Genetic improvement of bioenergy crops:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 449 S. Ill., graph. Darst. |
ISBN: | 9780387708041 0387708049 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035031193 | ||
003 | DE-604 | ||
005 | 20090305 | ||
007 | t | ||
008 | 080901s2008 ad|| |||| 00||| eng d | ||
015 | |a 07,N08,1105 |2 dnb | ||
016 | 7 | |a 982806043 |2 DE-101 | |
020 | |a 9780387708041 |c Gb. : ca. EUR 122.78 (freier Pr.), ca. sfr 188.00 (freier Pr.) |9 978-0-387-70804-1 | ||
020 | |a 0387708049 |c Gb. : ca. EUR 122.78 (freier Pr.), ca. sfr 188.00 (freier Pr.) |9 0-387-70804-9 | ||
024 | 3 | |a 9780387708041 | |
028 | 5 | 2 | |a 11918219 |
035 | |a (OCoLC)227032723 | ||
035 | |a (DE-599)HBZHT015617858 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-M49 |a DE-703 |a DE-91S | ||
050 | 0 | |a SB288 | |
082 | 0 | |a 633.8/9 |2 22 | |
082 | 0 | |a 333.9539 |2 22 | |
084 | |a WG 9300 |0 (DE-625)148627: |2 rvk | ||
084 | |a 570 |2 sdnb | ||
084 | |a LAN 359f |2 stub | ||
084 | |a LAN 220f |2 stub | ||
245 | 1 | 0 | |a Genetic improvement of bioenergy crops |c ed. by Wilfred Vermerris |
264 | 1 | |a New York, NY [u.a.] |b Springer |c 2008 | |
300 | |a XXI, 449 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Alcohol as fuel | |
650 | 4 | |a Biomass energy | |
650 | 4 | |a Energy crops |x Genetic engineering | |
650 | 4 | |a Lignocellulose |x Biotechnology | |
650 | 0 | 7 | |a Pflanzenzüchtung |0 (DE-588)4045599-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energiepflanzen |0 (DE-588)4473008-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Energiepflanzen |0 (DE-588)4473008-1 |D s |
689 | 0 | 1 | |a Pflanzenzüchtung |0 (DE-588)4045599-3 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Vermerris, Wilfred |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016700179 |
Datensatz im Suchindex
_version_ | 1804137961714876416 |
---|---|
adam_text | Contents
Preface
........................................................................................................................
v
Contributors
............................................................................................................xix
Parti
1.
Why
Bioenergy
Makes Sense
..............................................................................
З
Wilfred Vermerris
1.1
Introduction
...................................................................................................3
1.2
Energy Sources
..............................................................................................3
1.2.1
Coal
.....................................................................................................5
1.2.2
Oil
.......................................................................................................5
1.2.3
Natural Gas
.........................................................................................6
1.2.4
Nuclear Energy
...................................................................................6
1.2.5
Hydroelectric Energy
..........................................................................7
1.2.6
Solar Energy
.......................................................................................7
1.2.7
Wind Energy
.......................................................................................8
1.2.8
Tidal Energy
.......................................................................................8
1.2.9
Wave Energy
.......................................................................................9
1.2.
lOGeothermal Energy
.............................................................................9
1.2.11
Bioenergy
............................................................................................9
1.3
Photosynthesis: Capturing Solar Energy in Chemical Bonds
......................12
1.3.1
C3 Photosynthesis
.............................................................................12
1.3.2
C4 Photosynthesis
.............................................................................14
1.3.2.1
The NADP^Malic Enzyme Variant
....................................15
1.3.2.2
The NAD^Malic Enzyme Variant
.......................................16
1.3.2.3
The Phosphoewo/pyruvate Carboxykinase Variant
..............17
1.3.2.4
Biosynthesis of Biofuel Feedstocks from
Photosynthate
.......................................................................18
χ
Contents
1.4
Alternative Energy to Meet Future Global Energy Needs
...........................19
1.4.1
Reducing Global Carbon Emissions
.................................................19
1.4.2
Political and Economic Motivations for Using Alternative
Energy
...............................................................................................24
1.5
Initiatives Around the World to Stimulate Bioenergy Production
...............26
1.6
Bioenergy, Oil Companies, and Car Manufacturers
....................................29
1.7
Concerns About Bioenergy
.........................................................................31
1.7.1
Food Versus Fuel
..............................................................................31
1.7.2
Negative Net Energy Balance
...........................................................32
1.7.3
Soil Depletion
...................................................................................33
1.7.4
Contribution to Net CO2 Emissions
..................................................34
1.7.5
Biofuels Prolong the Power of the Oil Companies
...........................35
1.7.6
Ethanol
is an Uneconomical Fuel
.....................................................36
1.8
Conclusions
.................................................................................................37
References
............................................................................................................39
2.
A Primer on Genetics, Genomics and Plant Breeding
....................................43
Wilfred Vermerris
2.1
Introduction
.................................................................................................43
2.2 DNA,
Genes and Genomes
..........................................................................43
2.3
Genetic Variation
........................................................................................47
2.4
Molecular Markers
......................................................................................49
2.4.1
Definition and Use
............................................................................49
2.4.2
The Polymerase Chain Reaction
.......................................................49
2.4.3
RFLPs
...............................................................................................51
2.4.4
CAPS Markers
..................................................................................52
2.4.5
RAPD Markers
.................................................................................52
2.4.6
SSR
or
Microsatellite
Markers
..........................................................52
2.4.7
SSLP Markers
...................................................................................53
2.4.8
SSCP Markers
...................................................................................53
2.4.9
AFLP® Markers
................................................................................53
2.4.10
SNP
Markers
.....................................................................................54
2.5
Genetic Maps
...............................................................................................54
2.6
Gene Identification and Isolation
................................................................56
2.6.1
Isolation of Mutants
..........................................................................56
2.6.2
Insertional Mutagenesis
....................................................................57
2.6.3
Map-Based Cloning
..........................................................................58
2.6.4
The Candidate-Gene Approach
.........................................................59
2.6.5
Gene Identification Based on Differential Gene Expression
............59
2.6.5.1
Differential Display
.............................................................60
2.6.5.2
Subtractive Hybridization
....................................................60
2.6.5.3
cDNA-AFLP®
......................................................................61
2.6.5.4
Microarrays
..........................................................................61
2.6.5.5
High-Throughput cDNA Sequencing
..................................61
2.7
Plant Breeding Principles
............................................................................62
2.7.1
Identification and Combination of Genetic Variation
.......................62
2.7.2
Quantitative Traits
............................................................................63
Contents xi
2.7.3
Selection
...........................................................................................64
2.7.3.1
Bulk Method
........................................................................65
2.7.3.2
Single-Seed Descent Method
...............................................65
2.7.3.3
Mass Selection
.....................................................................66
2.7.3.4
Pedigree Method
..................................................................66
2.7.3.5
Backcross Method
................................................................67
2.7.4
Testing and Evaluation
.....................................................................68
2.7.5
Cultivar
Production
...........................................................................69
2.8
Genetic Engineering
....................................................................................69
References
............................................................................................................71
3.
Production of
Ethanol
from Grain
...................................................................75
Nancy
N.
Nichols and Rodney
J
. Bothast
3.1
Introduction
.................................................................................................75
3.2
Ethanol
Fermentation Processes
..................................................................75
3.2.1
Initial Handling of Grain
...................................................................78
3.2.2
Conversion of Starch to Fermentable Sugars
....................................78
3.2.3
Ethanol
Fermentation
........................................................................80
3.2.4
Ethanol
Recovery
..............................................................................80
3.2.5 Stillage
Processing
............................................................................81
3.3
New Developments
.....................................................................................81
3.3.1
Milling and Separation Technologies
...............................................81
3.3.2
New Enzymes and Yeast Strains
......................................................82
3.3.3
New Corn Hybrids
............................................................................83
3.3.4
Co-product Quality and Utilization
...................................................83
3.3.5
Conversion of Non-starch Polymers
.................................................84
3.4
Conclusion
...................................................................................................84
References
............................................................................................................84
4.
Composition and Biosynthesis of Lignocellulosic Biomass
.............................89
Wilfred Vermerris
4.1
Introduction
.................................................................................................89
4.2
Lignocellulosci Biomass is Composed of Plant Cell Walls
.........................89
4.3
Carbohydrate Nomenclature
........................................................................91
4.3.1
The
+/-
-Nomenclature
.....................................................................91
4.3.2
The L/D -Nomenclature
.....................................................................92
4.3.3
The R, ^-Nomenclature
.....................................................................92
4.4
Cellulose
......................................................................................................96
4.4.1
Cellulose Structure
............................................................................96
4.4.2
Cellulose Biosynthesis
......................................................................98
4.5
Hemicellulose
............................................................................................102
4.5.1
Xyloglucans
....................................................................................103
4.5.2
Xylans
.............................................................................................104
4.5.2.1
Arabinoxylans
....................................................................104
4.5.2.2
Glucuronoarabinoxylans
....................................................105
4.5.2.3
4-O-Methyl-Glucuronoxylans
............................................106
xii Contents
4.5.3
Mixed-Linkage
Beta-Glucans.........................................................106
4.5.4
Mannans
..........................................................................................106
4.5.5 Hemicellulose
Biosynthesis
............................................................107
4.5.5.1
The Nucleotide Sugar
Interconversion
Pathway
................108
4.5.5.2
Biosynthesis of Hemicellulosic Polysaccharides
...............111
4.5.5.3
Xyloglucan Modification
...................................................115
4.6
Pectins
.......................................................................................................116
4.7
Lignin
and Hydroxycinnamic Acids
..........................................................117
4.7.1
Biosynthesis of Monolignols and Hydroxycinnamic Acids
............117
4.7.2
Monolignol Transport
.....................................................................120
4.7.3
Monolignol Oxidation and Polymerization
.....................................121
4.8
Cell Wall Proteins
.....................................................................................125
4.9
Cell Wall Architecture
...............................................................................126
4.10
Cell Wall-Related Databases
.....................................................................128
4.11
Conclusion
.................................................................................................129
References
..........................................................................................................129
5.
Selection of Promising Biomass Feedstock Lines Using High-
Throughput Spectrometric and Enzymatic Assays
.......................................143
Mark F. Davis, Ed Wolfrum and Tina Jeoh
5.1
Introduction
...............................................................................................143
5.2
Integrating Spectroscopy and
Multi
variate
Statistical Data Analysis
for High-Throughput Cell Wall Chemical Analysis
..................................143
5.3
Near Infrared (MR) Spectroscopy
............................................................145
5.3.1
Description of Instrumentation
.......................................................145
5.3.2
Applications and Results
.................................................................146
5.3.2.1
Qualitative Data Analysis (Classification)
.........................146
5.3.2.2
Quantitative Data Analysis (Prediction)
............................147
5.4
Pyrolysis-Molecular Beam-Mass Spectrometry
........................................148
5.4.1
Description of Instrumentation
.......................................................148
5.4.2
Applications and Results
.................................................................150
5.4.2.1
Estimates of
Lignin
Composition and Structure
................150
5.4.2.2
Detection of Quantitative Trait Loci
..................................152
5.4.2.3
Chemical Compositional Changes after
Pretreatment
and Biological Conversion
.................................................152
5.4.2.4
Screening for Unintended Effects
......................................154
5.5
Enzyme Accessibility in Biomass
.............................................................154
5.5.1
Probing for Enzyme Accessibility in Biomass
................................154
5.5.2
Applications and Results
.................................................................155
References
..........................................................................................................157
6.
Current Technologies for Fuel
Ethanol
Production from
Lignocellulosic Plant Biomass
.........................................................................161
Yulin
Lu
and Nathan S.
Mos
ier
6.1
Introduction
...............................................................................................161
6.2
Feedstock
Pretreatment
Strategies
.............................................................163
Contents xiii
6.2.1 Neutral/Controlled-pH
Pretreatment
...............................................165
6.2.1.1
Steam
Explosion................................................................165
6.2.1.2 Liquid
Hot Water Pretreatment
..........................................165
6.2.1.3
Controlled-pH Pretreatment
...............................................166
6.2.2
Acid-Based Pretreatment
................................................................166
6.2.2.1
Dilute Acid
Pretreatment
...................................................166
6.2.2.2
Concentrated Acid
Pretreatment
........................................167
6.2.3
Alkaline-Based and Other Pretreatments
........................................167
6.2.3.1
Lime
...................................................................................167
6.2.3.2
Ammonia Fiber Expansion
................................................168
6.3
Enzymatic Hydrolysis: Liberating Monosaccharides
................................168
6.4
Ethanol
Fermentation: Strain Development for Sugar
Co-fermentation
.........................................................................................171
6.4.1
Saccharomyces cerevisiae
..............................................................171
6.4.2
Zymomonas mobilis
........................................................................173
6.4.3
Escherichia
coli
..............................................................................174
6.5
Ethanol
Recovery: Distillation and Dehydration
.......................................175
6.6
Perspectives on Advanced Biochemical Conversion Technologies
..........176
Acknowledgements
............................................................................................177
References
..........................................................................................................177
Partii
7.
Genetic Improvement of Corn for Lignocellulosic Feedstock
Production
........................................................................................................185
Natalia
de
Leon and James G. Coors
7.1
Indtroduction
.............................................................................................185
7.2
Botanical Description of Corn
...................................................................186
7.2.1
Corn Anatomy
.................................................................................186
7.2.2
Corn Origin and Habiat
...................................................................187
7.2.3
Corn Reproduction and Biology
.....................................................188
7.2.4
Genome Structure and Organization
...............................................190
7.3
Management and
Bioprocessing
................................................................191
7.3.1
Cultivation Practices
.......................................................................191
7.3.2
Biomass Yield Potential
..................................................................193
7.3.3
Biomass Processing
........................................................................195
7.4
Utilization of Corn Stover as a Source of Biomass
...................................196
7.5
Genetics
.....................................................................................................198
7.5.1
Sources of Genetic Variation
..........................................................198
7.5.2
Use of Genetic Variation
................................................................199
7.6
Current Research Efforts and Future Outlook
...........................................201
References
..........................................................................................................202
8.
Development and Utilization of Sorghum as a Bioenergy Crop
..................211
Ana Saballos
8.1
Introduction
...............................................................................................211
8.2
Botanical Description of Sorghum
............................................................212
xiv Contents
8.2.1
Biology of
Reproduction
.................................................................214
8.3
Management
..............................................................................................215
8.3.1
Agronomic Considerations
.............................................................215
8.3.2
Pests and Diseases
..........................................................................217
8.3.2.1
Insect Pests
.........................................................................218
8.3.2.2
Diseases
.............................................................................220
8.3.3
Harvest and Processing Systems
.....................................................221
8.4
Current Status and Future Prospects
..........................................................223
8.5
Genetic Improvement of Sorghum
............................................................225
8.5.1
Genetic Resources
...........................................................................225
8.5.1.1
Natural Variation
...............................................................225
8.5.1.2
Mutants
..............................................................................226
8.5.1.3
Transformation
...................................................................226
8.5.1.4
Sorghum Genomics
............................................................227
8.5.2
Breeding Methods
...........................................................................228
8.5.3
Traits of Interest for Improvement
..................................................230
8.5.3.1
Yield
...................................................................................231
8.5.3.2
Stress Resistance
................................................................234
8.5.3.3
Moisture Content and Juice Extraction Efficiency
.............236
8.5.3.4
Conversion Efficiency of the Starch
..................................236
8.5.3.5
Cell Wall Composition
.......................................................236
8.5.3.6
Sugar Concentration
...........................................................237
8.6
Conclusions
...............................................................................................238
Acknowledgements
............................................................................................238
References
..........................................................................................................239
9.
Genetic Improvement of Sugarcane {Saccharum spp.)
as an Energy Crop
............................................................................................249
Thomas L. Tew andRobert M. Cobill
9.1
Introduction
...............................................................................................249
9.2
Botanical Description of Sugarcane
..........................................................249
9.2.1
Taxonomy
.......................................................................................249
9.2.2
Sugarcane Cultivation and Harvest
.................................................251
9.2.3
Sugarcane Anatomy
........................................................................252
9.2.4
Early Breeding Efforts
....................................................................254
9.2.5
Genetic Improvement
......................................................................255
9.3
Production Statistics
..................................................................................255
9.3.1
Worldwide Production Statistics
.....................................................255
9.3.2
U.S. Production Statistics
...............................................................256
9.4
Energy Potential of Sugarcane
..................................................................256
9.4.1
Yield Potential
................................................................................256
9.4.2
Actual Yields
..................................................................................257
9.5
Sugarcane as an Energy Crop
....................................................................257
9.5.1
Sugar as a Feedstock
.......................................................................258
9.5.2
Sugarcane Fiber as a Feedstock
......................................................258
9.5.2.1
Composition of Sugarcane
.................................................258
Contents xv
9.5.2.2 Boiler
Fuel and Cogeneration
............................................259
9.5.2.3 Cellulosic
Ethanol
and Gasification
...................................260
9.5.3
Energy Output/Input Ratio
..............................................................261
9.6
Energy Cane Breeding Strategies
..............................................................262
9.6.1
The Sugar Model (Status Quo)
.......................................................262
9.6.1.1
Breeding for Sugar Yield and Improved Sugar
Content
...............................................................................262
9.6.1.2
Sugarcane Breeding in Brazil
.............................................263
9.6.2
Sugar and Fiber Model
....................................................................264
9.6.2.1
Type I Energy Cane Definition
..........................................264
9.6.2.2
Genetic Base Broadening
...................................................264
9.6.2.3
Caribbean and U.S. Experience
.........................................265
9.6.3
Fiber-only Model (Type II Energy Cane)
......................................266
9.6.3.1
Type II Energy Cane Definition
.........................................266
9.6.3.2
Breeding Within Sacchamm Strictly for Fiber
Content
...............................................................................266
9.6.3.3
Related Genera and Intergeneric Hybridization
.................267
9.7
Looking to the Future
................................................................................267
Acknowledgements
............................................................................................268
References
..........................................................................................................268
10.
Miscanthus: Genetic Resources and Breeding Potential to Enhance
Bioenergy Production
......................................................................................273
John Clifton-Brown, Yu-Chung Chiang and Trevor R. Hodkinson
10.1
Introduction
...............................................................................................273
10.2
Botanical Description
oí
Miscanthus
.........................................................274
10.3
Agronomic Characteristics and
Bioprocessing
..........................................279
10.4
Production and Utilization
.........................................................................281
10.5
Why use Miscanthusl
...............................................................................282
10.6
Genetics
.....................................................................................................283
10.6.1
Using Genetic Variation for Breeding
..........................................284
10.6.2
Traits of Interest
............................................................................287
10.6.2.1
Drought Tolerance
.........................................................287
10.6.2.2
Frost Tolerance and Low Temperature Growth
.............288
10.6.2.3
Flowering Time
.............................................................288
10.6.2.4
Composition
..................................................................288
10.6.2.5
Propagation
....................................................................289
10.6.2.6
Pests and Disease
...........................................................289
10.7
Future Outlook
..........................................................................................290
Acknowledgements
............................................................................................290
References
..........................................................................................................290
11.
Improvement of
Switchgrass
as a Bioenergy Crop
.......................................295
Joe
Bouton
11.1
Introduction
...............................................................................................295
11.2
Rationale for using
Switchgrass
as a Bioenergy Crop
...............................296
xvi Contents
11.3
Botanical Description of
Switchgrass........................................................296
11.4
Management
..............................................................................................297
11.5
Bioprocessing............................................................................................
299
11.6
Breeding and
Cultivar
Development
.........................................................300
11.6.1
Traits and Breeding Methodology
................................................300
11.6.2
Population Improvement
..............................................................301
11.6.3
Hybrids
.........................................................................................302
11.7
Genomics and Transformation
..................................................................303
11.7.1
Genomics and Trait Mapping
.......................................................304
11.7.2
Tissue Culture and Transformation
..............................................305
11.8
Future Outlook and Conclusions
...............................................................305
Acknowledgements
............................................................................................306
References
..........................................................................................................306
12.
Improvement of Perennial Forage Species as Feedstock
for Bioenergy
....................................................................................................309
William F. Anderson, Michael D.
Casier
and Brian S. Baldwin
12.1
Introduction
...............................................................................................309
12.2
Reed Canarygrass
......................................................................................310
12.2.1
Botanical Description
...................................................................310
12.2.2
Management and
Bioprocessing
...................................................311
12.2.3
Genetics and Breeding
..................................................................311
12.2.4
Future Outlook for Reed Canarygrass
..........................................312
12.3
Alfalfa
........................................................................................................313
12.3.1
Botanical Description
...................................................................313
12.3.2
Management and
Bioprocessing
...................................................314
12.3.3
Genetics and Breeding
..................................................................314
12.3.4
Future Outlook for Alfalfa
............................................................316
12.4
Wildrye
......................................................................................................316
12.4.1
Botanical Description
...................................................................316
12.4.2
Management and
Bioprocessing
...................................................317
12.4.3
Genetics and Breeding
..................................................................317
12.4.4
Future Outlook for Wildrye
..........................................................317
12.5
BigBluestem
.............................................................................................318
12.5.1
Botanical Description
...................................................................318
12.5.2
Management and
Bioprocessing
...................................................319
12.5.3
Genetics and Breeding
..................................................................319
12.5.4
Future Outlook for Big Bluestem
.................................................320
12.6 Bermudagrass............................................................................................321
12.6.1
Botanical Description
...................................................................321
12.6.2
Management and
Bioprocessing
...................................................322
12.6.3
Genetics and Breeding
..................................................................323
12.6.4
Future Outlook for
Bermudagrass................................................328
12.7
Napiergrass
................................................................................................328
12.7.1
Botanical Description
...................................................................328
12.7.2
Management and
Bioprocessing
...................................................329
Contents xvii
12.7.3
Genetics and Breeding
..................................................................330
12.7.4
Future Outlook for Napiergrass
....................................................333
12.8
Eastern Gamagrass
....................................................................................333
12.8.1
Botanical Description
...................................................................333
12.8.2
Management and
Bioprocessing
...................................................334
12.8.3
Genetics and Breeding
..................................................................334
12.8.4
Future Outlook for Eastern Gamagrass
........................................335
12.9
Summary
...................................................................................................336
Acknowledgements
............................................................................................337
References
..........................................................................................................337
13.
Genetic Improvement of Willow (Salix spp.) as a Dedicated
Bioenergy Crop
................................................................................................347
Lawrence B. Smart and Kimberly D. Cameron
13.1
Introduction
...............................................................................................347
13.2
Botanical Description of Willow (Salix)
...................................................348
13.2.1
Taxonomy of Species Developed as Bioenergy Crops
.................348
13.2.2
Willow Habitat and Growth
..........................................................349
13.3
Cultivation, Harvesting, and Processing of Shrub Willow
........................349
13.3.1
Establishing Willow Bioenergy Crop Plantations
........................349
13.3.2
Willow Crop Management
...........................................................352
13.3.3
Willow Biomass Harvesting, Transport, and Storage
...................355
13.3.4
Processing and Conversion of Willow Biomass
to Electricity, Heat, and Transportation Fuels
..............................357
13.4
Breeding and Selection of Improved Shrub Willow
Varieties for Bioenergy
.............................................................................359
13.4.1
Pollination, Hybridization, and Seedling
Propagation of Willows
................................................................359
13.4.2
Genetics of Traits Important for Improved
Performance of Willow as a Bioenergy Crop
...............................362
13.4.3
Current Breeding Efforts for the Development of
Shrub Willow as an Energy Crop
.................................................363
13.4.3.1
Breeding Programs in Sweden
.......................................363
13.4.3.2
Breeding Programs in the United Kingdom
...................364
13.4.3.3
Breeding Programs in North America
...........................365
13.4.4
Analysis and Genetic Modification of the Willow Genome
.........369
13.4
Future Outlook
..........................................................................................370
Acknowledgements
............................................................................................370
References
..........................................................................................................370
14.
Genetic Improvement of Poplar (Populus spp.) as a Bioenergy Crop
.........377
John M. Davis
14.1
Introduction
...............................................................................................377
14.2
Botanical Description of Poplar (Populus)
................................................378
14.2.1
Taxonomy of Populus
..................................................................378
14.2.2
Propagation and Silviculture
.........................................................380
xviii Contents
14.2.3
Use of Poplar for Bioenergy
.........................................................383
14.3
Genetic Improvement
................................................................................385
14.3.1
Genetic Parameters for Bioenergy Traits
......................................386
14.3.2
Whole-Genome Sequence: The Parts List for
Genetic Improvement
...................................................................388
14.3.3
Trait Mapping in Pedigrees and Populations
................................389
14.3.4
Transgenic Alteration of Gene Expression
...................................390
14.4
Conclusions
...............................................................................................393
Acknowledgements
............................................................................................393
References
..........................................................................................................393
15.
Southern Pines: A Resource for Bioenergy
....................................................397
Gary
F
.
Peter
15.1
Introduction
...............................................................................................397
15.2
Botanical Description of Pines: Southern Yellow Pines
............................398
15.2.1
Taxonomy of Species Developed for Plantation Forestry
............398
15.3
Management, Harvesting, Transportation and
Bioprocessing
of Southern Pines
......................................................................................400
15.3.1
Current Southern Pine Growing Systems for
Traditional Forest Products
...........................................................400
15.3.2
Southern Pine Harvesting and Transport
......................................403
15.3.3
Silvicultural Research for Short-Rotation Bioenergy
Plantings
.......................................................................................403
15.3.4
Traditional Pulp and Paper
Bioprocessing
Methods,
Existing Infrastructure, and Integrated Forest Biorefineries
.........404
15.3.5
Stand-Alone Facilities for Converting Southern Pines to
Energy and Fuels
..........................................................................405
15.4
Life History and Life Cycle of Southern Pines
.........................................406
15.5
Genetics and Breeding of Southern Pine
...................................................407
15.5.1
Genetic Diversity
..........................................................................407
15.5.2
Pollination, Breeding, and Propagation of Southern Pines
...........408
15.5.3
Genetic Improvement of Growth, Disease Resistance,
and Wood Properties in Loblolly and Slash Pine
.........................411
15.5.4
Biotechnology in Southern Pines
..................................................413
15.6
Future Outlook
..........................................................................................414
Acknowledgements
............................................................................................414
References
..........................................................................................................414
List of Abbreviations
.............................................................................................421
Index
.......................................................................................................................423
|
adam_txt |
Contents
Preface
.
v
Contributors
.xix
Parti
1.
Why
Bioenergy
Makes Sense
.
З
Wilfred Vermerris
1.1
Introduction
.3
1.2
Energy Sources
.3
1.2.1
Coal
.5
1.2.2
Oil
.5
1.2.3
Natural Gas
.6
1.2.4
Nuclear Energy
.6
1.2.5
Hydroelectric Energy
.7
1.2.6
Solar Energy
.7
1.2.7
Wind Energy
.8
1.2.8
Tidal Energy
.8
1.2.9
Wave Energy
.9
1.2.
lOGeothermal Energy
.9
1.2.11
Bioenergy
.9
1.3
Photosynthesis: Capturing Solar Energy in Chemical Bonds
.12
1.3.1
C3 Photosynthesis
.12
1.3.2
C4 Photosynthesis
.14
1.3.2.1
The NADP^Malic Enzyme Variant
.15
1.3.2.2
The NAD^Malic Enzyme Variant
.16
1.3.2.3
The Phosphoewo/pyruvate Carboxykinase Variant
.17
1.3.2.4
Biosynthesis of Biofuel Feedstocks from
Photosynthate
.18
χ
Contents
1.4
Alternative Energy to Meet Future Global Energy Needs
.19
1.4.1
Reducing Global Carbon Emissions
.19
1.4.2
Political and Economic Motivations for Using Alternative
Energy
.24
1.5
Initiatives Around the World to Stimulate Bioenergy Production
.26
1.6
Bioenergy, Oil Companies, and Car Manufacturers
.29
1.7
Concerns About Bioenergy
.31
1.7.1
Food Versus Fuel
.31
1.7.2
Negative Net Energy Balance
.32
1.7.3
Soil Depletion
.33
1.7.4
Contribution to Net CO2 Emissions
.34
1.7.5
Biofuels Prolong the Power of the Oil Companies
.35
1.7.6
Ethanol
is an Uneconomical Fuel
.36
1.8
Conclusions
.37
References
.39
2.
A Primer on Genetics, Genomics and Plant Breeding
.43
Wilfred Vermerris
2.1
Introduction
.43
2.2 DNA,
Genes and Genomes
.43
2.3
Genetic Variation
.47
2.4
Molecular Markers
.49
2.4.1
Definition and Use
.49
2.4.2
The Polymerase Chain Reaction
.49
2.4.3
RFLPs
.51
2.4.4
CAPS Markers
.52
2.4.5
RAPD Markers
.52
2.4.6
SSR
or
Microsatellite
Markers
.52
2.4.7
SSLP Markers
.53
2.4.8
SSCP Markers
.53
2.4.9
AFLP® Markers
.53
2.4.10
SNP
Markers
.54
2.5
Genetic Maps
.54
2.6
Gene Identification and Isolation
.56
2.6.1
Isolation of Mutants
.56
2.6.2
Insertional Mutagenesis
.57
2.6.3
Map-Based Cloning
.58
2.6.4
The Candidate-Gene Approach
.59
2.6.5
Gene Identification Based on Differential Gene Expression
.59
2.6.5.1
Differential Display
.60
2.6.5.2
Subtractive Hybridization
.60
2.6.5.3
cDNA-AFLP®
.61
2.6.5.4
Microarrays
.61
2.6.5.5
High-Throughput cDNA Sequencing
.61
2.7
Plant Breeding Principles
.62
2.7.1
Identification and Combination of Genetic Variation
.62
2.7.2
Quantitative Traits
.63
Contents xi
2.7.3
Selection
.64
2.7.3.1
Bulk Method
.65
2.7.3.2
Single-Seed Descent Method
.65
2.7.3.3
Mass Selection
.66
2.7.3.4
Pedigree Method
.66
2.7.3.5
Backcross Method
.67
2.7.4
Testing and Evaluation
.68
2.7.5
Cultivar
Production
.69
2.8
Genetic Engineering
.69
References
.71
3.
Production of
Ethanol
from Grain
.75
Nancy
N.
Nichols and Rodney
J
. Bothast
3.1
Introduction
.75
3.2
Ethanol
Fermentation Processes
.75
3.2.1
Initial Handling of Grain
.78
3.2.2
Conversion of Starch to Fermentable Sugars
.78
3.2.3
Ethanol
Fermentation
.80
3.2.4
Ethanol
Recovery
.80
3.2.5 Stillage
Processing
.81
3.3
New Developments
.81
3.3.1
Milling and Separation Technologies
.81
3.3.2
New Enzymes and Yeast Strains
.82
3.3.3
New Corn Hybrids
.83
3.3.4
Co-product Quality and Utilization
.83
3.3.5
Conversion of Non-starch Polymers
.84
3.4
Conclusion
.84
References
.84
4.
Composition and Biosynthesis of Lignocellulosic Biomass
.89
Wilfred Vermerris
4.1
Introduction
.89
4.2
Lignocellulosci Biomass is Composed of Plant Cell Walls
.89
4.3
Carbohydrate Nomenclature
.91
4.3.1
The
+/-
-Nomenclature
.91
4.3.2
The L/D -Nomenclature
.92
4.3.3
The R, ^-Nomenclature
.92
4.4
Cellulose
.96
4.4.1
Cellulose Structure
.96
4.4.2
Cellulose Biosynthesis
.98
4.5
Hemicellulose
.102
4.5.1
Xyloglucans
.103
4.5.2
Xylans
.104
4.5.2.1
Arabinoxylans
.104
4.5.2.2
Glucuronoarabinoxylans
.105
4.5.2.3
4-O-Methyl-Glucuronoxylans
.106
xii Contents
4.5.3
Mixed-Linkage
Beta-Glucans.106
4.5.4
Mannans
.106
4.5.5 Hemicellulose
Biosynthesis
.107
4.5.5.1
The Nucleotide Sugar
Interconversion
Pathway
.108
4.5.5.2
Biosynthesis of Hemicellulosic Polysaccharides
.111
4.5.5.3
Xyloglucan Modification
.115
4.6
Pectins
.116
4.7
Lignin
and Hydroxycinnamic Acids
.117
4.7.1
Biosynthesis of Monolignols and Hydroxycinnamic Acids
.117
4.7.2
Monolignol Transport
.120
4.7.3
Monolignol Oxidation and Polymerization
.121
4.8
Cell Wall Proteins
.125
4.9
Cell Wall Architecture
.126
4.10
Cell Wall-Related Databases
.128
4.11
Conclusion
.129
References
.129
5.
Selection of Promising Biomass Feedstock Lines Using High-
Throughput Spectrometric and Enzymatic Assays
.143
Mark F. Davis, Ed Wolfrum and Tina Jeoh
5.1
Introduction
.143
5.2
Integrating Spectroscopy and
Multi
variate
Statistical Data Analysis
for High-Throughput Cell Wall Chemical Analysis
.143
5.3
Near Infrared (MR) Spectroscopy
.145
5.3.1
Description of Instrumentation
.145
5.3.2
Applications and Results
.146
5.3.2.1
Qualitative Data Analysis (Classification)
.146
5.3.2.2
Quantitative Data Analysis (Prediction)
.147
5.4
Pyrolysis-Molecular Beam-Mass Spectrometry
.148
5.4.1
Description of Instrumentation
.148
5.4.2
Applications and Results
.150
5.4.2.1
Estimates of
Lignin
Composition and Structure
.150
5.4.2.2
Detection of Quantitative Trait Loci
.152
5.4.2.3
Chemical Compositional Changes after
Pretreatment
and Biological Conversion
.152
5.4.2.4
Screening for Unintended Effects
.154
5.5
Enzyme Accessibility in Biomass
.154
5.5.1
Probing for Enzyme Accessibility in Biomass
.154
5.5.2
Applications and Results
.155
References
.157
6.
Current Technologies for Fuel
Ethanol
Production from
Lignocellulosic Plant Biomass
.161
Yulin
Lu
and Nathan S.
Mos
ier
6.1
Introduction
.161
6.2
Feedstock
Pretreatment
Strategies
.163
Contents xiii
6.2.1 Neutral/Controlled-pH
Pretreatment
.165
6.2.1.1
Steam
Explosion.165
6.2.1.2 Liquid
Hot Water Pretreatment
.165
6.2.1.3
Controlled-pH Pretreatment
.166
6.2.2
Acid-Based Pretreatment
.166
6.2.2.1
Dilute Acid
Pretreatment
.166
6.2.2.2
Concentrated Acid
Pretreatment
.167
6.2.3
Alkaline-Based and Other Pretreatments
.167
6.2.3.1
Lime
.167
6.2.3.2
Ammonia Fiber Expansion
.168
6.3
Enzymatic Hydrolysis: Liberating Monosaccharides
.168
6.4
Ethanol
Fermentation: Strain Development for Sugar
Co-fermentation
.171
6.4.1
Saccharomyces cerevisiae
.171
6.4.2
Zymomonas mobilis
.173
6.4.3
Escherichia
coli
.174
6.5
Ethanol
Recovery: Distillation and Dehydration
.175
6.6
Perspectives on Advanced Biochemical Conversion Technologies
.176
Acknowledgements
.177
References
.177
Partii
7.
Genetic Improvement of Corn for Lignocellulosic Feedstock
Production
.185
Natalia
de
Leon and James G. Coors
7.1
Indtroduction
.185
7.2
Botanical Description of Corn
.186
7.2.1
Corn Anatomy
.186
7.2.2
Corn Origin and Habiat
.187
7.2.3
Corn Reproduction and Biology
.188
7.2.4
Genome Structure and Organization
.190
7.3
Management and
Bioprocessing
.191
7.3.1
Cultivation Practices
.191
7.3.2
Biomass Yield Potential
.193
7.3.3
Biomass Processing
.195
7.4
Utilization of Corn Stover as a Source of Biomass
.196
7.5
Genetics
.198
7.5.1
Sources of Genetic Variation
.198
7.5.2
Use of Genetic Variation
.199
7.6
Current Research Efforts and Future Outlook
.201
References
.202
8.
Development and Utilization of Sorghum as a Bioenergy Crop
.211
Ana Saballos
8.1
Introduction
.211
8.2
Botanical Description of Sorghum
.212
xiv Contents
8.2.1
Biology of
Reproduction
.214
8.3
Management
.215
8.3.1
Agronomic Considerations
.215
8.3.2
Pests and Diseases
.217
8.3.2.1
Insect Pests
.218
8.3.2.2
Diseases
.220
8.3.3
Harvest and Processing Systems
.221
8.4
Current Status and Future Prospects
.223
8.5
Genetic Improvement of Sorghum
.225
8.5.1
Genetic Resources
.225
8.5.1.1
Natural Variation
.225
8.5.1.2
Mutants
.226
8.5.1.3
Transformation
.226
8.5.1.4
Sorghum Genomics
.227
8.5.2
Breeding Methods
.228
8.5.3
Traits of Interest for Improvement
.230
8.5.3.1
Yield
.231
8.5.3.2
Stress Resistance
.234
8.5.3.3
Moisture Content and Juice Extraction Efficiency
.236
8.5.3.4
Conversion Efficiency of the Starch
.236
8.5.3.5
Cell Wall Composition
.236
8.5.3.6
Sugar Concentration
.237
8.6
Conclusions
.238
Acknowledgements
.238
References
.239
9.
Genetic Improvement of Sugarcane {Saccharum spp.)
as an Energy Crop
.249
Thomas L. Tew andRobert M. Cobill
9.1
Introduction
.249
9.2
Botanical Description of Sugarcane
.249
9.2.1
Taxonomy
.249
9.2.2
Sugarcane Cultivation and Harvest
.251
9.2.3
Sugarcane Anatomy
.252
9.2.4
Early Breeding Efforts
.254
9.2.5
Genetic Improvement
.255
9.3
Production Statistics
.255
9.3.1
Worldwide Production Statistics
.255
9.3.2
U.S. Production Statistics
.256
9.4
Energy Potential of Sugarcane
.256
9.4.1
Yield Potential
.256
9.4.2
Actual Yields
.257
9.5
Sugarcane as an Energy Crop
.257
9.5.1
Sugar as a Feedstock
.258
9.5.2
Sugarcane Fiber as a Feedstock
.258
9.5.2.1
Composition of Sugarcane
.258
Contents xv
9.5.2.2 Boiler
Fuel and Cogeneration
.259
9.5.2.3 Cellulosic
Ethanol
and Gasification
.260
9.5.3
Energy Output/Input Ratio
.261
9.6
Energy Cane Breeding Strategies
.262
9.6.1
The Sugar Model (Status Quo)
.262
9.6.1.1
Breeding for Sugar Yield and Improved Sugar
Content
.262
9.6.1.2
Sugarcane Breeding in Brazil
.263
9.6.2
Sugar and Fiber Model
.264
9.6.2.1
Type I Energy Cane Definition
.264
9.6.2.2
Genetic Base Broadening
.264
9.6.2.3
Caribbean and U.S. Experience
.265
9.6.3
Fiber-only Model (Type II Energy Cane)
.266
9.6.3.1
Type II Energy Cane Definition
.266
9.6.3.2
Breeding Within Sacchamm Strictly for Fiber
Content
.266
9.6.3.3
Related Genera and Intergeneric Hybridization
.267
9.7
Looking to the Future
.267
Acknowledgements
.268
References
.268
10.
Miscanthus: Genetic Resources and Breeding Potential to Enhance
Bioenergy Production
.273
John Clifton-Brown, Yu-Chung Chiang and Trevor R. Hodkinson
10.1
Introduction
.273
10.2
Botanical Description
oí
Miscanthus
.274
10.3
Agronomic Characteristics and
Bioprocessing
.279
10.4
Production and Utilization
.281
10.5
Why use Miscanthusl
.282
10.6
Genetics
.283
10.6.1
Using Genetic Variation for Breeding
.284
10.6.2
Traits of Interest
.287
10.6.2.1
Drought Tolerance
.287
10.6.2.2
Frost Tolerance and Low Temperature Growth
.288
10.6.2.3
Flowering Time
.288
10.6.2.4
Composition
.288
10.6.2.5
Propagation
.289
10.6.2.6
Pests and Disease
.289
10.7
Future Outlook
.290
Acknowledgements
.290
References
.290
11.
Improvement of
Switchgrass
as a Bioenergy Crop
.295
Joe
Bouton
11.1
Introduction
.295
11.2
Rationale for using
Switchgrass
as a Bioenergy Crop
.296
xvi Contents
11.3
Botanical Description of
Switchgrass.296
11.4
Management
.297
11.5
Bioprocessing.
299
11.6
Breeding and
Cultivar
Development
.300
11.6.1
Traits and Breeding Methodology
.300
11.6.2
Population Improvement
.301
11.6.3
Hybrids
.302
11.7
Genomics and Transformation
.303
11.7.1
Genomics and Trait Mapping
.304
11.7.2
Tissue Culture and Transformation
.305
11.8
Future Outlook and Conclusions
.305
Acknowledgements
.306
References
.306
12.
Improvement of Perennial Forage Species as Feedstock
for Bioenergy
.309
William F. Anderson, Michael D.
Casier
and Brian S. Baldwin
12.1
Introduction
.309
12.2
Reed Canarygrass
.310
12.2.1
Botanical Description
.310
12.2.2
Management and
Bioprocessing
.311
12.2.3
Genetics and Breeding
.311
12.2.4
Future Outlook for Reed Canarygrass
.312
12.3
Alfalfa
.313
12.3.1
Botanical Description
.313
12.3.2
Management and
Bioprocessing
.314
12.3.3
Genetics and Breeding
.314
12.3.4
Future Outlook for Alfalfa
.316
12.4
Wildrye
.316
12.4.1
Botanical Description
.316
12.4.2
Management and
Bioprocessing
.317
12.4.3
Genetics and Breeding
.317
12.4.4
Future Outlook for Wildrye
.317
12.5
BigBluestem
.318
12.5.1
Botanical Description
.318
12.5.2
Management and
Bioprocessing
.319
12.5.3
Genetics and Breeding
.319
12.5.4
Future Outlook for Big Bluestem
.320
12.6 Bermudagrass.321
12.6.1
Botanical Description
.321
12.6.2
Management and
Bioprocessing
.322
12.6.3
Genetics and Breeding
.323
12.6.4
Future Outlook for
Bermudagrass.328
12.7
Napiergrass
.328
12.7.1
Botanical Description
.328
12.7.2
Management and
Bioprocessing
.329
Contents xvii
12.7.3
Genetics and Breeding
.330
12.7.4
Future Outlook for Napiergrass
.333
12.8
Eastern Gamagrass
.333
12.8.1
Botanical Description
.333
12.8.2
Management and
Bioprocessing
.334
12.8.3
Genetics and Breeding
.334
12.8.4
Future Outlook for Eastern Gamagrass
.335
12.9
Summary
.336
Acknowledgements
.337
References
.337
13.
Genetic Improvement of Willow (Salix spp.) as a Dedicated
Bioenergy Crop
.347
Lawrence B. Smart and Kimberly D. Cameron
13.1
Introduction
.347
13.2
Botanical Description of Willow (Salix)
.348
13.2.1
Taxonomy of Species Developed as Bioenergy Crops
.348
13.2.2
Willow Habitat and Growth
.349
13.3
Cultivation, Harvesting, and Processing of Shrub Willow
.349
13.3.1
Establishing Willow Bioenergy Crop Plantations
.349
13.3.2
Willow Crop Management
.352
13.3.3
Willow Biomass Harvesting, Transport, and Storage
.355
13.3.4
Processing and Conversion of Willow Biomass
to Electricity, Heat, and Transportation Fuels
.357
13.4
Breeding and Selection of Improved Shrub Willow
Varieties for Bioenergy
.359
13.4.1
Pollination, Hybridization, and Seedling
Propagation of Willows
.359
13.4.2
Genetics of Traits Important for Improved
Performance of Willow as a Bioenergy Crop
.362
13.4.3
Current Breeding Efforts for the Development of
Shrub Willow as an Energy Crop
.363
13.4.3.1
Breeding Programs in Sweden
.363
13.4.3.2
Breeding Programs in the United Kingdom
.364
13.4.3.3
Breeding Programs in North America
.365
13.4.4
Analysis and Genetic Modification of the Willow Genome
.369
13.4
Future Outlook
.370
Acknowledgements
.370
References
.370
14.
Genetic Improvement of Poplar (Populus spp.) as a Bioenergy Crop
.377
John M. Davis
14.1
Introduction
.377
14.2
Botanical Description of Poplar (Populus)
.378
14.2.1
Taxonomy of Populus
.378
14.2.2
Propagation and Silviculture
.380
xviii Contents
14.2.3
Use of Poplar for Bioenergy
.383
14.3
Genetic Improvement
.385
14.3.1
Genetic Parameters for Bioenergy Traits
.386
14.3.2
Whole-Genome Sequence: The "Parts List" for
Genetic Improvement
.388
14.3.3
Trait Mapping in Pedigrees and Populations
.389
14.3.4
Transgenic Alteration of Gene Expression
.390
14.4
Conclusions
.393
Acknowledgements
.393
References
.393
15.
Southern Pines: A Resource for Bioenergy
.397
Gary
F
.
Peter
15.1
Introduction
.397
15.2
Botanical Description of Pines: Southern Yellow Pines
.398
15.2.1
Taxonomy of Species Developed for Plantation Forestry
.398
15.3
Management, Harvesting, Transportation and
Bioprocessing
of Southern Pines
.400
15.3.1
Current Southern Pine Growing Systems for
Traditional Forest Products
.400
15.3.2
Southern Pine Harvesting and Transport
.403
15.3.3
Silvicultural Research for Short-Rotation Bioenergy
Plantings
.403
15.3.4
Traditional Pulp and Paper
Bioprocessing
Methods,
Existing Infrastructure, and Integrated Forest Biorefineries
.404
15.3.5
Stand-Alone Facilities for Converting Southern Pines to
Energy and Fuels
.405
15.4
Life History and Life Cycle of Southern Pines
.406
15.5
Genetics and Breeding of Southern Pine
.407
15.5.1
Genetic Diversity
.407
15.5.2
Pollination, Breeding, and Propagation of Southern Pines
.408
15.5.3
Genetic Improvement of Growth, Disease Resistance,
and Wood Properties in Loblolly and Slash Pine
.411
15.5.4
Biotechnology in Southern Pines
.413
15.6
Future Outlook
.414
Acknowledgements
.414
References
.414
List of Abbreviations
.421
Index
.423 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Vermerris, Wilfred |
author2_role | edt |
author2_variant | w v wv |
author_facet | Vermerris, Wilfred |
building | Verbundindex |
bvnumber | BV035031193 |
callnumber-first | S - Agriculture |
callnumber-label | SB288 |
callnumber-raw | SB288 |
callnumber-search | SB288 |
callnumber-sort | SB 3288 |
callnumber-subject | SB - Plant Culture |
classification_rvk | WG 9300 |
classification_tum | LAN 359f LAN 220f |
ctrlnum | (OCoLC)227032723 (DE-599)HBZHT015617858 |
dewey-full | 633.8/9 333.9539 |
dewey-hundreds | 600 - Technology (Applied sciences) 300 - Social sciences |
dewey-ones | 633 - Field and plantation crops 333 - Economics of land and energy |
dewey-raw | 633.8/9 333.9539 |
dewey-search | 633.8/9 333.9539 |
dewey-sort | 3633.8 19 |
dewey-tens | 630 - Agriculture and related technologies 330 - Economics |
discipline | Biologie Agrarwissenschaft Agrar-/Forst-/Ernährungs-/Haushaltswissenschaft / Gartenbau Wirtschaftswissenschaften Pflanzenbau |
discipline_str_mv | Biologie Agrarwissenschaft Agrar-/Forst-/Ernährungs-/Haushaltswissenschaft / Gartenbau Wirtschaftswissenschaften Pflanzenbau |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01999nam a2200529 c 4500</leader><controlfield tag="001">BV035031193</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090305 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080901s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N08,1105</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">982806043</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387708041</subfield><subfield code="c">Gb. : ca. EUR 122.78 (freier Pr.), ca. sfr 188.00 (freier Pr.)</subfield><subfield code="9">978-0-387-70804-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387708049</subfield><subfield code="c">Gb. : ca. EUR 122.78 (freier Pr.), ca. sfr 188.00 (freier Pr.)</subfield><subfield code="9">0-387-70804-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387708041</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11918219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227032723</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015617858</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M49</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91S</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SB288</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">633.8/9</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.9539</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 9300</subfield><subfield code="0">(DE-625)148627:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LAN 359f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LAN 220f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genetic improvement of bioenergy crops</subfield><subfield code="c">ed. by Wilfred Vermerris</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 449 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alcohol as fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy crops</subfield><subfield code="x">Genetic engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lignocellulose</subfield><subfield code="x">Biotechnology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzenzüchtung</subfield><subfield code="0">(DE-588)4045599-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energiepflanzen</subfield><subfield code="0">(DE-588)4473008-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Energiepflanzen</subfield><subfield code="0">(DE-588)4473008-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pflanzenzüchtung</subfield><subfield code="0">(DE-588)4045599-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vermerris, Wilfred</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016700179</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV035031193 |
illustrated | Illustrated |
index_date | 2024-07-02T21:49:51Z |
indexdate | 2024-07-09T21:20:37Z |
institution | BVB |
isbn | 9780387708041 0387708049 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016700179 |
oclc_num | 227032723 |
open_access_boolean | |
owner | DE-M49 DE-BY-TUM DE-703 DE-91S DE-BY-TUM |
owner_facet | DE-M49 DE-BY-TUM DE-703 DE-91S DE-BY-TUM |
physical | XXI, 449 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Genetic improvement of bioenergy crops ed. by Wilfred Vermerris New York, NY [u.a.] Springer 2008 XXI, 449 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Alcohol as fuel Biomass energy Energy crops Genetic engineering Lignocellulose Biotechnology Pflanzenzüchtung (DE-588)4045599-3 gnd rswk-swf Energiepflanzen (DE-588)4473008-1 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Energiepflanzen (DE-588)4473008-1 s Pflanzenzüchtung (DE-588)4045599-3 s b DE-604 Vermerris, Wilfred edt Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Genetic improvement of bioenergy crops Alcohol as fuel Biomass energy Energy crops Genetic engineering Lignocellulose Biotechnology Pflanzenzüchtung (DE-588)4045599-3 gnd Energiepflanzen (DE-588)4473008-1 gnd |
subject_GND | (DE-588)4045599-3 (DE-588)4473008-1 (DE-588)4143413-4 |
title | Genetic improvement of bioenergy crops |
title_auth | Genetic improvement of bioenergy crops |
title_exact_search | Genetic improvement of bioenergy crops |
title_exact_search_txtP | Genetic improvement of bioenergy crops |
title_full | Genetic improvement of bioenergy crops ed. by Wilfred Vermerris |
title_fullStr | Genetic improvement of bioenergy crops ed. by Wilfred Vermerris |
title_full_unstemmed | Genetic improvement of bioenergy crops ed. by Wilfred Vermerris |
title_short | Genetic improvement of bioenergy crops |
title_sort | genetic improvement of bioenergy crops |
topic | Alcohol as fuel Biomass energy Energy crops Genetic engineering Lignocellulose Biotechnology Pflanzenzüchtung (DE-588)4045599-3 gnd Energiepflanzen (DE-588)4473008-1 gnd |
topic_facet | Alcohol as fuel Biomass energy Energy crops Genetic engineering Lignocellulose Biotechnology Pflanzenzüchtung Energiepflanzen Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016700179&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT vermerriswilfred geneticimprovementofbioenergycrops |