Algebraic topology:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Zürich
Europ. Math. Soc.
2008
|
Schriftenreihe: | EMS textbooks in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 567 S. graph. Darst. |
ISBN: | 9783037190487 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035031605 | ||
003 | DE-604 | ||
005 | 20170816 | ||
007 | t | ||
008 | 080901s2008 d||| |||| 00||| eng d | ||
020 | |a 9783037190487 |9 978-3-03719-048-7 | ||
035 | |a (OCoLC)261176011 | ||
035 | |a (DE-599)BVBBV035031605 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-824 |a DE-20 |a DE-91G |a DE-29T |a DE-703 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA612 | |
082 | 0 | |a 514/.2 |2 22 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a MAT 550f |2 stub | ||
100 | 1 | |a Tom Dieck, Tammo |d 1938- |e Verfasser |0 (DE-588)124473091 |4 aut | |
245 | 1 | 0 | |a Algebraic topology |c Tammo tom Dieck |
264 | 1 | |a Zürich |b Europ. Math. Soc. |c 2008 | |
300 | |a XI, 567 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a EMS textbooks in mathematics | |
650 | 7 | |a Algebraïsche topologie |2 gtt | |
650 | 7 | |a Topologia algébrica |2 larpcal | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |a Tom Dieck, Tammo, 1938- |t Algebraic topology |n Online-Ausgabe |z 978-3-03719-548-2 |w (DE-604)BV036713255 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700582&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016700582 |
Datensatz im Suchindex
_version_ | 1804137962313613312 |
---|---|
adam_text | Contents
Preface
v
1
Topological
Spaces 1
1.1
Basic
Notions
............................ 1
1.2
Subspaces. Quotient Spaces
.................... 5
1.3
Products and Sums
......................... 8
1.4
Compact Spaces
.......................... 11
1.5
Proper Maps
............................ 14
1.6
Paracompact Spaces
........................ 15
1.7
Topological Groups
........................ 15
1.8
Transformation Groups
....................... 17
1.9
Projective
Spaces.
Grassmann
Manifolds
............. 21
2
The Fundamental Group
24
2.1
The Notion of Homotopy
..................... 25
2.2
Further Homotopy Notions
..................... 30
2.3
Standard Spaces
.......................... 34
2.4
Mapping Spaces and Homotopy
.................. 37
2.5
The Fundamental Groupoid
.................... 41
2.6
The Theorem of
Seifert
and van
Kampen............. 45
2.7
The Fundamental Group of the Circle
............... 47
2.8
Examples
.............................. 52
2.9
Homotopy Groupoids
....................... 58
3
Covering Spaces
62
3.1
Locally Trivial Maps. Covering Spaces
.............. 62
3.2
Fibre Transport. Exact Sequence
................. 66
3.3
Classification of Coverings
..................... 70
3.4
Connected Groupoids
....................... 72
3.5
Existence of Liftings
........................ 76
3.6
The Universal Covering
...................... 78
4
Elementary Homotopy Theory
81
4.1
The Mapping Cylinder
....................... 81
4.2
The Double Mapping Cylinder
................... 84
4.3
Suspension. Homotopy Groups
.................. 86
4.4
Loop Space
............................. 89
viii Contents
4.5
Groups and Cogroups
....................... 90
4.6
The Cofibre Sequence
....................... 92
4.7
The Fibre Sequence
........................ 97
5
Cofibrations and Fibrations
101
5.1
The Homotopy Extension Property
................ 101
5.2
Transport
.............................. 107
5.3
Replacing a Map by a Cofibration
................. 110
5.4
Characterization of Cofibrations
.................. 113
5.5
The Homotopy Lifting Property
.................. 115
5.6
Transport
.............................. 119
5.7
Replacing a Map by a Fibration
.................. 120
6
Homotopy Groups
121
6.1
The Exact Sequence of Homotopy Groups
............ 122
6.2
The Role of the Base Point
..................... 126
6.3
Serre
Fibrations
.......................... 129
6.4
The Excision Theorem
....................... 133
6.5
The Degree
............................. 135
6.6
The
Brouwer
Fixed Point Theorem
................ 137
6.7
Higher Connectivity
........................ 141
6.8
Classical Groups
.......................... 146
6.9
Proof of the Excision Theorem
................... 148
6.10
Further Applications of Excision
.................. 152
7
Stable Homotopy. Duality
159
7.1
A Stable Category
......................... 159
7.2
Mapping Cones
........................... 164
7.3
Euclidean Complements
...................... 168
7.4
The Complement Duality Functor
................. 169
7.5
Duality
............................... 175
7.6
Homology and Cohomology for Pointed Spaces
......... 179
7.7
Spectral Homology and Cohomology
............... 181
7.8
Alexander Duality
......................... 185
7.9
Compactly Generated Spaces
................... 186
8
Cell Complexes
196
8.1
Simplicial Complexes
....................... 197
8.2
Whitehead Complexes
....................... 199
8.3
CW-Complexes
........................... 203
8.4
Weak Homotopy Equivalences
................... 207
8.5
Cellular Approximation
...................... 210
8.6
CW-Approximation
........................ 211
Contents ix
8.7
Homotopy Classification
...................... 216
8.8 Eilenberg-Mac
Lane
Spaces.................... 217
9 Singular Homology 223
9.1 Singular Homology
Groups
.................... 224
9.2 The Fundamental Group...................... 227
9.3 Homotopy............................. 228
9.4 Barycentric
Subdivision. Excision.................
231
9.5
Weak Equivalences and Homology
................ 235
9.6
Homology with Coefficients
.................... 237
9.7
The Theorem of
Eilenberg
and Zilber
............... 238
9.8
The Homology Product
...................... 241
10
Homology
244
10.1
The Axioms of
Eilenberg
and Steenrod
.............. 244
10.2
Elementary Consequences of the Axioms
............. 246
10.3
Jordan Curves.
Invariance
of Domain
............... 249
10.4
Reduced Homology Groups
.................... 252
10.5
The Degree
............................. 256
10.6
The Theorem of
Borsuk
and
Ulam
................. 261
10.7
Mayer-Vietoris Sequences
..................... 265
10.8
Colimits
.............................. 270
10.9
Suspension
............................. 273
11
Homological Algebra
275
11.1
Diagrams
.............................. 275
11.2
Exact Sequences
.......................... 279
11.3
Chain Complexes
.......................... 283
11.4
Cochain complexes
......................... 285
11.5
Natural Chain Maps and Homotopies
............... 286
11.6
Chain Equivalences
........................ 287
11.7
Linear Algebra of Chain Complexes
................ 289
11.8
The Functors Tor and Ext
..................... 292
11.9
Universal Coefficients
....................... 295
11.10
The Kiinneth Formula
........................ 298
12
Cellular Homology
300
12.1
Cellular Chain Complexes
..................... 300
12.2
Cellular Homology equals Homology
............... 304
12.3
Simplicial Complexes
....................... 306
12.4
The
Euler
Characteristic
...................... 308
12.5
Euler
Characteristic of Surfaces
.................. 311
χ
Contents
13
Partitions
of Unity in Homotopy Theory
318
13.1
Partitions of Unity
......................... 318
13.2
The Homotopy Colimit of a Covering
............... 321
13.3
Homotopy Equivalences
...................... 324
13.4
Fibrations
.............................. 325
14
Bundles
328
14.1
Principal Bundles
.......................... 328
14.2
VectorBundles
........................... 335
14.3
The Homotopy Theorem
...................... 342
14.4
Universal Bundles. Classifying Spaces
.............. 344
14.5
Algebra of Vector Bundles
...................... 351
14.6
Grothendieck Rings of Vector Bundles
.............. 355
15
Manifolds
358
15.1
Differentiable Manifolds
...................... 358
15.2
Tangent Spaces and Differentials
................. 362
15.3
Smooth Transformation Groups
.................. 366
15.4
Manifolds with Boundary
..................... 369
15.5
Orientation
............................. 372
15.6
Tangent Bundle. Normal Bundle
.................. 374
15.7
Embeddings
............................ 379
15.8
Approximation
........................... 383
15.9
Transversality
........................... 384
15.10
Gluing along Boundaries
...................... 388
16
Homology of Manifolds
392
16.1
Local Homology Groups
...................... 392
16.2
Homological Orientations
..................... 394
16.3
Homology in the Dimension of the Manifold
........... 396
16.4
Fundamental Class and Degree
.................. 399
16.5
Manifolds with Boundary
..................... 402
16.6
Winding and Linking Numbers
.................. 403
17
Cohomology
405
17.1
Axiomatic Cohomoiogy
...................... 405
17.2
Multiplicative Cohomology Theories
............... 409
17.3
External Products
.......................... 413
17.4
Singular Cohomology
....................... 416
17.5
Eiienberg-Mac Lane Spaces and Cohomology
.......... 419
17.6
The Cup Product in Singular Cohomology
............ 422
17.7
Fibration over Spheres
....................... 425
17.8
The Theorem of Leray and
Hirsch................. 427
Contents xi
17.9
The Thom Isomorphism
...................... 431
18
Duality
438
18.1
The Cap Product
.......................... 438
18.2
Duality Pairings
.......................... 441
18.3
The Duality Theorem
........................ 444
18.4
Euclidean Neighbourhood Retracts
................ 447
18.5
Proof of the Duality Theorem
................... 451
18.6
Manifolds with Boundary
..................... 455
18.7
The Intersection Form. Signature
................. 457
18.8
The
Euler
Number
......................... 461
18.9
Euler
Class and
Euler
Characteristic
................ 464
19
Characteristic Classes
467
19.1
Projective
Spaces
.......................... 468
19.2
Projective
Bundles
......................... 471
19.3
Chern Classes
........................... 472
19.4 Stiefel-Whitney
Classes
...................... 478
19.5
Pontrjagin Classes
......................... 479
19.6 Hopf
Algebras
........................... 482
19.7 Hopf
Algebras and Classifying Spaces
............... 486
19.8
Characteristic Numbers
...................... 491
20
Homology and Homotopy
495
20.1
The Theorem of Hurewicz
..................... 495
20.2
Realization of Chain Complexes
.................. 501
20.3
Serre
Classes
............................ 504
20.4
Qualitative Homology of Fibrations
................ 505
20.5
Consequences of the Fibration Theorem
.............. 508
20.6
Hurewicz and Whitehead Theorems modulo
Serre
classes
..... 510
20.7
Cohomology of Eilenberg-Mac Lane Spaces
........... 513
20.8
Homotopy Groups of Spheres
................... 514
20.9
Rational Homology Theories
.................... 518
21
Bordism
521
21.1
Bordism Homology
........................ 521
21.2
The Theorem of Pontrjagin and Thom
............... 529
21.3
Bordism and Thom Spectra
.................... 535
21.4
Oriented Bordism
......................... 537
Bibliography
541
Symbols
551
Index
557
|
adam_txt |
Contents
Preface
v
1
Topological
Spaces 1
1.1
Basic
Notions
. 1
1.2
Subspaces. Quotient Spaces
. 5
1.3
Products and Sums
. 8
1.4
Compact Spaces
. 11
1.5
Proper Maps
. 14
1.6
Paracompact Spaces
. 15
1.7
Topological Groups
. 15
1.8
Transformation Groups
. 17
1.9
Projective
Spaces.
Grassmann
Manifolds
. 21
2
The Fundamental Group
24
2.1
The Notion of Homotopy
. 25
2.2
Further Homotopy Notions
. 30
2.3
Standard Spaces
. 34
2.4
Mapping Spaces and Homotopy
. 37
2.5
The Fundamental Groupoid
. 41
2.6
The Theorem of
Seifert
and van
Kampen. 45
2.7
The Fundamental Group of the Circle
. 47
2.8
Examples
. 52
2.9
Homotopy Groupoids
. 58
3
Covering Spaces
62
3.1
Locally Trivial Maps. Covering Spaces
. 62
3.2
Fibre Transport. Exact Sequence
. 66
3.3
Classification of Coverings
. 70
3.4
Connected Groupoids
. 72
3.5
Existence of Liftings
. 76
3.6
The Universal Covering
. 78
4
Elementary Homotopy Theory
81
4.1
The Mapping Cylinder
. 81
4.2
The Double Mapping Cylinder
. 84
4.3
Suspension. Homotopy Groups
. 86
4.4
Loop Space
. 89
viii Contents
4.5
Groups and Cogroups
. 90
4.6
The Cofibre Sequence
. 92
4.7
The Fibre Sequence
. 97
5
Cofibrations and Fibrations
101
5.1
The Homotopy Extension Property
. 101
5.2
Transport
. 107
5.3
Replacing a Map by a Cofibration
. 110
5.4
Characterization of Cofibrations
. 113
5.5
The Homotopy Lifting Property
. 115
5.6
Transport
. 119
5.7
Replacing a Map by a Fibration
. 120
6
Homotopy Groups
121
6.1
The Exact Sequence of Homotopy Groups
. 122
6.2
The Role of the Base Point
. 126
6.3
Serre
Fibrations
. 129
6.4
The Excision Theorem
. 133
6.5
The Degree
. 135
6.6
The
Brouwer
Fixed Point Theorem
. 137
6.7
Higher Connectivity
. 141
6.8
Classical Groups
. 146
6.9
Proof of the Excision Theorem
. 148
6.10
Further Applications of Excision
. 152
7
Stable Homotopy. Duality
159
7.1
A Stable Category
. 159
7.2
Mapping Cones
. 164
7.3
Euclidean Complements
. 168
7.4
The Complement Duality Functor
. 169
7.5
Duality
. 175
7.6
Homology and Cohomology for Pointed Spaces
. 179
7.7
Spectral Homology and Cohomology
. 181
7.8
Alexander Duality
. 185
7.9
Compactly Generated Spaces
. 186
8
Cell Complexes
196
8.1
Simplicial Complexes
. 197
8.2
Whitehead Complexes
. 199
8.3
CW-Complexes
. 203
8.4
Weak Homotopy Equivalences
. 207
8.5
Cellular Approximation
. 210
8.6
CW-Approximation
. 211
Contents ix
8.7
Homotopy Classification
. 216
8.8 Eilenberg-Mac
Lane
Spaces. 217
9 Singular Homology 223
9.1 Singular Homology
Groups
. 224
9.2 The Fundamental Group. 227
9.3 Homotopy. 228
9.4 Barycentric
Subdivision. Excision.
231
9.5
Weak Equivalences and Homology
. 235
9.6
Homology with Coefficients
. 237
9.7
The Theorem of
Eilenberg
and Zilber
. 238
9.8
The Homology Product
. 241
10
Homology
244
10.1
The Axioms of
Eilenberg
and Steenrod
. 244
10.2
Elementary Consequences of the Axioms
. 246
10.3
Jordan Curves.
Invariance
of Domain
. 249
10.4
Reduced Homology Groups
. 252
10.5
The Degree
. 256
10.6
The Theorem of
Borsuk
and
Ulam
. 261
10.7
Mayer-Vietoris Sequences
. 265
10.8
Colimits
. 270
10.9
Suspension
. 273
11
Homological Algebra
275
11.1
Diagrams
. 275
11.2
Exact Sequences
. 279
11.3
Chain Complexes
. 283
11.4
Cochain complexes
. 285
11.5
Natural Chain Maps and Homotopies
. 286
11.6
Chain Equivalences
. 287
11.7
Linear Algebra of Chain Complexes
. 289
11.8
The Functors Tor and Ext
. 292
11.9
Universal Coefficients
. 295
11.10
The Kiinneth Formula
. 298
12
Cellular Homology
300
12.1
Cellular Chain Complexes
. 300
12.2
Cellular Homology equals Homology
. 304
12.3
Simplicial Complexes
. 306
12.4
The
Euler
Characteristic
. 308
12.5
Euler
Characteristic of Surfaces
. 311
χ
Contents
13
Partitions
of Unity in Homotopy Theory
318
13.1
Partitions of Unity
. 318
13.2
The Homotopy Colimit of a Covering
. 321
13.3
Homotopy Equivalences
. 324
13.4
Fibrations
. 325
14
Bundles
328
14.1
Principal Bundles
. 328
14.2
VectorBundles
. 335
14.3
The Homotopy Theorem
. 342
14.4
Universal Bundles. Classifying Spaces
. 344
14.5
Algebra of Vector Bundles
. 351
14.6
Grothendieck Rings of Vector Bundles
. 355
15
Manifolds
358
15.1
Differentiable Manifolds
. 358
15.2
Tangent Spaces and Differentials
. 362
15.3
Smooth Transformation Groups
. 366
15.4
Manifolds with Boundary
. 369
15.5
Orientation
. 372
15.6
Tangent Bundle. Normal Bundle
. 374
15.7
Embeddings
. 379
15.8
Approximation
. 383
15.9
Transversality
. 384
15.10
Gluing along Boundaries
. 388
16
Homology of Manifolds
392
16.1
Local Homology Groups
. 392
16.2
Homological Orientations
. 394
16.3
Homology in the Dimension of the Manifold
. 396
16.4
Fundamental Class and Degree
. 399
16.5
Manifolds with Boundary
. 402
16.6
Winding and Linking Numbers
. 403
17
Cohomology
405
17.1
Axiomatic Cohomoiogy
. 405
17.2
Multiplicative Cohomology Theories
. 409
17.3
External Products
. 413
17.4
Singular Cohomology
. 416
17.5
Eiienberg-Mac Lane Spaces and Cohomology
. 419
17.6
The Cup Product in Singular Cohomology
. 422
17.7
Fibration over Spheres
. 425
17.8
The Theorem of Leray and
Hirsch. 427
Contents xi
17.9
The Thom Isomorphism
. 431
18
Duality
438
18.1
The Cap Product
. 438
18.2
Duality Pairings
. 441
18.3
The Duality Theorem
. 444
18.4
Euclidean Neighbourhood Retracts
. 447
18.5
Proof of the Duality Theorem
. 451
18.6
Manifolds with Boundary
. 455
18.7
The Intersection Form. Signature
. 457
18.8
The
Euler
Number
. 461
18.9
Euler
Class and
Euler
Characteristic
. 464
19
Characteristic Classes
467
19.1
Projective
Spaces
. 468
19.2
Projective
Bundles
. 471
19.3
Chern Classes
. 472
19.4 Stiefel-Whitney
Classes
. 478
19.5
Pontrjagin Classes
. 479
19.6 Hopf
Algebras
. 482
19.7 Hopf
Algebras and Classifying Spaces
. 486
19.8
Characteristic Numbers
. 491
20
Homology and Homotopy
495
20.1
The Theorem of Hurewicz
. 495
20.2
Realization of Chain Complexes
. 501
20.3
Serre
Classes
. 504
20.4
Qualitative Homology of Fibrations
. 505
20.5
Consequences of the Fibration Theorem
. 508
20.6
Hurewicz and Whitehead Theorems modulo
Serre
classes
. 510
20.7
Cohomology of Eilenberg-Mac Lane Spaces
. 513
20.8
Homotopy Groups of Spheres
. 514
20.9
Rational Homology Theories
. 518
21
Bordism
521
21.1
Bordism Homology
. 521
21.2
The Theorem of Pontrjagin and Thom
. 529
21.3
Bordism and Thom Spectra
. 535
21.4
Oriented Bordism
. 537
Bibliography
541
Symbols
551
Index
557 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tom Dieck, Tammo 1938- |
author_GND | (DE-588)124473091 |
author_facet | Tom Dieck, Tammo 1938- |
author_role | aut |
author_sort | Tom Dieck, Tammo 1938- |
author_variant | d t t dt dtt |
building | Verbundindex |
bvnumber | BV035031605 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612 |
callnumber-search | QA612 |
callnumber-sort | QA 3612 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 300 |
classification_tum | MAT 550f |
ctrlnum | (OCoLC)261176011 (DE-599)BVBBV035031605 |
dewey-full | 514/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.2 |
dewey-search | 514/.2 |
dewey-sort | 3514 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01689nam a2200433 c 4500</leader><controlfield tag="001">BV035031605</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170816 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080901s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037190487</subfield><subfield code="9">978-3-03719-048-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)261176011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035031605</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tom Dieck, Tammo</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124473091</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic topology</subfield><subfield code="c">Tammo tom Dieck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Zürich</subfield><subfield code="b">Europ. Math. Soc.</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 567 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">EMS textbooks in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraïsche topologie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologia algébrica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Tom Dieck, Tammo, 1938-</subfield><subfield code="t">Algebraic topology</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-03719-548-2</subfield><subfield code="w">(DE-604)BV036713255</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700582&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016700582</subfield></datafield></record></collection> |
id | DE-604.BV035031605 |
illustrated | Illustrated |
index_date | 2024-07-02T21:50:01Z |
indexdate | 2024-07-09T21:20:37Z |
institution | BVB |
isbn | 9783037190487 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016700582 |
oclc_num | 261176011 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-824 DE-20 DE-91G DE-BY-TUM DE-29T DE-703 DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-824 DE-20 DE-91G DE-BY-TUM DE-29T DE-703 DE-11 DE-188 |
physical | XI, 567 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Europ. Math. Soc. |
record_format | marc |
series2 | EMS textbooks in mathematics |
spelling | Tom Dieck, Tammo 1938- Verfasser (DE-588)124473091 aut Algebraic topology Tammo tom Dieck Zürich Europ. Math. Soc. 2008 XI, 567 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier EMS textbooks in mathematics Algebraïsche topologie gtt Topologia algébrica larpcal Algebraic topology Homology theory Homotopy theory Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 s DE-604 Erscheint auch als Tom Dieck, Tammo, 1938- Algebraic topology Online-Ausgabe 978-3-03719-548-2 (DE-604)BV036713255 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700582&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tom Dieck, Tammo 1938- Algebraic topology Algebraïsche topologie gtt Topologia algébrica larpcal Algebraic topology Homology theory Homotopy theory Algebraische Topologie (DE-588)4120861-4 gnd |
subject_GND | (DE-588)4120861-4 |
title | Algebraic topology |
title_auth | Algebraic topology |
title_exact_search | Algebraic topology |
title_exact_search_txtP | Algebraic topology |
title_full | Algebraic topology Tammo tom Dieck |
title_fullStr | Algebraic topology Tammo tom Dieck |
title_full_unstemmed | Algebraic topology Tammo tom Dieck |
title_short | Algebraic topology |
title_sort | algebraic topology |
topic | Algebraïsche topologie gtt Topologia algébrica larpcal Algebraic topology Homology theory Homotopy theory Algebraische Topologie (DE-588)4120861-4 gnd |
topic_facet | Algebraïsche topologie Topologia algébrica Algebraic topology Homology theory Homotopy theory Algebraische Topologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700582&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tomdiecktammo algebraictopology |