computation of shadowing orbits
. 113
2.14
Computation of continuation curves
. 116
2.15
Gauss-Newton method
. 121
2.16
Exercises
. 125
3
Applications of the Weaker Version of the NK Theorem
. 133
3.1
Comparison of Kantorovich and Moore theorems
. 133
3.2
Comparison of Kantorovich and Miranda theorems
. 137
viii Contents
3.3
The secant method and nonsmooth equations
. 142
3.4
Improvements on curve tracing of the homotopy method
. 153
3.5
Nonlinear finite element analysis
. 157
3.6
Convergence of the structured PSB update in Hubert space
. 162
3.7
On the shadowing lemma for operators with chaotic behavior
. 166
3.8
The mesh independence principle and optimal shape design
problems
. 170
3.9
The conditioning of
semidefinite
programs
. 180
3.10
Exercises
. 186
4
Special Methods
. 193
4.1
Broyden's method
. 193
4.2
Stirling's method
. 202
4.3
Steffensen's method
. 207
4.4
Computing zeros of operator satisfying autonomous differential
equations
. 215
4.5
The method of tangent hyperbolas
. 219
4.6
A modified secant method and function optimization
. 230
4.7
Local convergence of a King-Werner-type method
. 233
4.8
Secant-type methods
. 235
4.9
Exercises
. 239
5
Newton-like Methods
. 261
5.1
Newton-like methods of "bounded deterioration"
. 261
5.2
Weak conditions for the convergence of a certain class of iterative
methods
. 269
5.3
Unifying convergence analysis for two-point Newton methods
. 275
5.4
On a two-point method of convergent order two
. 290
5.5
Exercises
. 304
6
Analytic Computational Complexity: We Are Concerned with the
Choice of Initial Approximations
. 325
6.1
The general problem
. 325
6.2
Obtaining good starting points for Newton's method
. 328
6.3
Exercises
. 336
7
Variational Inequalities
. 339
7.1
Variational inequalities and partially relaxed monotone mapping
. 339
7.2
Monotonicity and solvability of nonlinear variational inequalities
. 345
7.3
Generalized variational inequalities
. 352
7.4
Semilocal convergence
. 354
7.5
Results on generalized equations
. 358
7.6
Semilocal convergence for quasivariational inequalities
. 362
7.7
Generalized equations in Hubert space
. 365
7.8
Exercises
. 371
Contents ix
8
Convergence
Involving Operators with Outer or Generalized Inverses
379
8.1
Convergence with no Lipschitz conditions
. 379
8.2
Exercises
. 388
9
Convergence on Generalized Banach Spaces: Improving Error
Bounds and Weakening of Convergence Conditions
. 395
9.1
íT-normed
spaces
. 395
9.2
Generalized Banach spaces
. 408
9.3
Inexact Newton-like methods on Banach spaces with a convergence
structure
. 417
9.4
Exercises
. 436
10
Point-to-Set-Mappings
. 445
10.1
Algorithmic models
. 445
10.2
A general convergence theorem
. 449
10.3
Convergence of
ł-step
methods
. 451
10.4
Convergence of single-step methods
. 454
10.5
Convergence of single-step methods with differentiable iteration
functions
. 458
10.6
Monotone convergence
. 468
10.7
Exercises
. 471
11
The Newton-Kantorovich Theorem and Mathematical Programming
475
11.1
Case
1:
Interior point methods
. 475
11.2
Case
2:
LP methods
. 482
11.3
Exercises
. 489
References
. 493
Glossary of Symbols
. 503
Index
. 505 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Argyros, Ioannis K. |
author_GND | (DE-588)14160820X |
author_facet | Argyros, Ioannis K. |
author_role | aut |
author_sort | Argyros, Ioannis K. |
author_variant | i k a ik ika |
building | Verbundindex |
bvnumber | BV035031734 |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 |
callnumber-search | QA295 |
callnumber-sort | QA 3295 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 910 SK 900 |
ctrlnum | (OCoLC)427558622 (DE-599)DNB983915091 |
dewey-full | 518.26 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518.26 |
dewey-search | 518.26 |
dewey-sort | 3518.26 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV035031734</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220504</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080901s2008 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N20,0948</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">983915091</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387727417</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">978-0-387-72741-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387727431</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-387-72743-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387727418</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">0-387-72741-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387727417</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11014553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)427558622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB983915091</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA295</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518.26</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 900</subfield><subfield code="0">(DE-625)143268:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Argyros, Ioannis K.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14160820X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convergence and Applications of Newton-type Iterations</subfield><subfield code="c">Ioannis K. Argyros</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 506 S.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergencia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Método de Newton-Raphson</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Métodos iterativos (Matemáticas)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newton-Raphson method</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Newton-Verfahren</subfield><subfield code="0">(DE-588)4171693-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2944732&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016700708</subfield></datafield></record></collection> |
id | DE-604.BV035031734 |
illustrated | Not Illustrated |
index_date | 2024-07-02T21:50:05Z |
indexdate | 2024-07-20T09:48:47Z |
institution | BVB |
isbn | 9780387727417 9780387727431 0387727418 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016700708 |
oclc_num | 427558622 |
open_access_boolean | |
owner | DE-384 DE-188 |
owner_facet | DE-384 DE-188 |
physical | XV, 506 S. 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Argyros, Ioannis K. Verfasser (DE-588)14160820X aut Convergence and Applications of Newton-type Iterations Ioannis K. Argyros New York, NY Springer 2008 XV, 506 S. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Convergencia Método de Newton-Raphson Métodos iterativos (Matemáticas) Convergence Iterative methods (Mathematics) Newton-Raphson method Iteration (DE-588)4123457-1 gnd rswk-swf Konvergenz (DE-588)4032326-2 gnd rswk-swf Newton-Verfahren (DE-588)4171693-0 gnd rswk-swf Newton-Verfahren (DE-588)4171693-0 s Konvergenz (DE-588)4032326-2 s Iteration (DE-588)4123457-1 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2944732&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Argyros, Ioannis K. Convergence and Applications of Newton-type Iterations Convergencia Método de Newton-Raphson Métodos iterativos (Matemáticas) Convergence Iterative methods (Mathematics) Newton-Raphson method Iteration (DE-588)4123457-1 gnd Konvergenz (DE-588)4032326-2 gnd Newton-Verfahren (DE-588)4171693-0 gnd |
subject_GND | (DE-588)4123457-1 (DE-588)4032326-2 (DE-588)4171693-0 |
title | Convergence and Applications of Newton-type Iterations |
title_auth | Convergence and Applications of Newton-type Iterations |
title_exact_search | Convergence and Applications of Newton-type Iterations |
title_exact_search_txtP | Convergence and Applications of Newton-type Iterations |
title_full | Convergence and Applications of Newton-type Iterations Ioannis K. Argyros |
title_fullStr | Convergence and Applications of Newton-type Iterations Ioannis K. Argyros |
title_full_unstemmed | Convergence and Applications of Newton-type Iterations Ioannis K. Argyros |
title_short | Convergence and Applications of Newton-type Iterations |
title_sort | convergence and applications of newton type iterations |
topic | Convergencia Método de Newton-Raphson Métodos iterativos (Matemáticas) Convergence Iterative methods (Mathematics) Newton-Raphson method Iteration (DE-588)4123457-1 gnd Konvergenz (DE-588)4032326-2 gnd Newton-Verfahren (DE-588)4171693-0 gnd |
topic_facet | Convergencia Método de Newton-Raphson Métodos iterativos (Matemáticas) Convergence Iterative methods (Mathematics) Newton-Raphson method Iteration Konvergenz Newton-Verfahren |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2944732&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT argyrosioannisk convergenceandapplicationsofnewtontypeiterations |