Viscoelastic waves in layered media:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2009
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XV, 305 S. Ill., graph. Darst. |
ISBN: | 9780521898539 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035029539 | ||
003 | DE-604 | ||
005 | 20201118 | ||
007 | t | ||
008 | 080829s2009 ad|| |||| 00||| eng d | ||
020 | |a 9780521898539 |c hbk. |9 978-0-521-89853-9 | ||
035 | |a (OCoLC)213400636 | ||
035 | |a (DE-599)BVBBV035029539 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-703 |a DE-634 |a DE-83 | ||
050 | 0 | |a QA935 | |
082 | 0 | |a 532/.0533 |2 22 | |
084 | |a UF 5100 |0 (DE-625)145596: |2 rvk | ||
100 | 1 | |a Borcherdt, Roger |d 1941- |e Verfasser |0 (DE-588)1221681982 |4 aut | |
245 | 1 | 0 | |a Viscoelastic waves in layered media |c Roger D. Borcherdt |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2009 | |
300 | |a XV, 305 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Waves / Mathematics | |
650 | 4 | |a Viscoelasticity | |
650 | 4 | |a Viscoelastic materials | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Viscoelastic materials | |
650 | 4 | |a Viscoelasticity | |
650 | 4 | |a Waves |x Mathematics | |
650 | 0 | 7 | |a Wellenausbreitung |0 (DE-588)4121912-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastische Welle |0 (DE-588)4151684-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Seismische Welle |0 (DE-588)4180762-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Seismische Welle |0 (DE-588)4180762-5 |D s |
689 | 0 | 1 | |a Elastische Welle |0 (DE-588)4151684-9 |D s |
689 | 0 | 2 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 0 | 3 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016698541&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016698541&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016698541 |
Datensatz im Suchindex
_version_ | 1804137959491895296 |
---|---|
adam_text | Contents
Preface
page
xi
1
One-Dimensional Viscoelasticity
1
1.1
Constitutive Law
2
1.2
Stored and Dissipated Energy
5
1.3
Physical Models
7
1.4
Equation of Motion
15
1.5
Problems
17
2
Three-Dimensional Viscoelasticity
19
2.1
Constitutive Law
19
2.2
Stress-Strain Notation
20
2.3
Equation of Motion
23
2.4
Correspondence Principle
25
2.5
Energy Balance
26
2.6
Problems
30
3
Viscoelastic P, SI, and
SII
Waves
32
3.1
Solutions of Equation of Motion
32
3.2
Particle Motion for
Ρ
Waves
37
3.3
Particle Motion for Elliptical and Linear
S
Waves
40
3.3.1
Туре
-I
or Elliptical
S (SI)
Wave
42
3.3.2
Type-II or Linear
S
(SII)
Wave
45
3.4
Energy Characteristics of
Ρ,
SI, and
SII
Waves
46
3.4.1
Mean Energy Flux (Mean Intensity)
46
3.4.2
Mean Energy Densities
50
3.4.3
Energy Velocity
53
3.4.4
Mean Rate of Energy Dissipation
54
3.4.5
Reciprocal Quality Factor, Q~l
55
vii
viii Contents
3.5
Viscoelasticity Characterized by Parameters for Homogeneous
Ρ
and
S
Waves
57
3.6
Characteristics of Inhomogeneous Waves in Terms of
Characteristics of Homogeneous Waves
59
3.6.1
Wave Speed and Maximum Attenuation
60
3.6.2
Particle Motion for
Ρ
and SI Waves
64
3.6.3
Energy Characteristics for P, SI, and
SII
Waves
67
3.7
P, SI, and
SII
Waves in Low-Loss Viscoelastic Media
75
3.8
P, SI, and
SII
Waves in Media with Equal Complex
Lamé
Parameters
82
3.9
P, SI, and
SII
Waves in a Standard Linear Solid
84
3.10
Displacement and Volumetric Strain
86
3.10.1
Displacement for General
Ρ
and SI Waves
86
3.10.2
Volumetric Strain for a General
Ρ
Wave
92
3.10.3
Simultaneous Measurement of Volumetric Strain and Displacement
93
3.11
Problems
96
4
Framework for Single-Boundary Reflection-Refraction and
Surface-Wave Problems
98
4.1
Specification of Boundary
98
4.2
Specification of Waves
99
4.3
Problems
106
5
General P, SI, and
SII
Waves Incident on a Viscoelastic Boundary
107
5.1
Boundary-Condition Equations for General Waves
107
5.2
Incident General SI Wave
109
5.2.1
Specification of Incident General SI Wave
109
5.2.2
Propagation and Attenuation Vectors; Generalized Snell s Law
111
5.2.3
Amplitude and Phase
114
5.2.4
Conditions for Homogeneity and Inhomogeneity
115
5.2.5
Conditions for Critical Angles
120
5.3
Incident General
Ρ
Wave
123
5.3.1
Specification of Incident General
Ρ
Wave
123
5.3.2
Propagation and Attenuation Vectors; Generalized Snell s Law
125
5.3.3
Amplitude and Phase
126
5.3.4
Conditions for Homogeneity and Inhomogeneity
127
5.3.5
Conditions for Critical Angles
129
5.4
Incident General
SII
Wave
130
5.4.1
Specification of Incident General SO Wave
130
5.4.2
Propagation and Attenuation Vectors; Generalized Snell s Law
131
5.4.3
Amplitude and Phase
133
5.4.4
Conditions for Homogeneity and Inhomogeneity
134
Contents ix
5.4.5
Conditions
for Critical
Angles
134
5.4.6
Energy Flux and Energy Flow Due to Wave Field Interactions
135
5.5
Problems
141
6
Numerical Models for General Waves Reflected and Refracted
at Viscoelastic Boundaries
143
6.1
General
SII
Wave Incident on a Moderate-Loss Viscoelastic
Boundary (Sediments)
144
6.1.1
Incident Homogeneous
SII
Wave
145
6.1.2
Incident Inhomogeneous
SII
Wave
151
6.2
Ρ
Wave Incident on a Low-Loss Viscoelastic Boundary
(Water, Stainless-Steel)
155
6.2.1
Reflected and Refracted Waves
156
6.2.2
Experimental Evidence in Confirmation of Theory for Viscoelastic
Waves
163
6.2.3
Viscoelastic Reflection Coefficients for Ocean, Solid-Earth Boundary
165
6.3
Problems
169
7
General SI, P, and
SII
Waves Incident on a Viscoelastic Free Surface
170
7.1
Boundary-Condition Equations
170
7.2
Incident General SI Wave
172
7.2.1
Reflected General
Ρ
and SI Waves
172
7.2.2
Displacement and Volumetric Strain
176
7.2.3
Numerical Model for Low-Loss Media (Weathered Granite)
181
7.3
Incident General
Ρ
Wave
192
7.3.1
Reflected General
Ρ
and SI Waves
192
7.3.2
Numerical Model for Low-Loss Media (Pierre Shale)
196
7.4
Incident General
SII
Wave
203
7.5
Problems
204
8
Rayleigh-Type Surface Wave on a Viscoelastic Half Space
206
8.1
Analytic Solution
206
8.2
Physical Characteristics
210
8.2.1
Velocity and Absorption Coefficient
210
8.2.2
Propagation and Attenuation Vectors for Component Solutions
211
8.2.3
Displacement and Particle Motion
212
8.2.4
Volumetric Strain
217
8.2.5
Media with Equal Complex
Lamé
Parameters
(
Л = М)
219
8.3
Numerical Characteristics of Rayleigh-Type Surface Waves
225
8.3.1
Characteristics at the Free Surface
227
8.3.2
Characteristics Versus Depth
232
8.4
Problems
241
χ
Contents
9
General SII
Waves Incident on Multiple Layers of Viscoelastic
Media
246
9.1
Analytic Solution (Multiple Layers)
247
9.2
Analytic Solution (One Layer)
254
9.3
Numerical Response of Viscoelastic Layers (Elastic, Earth s
Crust, Rock, Soil)
255
9.4
Problems
261
10
Love-Type Surface Waves in Multilayered Viscoelastic Media
262
10.1
Analytic Solution (Multiple Layers)
262
10.2
Displacement (Multiple Layers)
265
10.3
Analytic Solution and Displacement (One Layer)
267
10.4
Numerical Characteristics of Love-Type Surface Waves
270
10.5
Problems
278
11
Appendices
279
11.1
Appendix
1 -
Properties of Riemann-Stieltjes Convolution
Integral
279
11.2
Appendix
2 -
Vector and Displacement-Potential Identities
279
11.2.1
Vector Identities
279
11.2.2
Displacement-Potential Identities
280
11.3
Appendix
3 -
Solution of the Helmholtz Equation
280
11.4
Appendix
4 -
Roots of Squared Complex Rayleigh Equation
284
11.5
Appendix
5 -
Complex Root for a Rayleigh-Type Surface Wave
286
11.6
Appendix
6 -
Particle-Motion Characteristics for a
Rayleigh-Type Surface Wave
288
References
292
Additional Reading
295
Index
296
This book is a rigorous, self-contained exposition of the mathematical theory for wave
propagation in layered media with arbitrary amounts of intrinsic absorption. The theory,
previously not published in a book, provides solutions for fundamental wave-propagation
problems in the general context of any media with a linear response, elastic or anelastic. It
reveals physical characteristics for two- and three-dimensional anelastic body and surface
waves, not predicted by commonly used models based on elasticity or one-dimensional
anelasticity. it explains observed wave characteristics not explained by previous theories.
This book may be used as a textbook for graduate-level courses and as a research
reference in a variety of fields such as solid mechanics, seismology, civil and mechanical
engineering, exploration geophysics, and acoustics. The theory and numerical results allow
the classic subject of fundamental elastic wave propagation to be taught in the broader
context of waves in any media with a linear response, without undue complications in the
mathematics. They provide the basis to improve a variety of anelastic wave propagation
models, including those for the Earth s interior, metal impurities, petroleum reserves,
polymers, soils, and ocean acoustics. The numerical examples and problems sets facilitate
understanding by emphasizing important aspects of the theory for each chapter.
Roger D. Borcherdt is a Research Scientist at the us Geological Survey and Consulting
Professor, Department of Civil and Environmental Engineering at Stanford university, where
he also served as visiting Shimizu Professor. Dr. Borcherdt is the author of more than
180
scientific publications, including several on the theoretical and empirical aspects of seismic
wave propagation pertaining to problems in seismology, geophysics, and earthquake
engineering,
не
is the recipient of the Presidential Meritorious Service Award of the
Department of interior for scientific Leadership in Engineering seismology, and the
1994
and
2002
Outstanding Paper Awards of Earthquake spectra,
не
is an Honorary Member ofthe
Earthquake Engineering Research institute, a past journal and volume editor, and an active
mem
ber
of several professional societies.
|
adam_txt |
Contents
Preface
page
xi
1
One-Dimensional Viscoelasticity
1
1.1
Constitutive Law
2
1.2
Stored and Dissipated Energy
5
1.3
Physical Models
7
1.4
Equation of Motion
15
1.5
Problems
17
2
Three-Dimensional Viscoelasticity
19
2.1
Constitutive Law
19
2.2
Stress-Strain Notation
20
2.3
Equation of Motion
23
2.4
Correspondence Principle
25
2.5
Energy Balance
26
2.6
Problems
30
3
Viscoelastic P, SI, and
SII
Waves
32
3.1
Solutions of Equation of Motion
32
3.2
Particle Motion for
Ρ
Waves
37
3.3
Particle Motion for Elliptical and Linear
S
Waves
40
3.3.1
Туре
-I
or Elliptical
S (SI)
Wave
42
3.3.2
Type-II or Linear
S
(SII)
Wave
45
3.4
Energy Characteristics of
Ρ,
SI, and
SII
Waves
46
3.4.1
Mean Energy Flux (Mean Intensity)
46
3.4.2
Mean Energy Densities
50
3.4.3
Energy Velocity
53
3.4.4
Mean Rate of Energy Dissipation
54
3.4.5
Reciprocal Quality Factor, Q~l
55
vii
viii Contents
3.5
Viscoelasticity Characterized by Parameters for Homogeneous
Ρ
and
S
Waves
57
3.6
Characteristics of Inhomogeneous Waves in Terms of
Characteristics of Homogeneous Waves
59
3.6.1
Wave Speed and Maximum Attenuation
60
3.6.2
Particle Motion for
Ρ
and SI Waves
64
3.6.3
Energy Characteristics for P, SI, and
SII
Waves
67
3.7
P, SI, and
SII
Waves in Low-Loss Viscoelastic Media
75
3.8
P, SI, and
SII
Waves in Media with Equal Complex
Lamé
Parameters
82
3.9
P, SI, and
SII
Waves in a Standard Linear Solid
84
3.10
Displacement and Volumetric Strain
86
3.10.1
Displacement for General
Ρ
and SI Waves
86
3.10.2
Volumetric Strain for a General
Ρ
Wave
92
3.10.3
Simultaneous Measurement of Volumetric Strain and Displacement
93
3.11
Problems
96
4
Framework for Single-Boundary Reflection-Refraction and
Surface-Wave Problems
98
4.1
Specification of Boundary
98
4.2
Specification of Waves
99
4.3
Problems
106
5
General P, SI, and
SII
Waves Incident on a Viscoelastic Boundary
107
5.1
Boundary-Condition Equations for General Waves
107
5.2
Incident General SI Wave
109
5.2.1
Specification of Incident General SI Wave
109
5.2.2
Propagation and Attenuation Vectors; Generalized Snell's Law
111
5.2.3
Amplitude and Phase
114
5.2.4
Conditions for Homogeneity and Inhomogeneity
115
5.2.5
Conditions for Critical Angles
120
5.3
Incident General
Ρ
Wave
123
5.3.1
Specification of Incident General
Ρ
Wave
123
5.3.2
Propagation and Attenuation Vectors; Generalized Snell's Law
125
5.3.3
Amplitude and Phase
126
5.3.4
Conditions for Homogeneity and Inhomogeneity
127
5.3.5
Conditions for Critical Angles
129
5.4
Incident General
SII
Wave
130
5.4.1
Specification of Incident General SO Wave
130
5.4.2
Propagation and Attenuation Vectors; Generalized Snell's Law
131
5.4.3
Amplitude and Phase
133
5.4.4
Conditions for Homogeneity and Inhomogeneity
134
Contents ix
5.4.5
Conditions
for Critical
Angles
134
5.4.6
Energy Flux and Energy Flow Due to Wave Field Interactions
135
5.5
Problems
141
6
Numerical Models for General Waves Reflected and Refracted
at Viscoelastic Boundaries
143
6.1
General
SII
Wave Incident on a Moderate-Loss Viscoelastic
Boundary (Sediments)
144
6.1.1
Incident Homogeneous
SII
Wave
145
6.1.2
Incident Inhomogeneous
SII
Wave
151
6.2
Ρ
Wave Incident on a Low-Loss Viscoelastic Boundary
(Water, Stainless-Steel)
155
6.2.1
Reflected and Refracted Waves
156
6.2.2
Experimental Evidence in Confirmation of Theory for Viscoelastic
Waves
163
6.2.3
Viscoelastic Reflection Coefficients for Ocean, Solid-Earth Boundary
165
6.3
Problems
169
7
General SI, P, and
SII
Waves Incident on a Viscoelastic Free Surface
170
7.1
Boundary-Condition Equations
170
7.2
Incident General SI Wave
172
7.2.1
Reflected General
Ρ
and SI Waves
172
7.2.2
Displacement and Volumetric Strain
176
7.2.3
Numerical Model for Low-Loss Media (Weathered Granite)
181
7.3
Incident General
Ρ
Wave
192
7.3.1
Reflected General
Ρ
and SI Waves
192
7.3.2
Numerical Model for Low-Loss Media (Pierre Shale)
196
7.4
Incident General
SII
Wave
203
7.5
Problems
204
8
Rayleigh-Type Surface Wave on a Viscoelastic Half Space
206
8.1
Analytic Solution
206
8.2
Physical Characteristics
210
8.2.1
Velocity and Absorption Coefficient
210
8.2.2
Propagation and Attenuation Vectors for Component Solutions
211
8.2.3
Displacement and Particle Motion
212
8.2.4
Volumetric Strain
217
8.2.5
Media with Equal Complex
Lamé
Parameters
(
Л = М)
219
8.3
Numerical Characteristics of Rayleigh-Type Surface Waves
225
8.3.1
Characteristics at the Free Surface
227
8.3.2
Characteristics Versus Depth
232
8.4
Problems
241
χ
Contents
9
General SII
Waves Incident on Multiple Layers of Viscoelastic
Media
246
9.1
Analytic Solution (Multiple Layers)
247
9.2
Analytic Solution (One Layer)
254
9.3
Numerical Response of Viscoelastic Layers (Elastic, Earth's
Crust, Rock, Soil)
255
9.4
Problems
261
10
Love-Type Surface Waves in Multilayered Viscoelastic Media
262
10.1
Analytic Solution (Multiple Layers)
262
10.2
Displacement (Multiple Layers)
265
10.3
Analytic Solution and Displacement (One Layer)
267
10.4
Numerical Characteristics of Love-Type Surface Waves
270
10.5
Problems
278
11
Appendices
279
11.1
Appendix
1 -
Properties of Riemann-Stieltjes Convolution
Integral
279
11.2
Appendix
2 -
Vector and Displacement-Potential Identities
279
11.2.1
Vector Identities
279
11.2.2
Displacement-Potential Identities
280
11.3
Appendix
3 -
Solution of the Helmholtz Equation
280
11.4
Appendix
4 -
Roots of Squared Complex Rayleigh Equation
284
11.5
Appendix
5 -
Complex Root for a Rayleigh-Type Surface Wave
286
11.6
Appendix
6 -
Particle-Motion Characteristics for a
Rayleigh-Type Surface Wave
288
References
292
Additional Reading
295
Index
296
This book is a rigorous, self-contained exposition of the mathematical theory for wave
propagation in layered media with arbitrary amounts of intrinsic absorption. The theory,
previously not published in a book, provides solutions for fundamental wave-propagation
problems in the general context of any media with a linear response, elastic or anelastic. It
reveals physical characteristics for two- and three-dimensional anelastic body and surface
waves, not predicted by commonly used models based on elasticity or one-dimensional
anelasticity. it explains observed wave characteristics not explained by previous theories.
This book may be used as a textbook for graduate-level courses and as a research
reference in a variety of fields such as solid mechanics, seismology, civil and mechanical
engineering, exploration geophysics, and acoustics. The theory and numerical results allow
the classic subject of fundamental elastic wave propagation to be taught in the broader
context of waves in any media with a linear response, without undue complications in the
mathematics. They provide the basis to improve a variety of anelastic wave propagation
models, including those for the Earth's interior, metal impurities, petroleum reserves,
polymers, soils, and ocean acoustics. The numerical examples and problems sets facilitate
understanding by emphasizing important aspects of the theory for each chapter.
Roger D. Borcherdt is a Research Scientist at the us Geological Survey and Consulting
Professor, Department of Civil and Environmental Engineering at Stanford university, where
he also served as visiting Shimizu Professor. Dr. Borcherdt is the author of more than
180
scientific publications, including several on the theoretical and empirical aspects of seismic
wave propagation pertaining to problems in seismology, geophysics, and earthquake
engineering,
не
is the recipient of the Presidential Meritorious Service Award of the
Department of interior for scientific Leadership in Engineering seismology, and the
1994
and
2002
Outstanding Paper Awards of Earthquake spectra,
не
is an Honorary Member ofthe
Earthquake Engineering Research institute, a past journal and volume editor, and an active
mem
ber
of several professional societies. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Borcherdt, Roger 1941- |
author_GND | (DE-588)1221681982 |
author_facet | Borcherdt, Roger 1941- |
author_role | aut |
author_sort | Borcherdt, Roger 1941- |
author_variant | r b rb |
building | Verbundindex |
bvnumber | BV035029539 |
callnumber-first | Q - Science |
callnumber-label | QA935 |
callnumber-raw | QA935 |
callnumber-search | QA935 |
callnumber-sort | QA 3935 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 5100 |
ctrlnum | (OCoLC)213400636 (DE-599)BVBBV035029539 |
dewey-full | 532/.0533 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.0533 |
dewey-search | 532/.0533 |
dewey-sort | 3532 3533 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02181nam a2200517 c 4500</leader><controlfield tag="001">BV035029539</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201118 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080829s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521898539</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-0-521-89853-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213400636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035029539</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA935</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0533</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5100</subfield><subfield code="0">(DE-625)145596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borcherdt, Roger</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1221681982</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Viscoelastic waves in layered media</subfield><subfield code="c">Roger D. Borcherdt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 305 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waves / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waves</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastische Welle</subfield><subfield code="0">(DE-588)4151684-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Seismische Welle</subfield><subfield code="0">(DE-588)4180762-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Seismische Welle</subfield><subfield code="0">(DE-588)4180762-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elastische Welle</subfield><subfield code="0">(DE-588)4151684-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016698541&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016698541&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016698541</subfield></datafield></record></collection> |
id | DE-604.BV035029539 |
illustrated | Illustrated |
index_date | 2024-07-02T21:49:19Z |
indexdate | 2024-07-09T21:20:35Z |
institution | BVB |
isbn | 9780521898539 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016698541 |
oclc_num | 213400636 |
open_access_boolean | |
owner | DE-29 DE-703 DE-634 DE-83 |
owner_facet | DE-29 DE-703 DE-634 DE-83 |
physical | XV, 305 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Borcherdt, Roger 1941- Verfasser (DE-588)1221681982 aut Viscoelastic waves in layered media Roger D. Borcherdt 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2009 XV, 305 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Waves / Mathematics Viscoelasticity Viscoelastic materials Mathematik Waves Mathematics Wellenausbreitung (DE-588)4121912-0 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Elastische Welle (DE-588)4151684-9 gnd rswk-swf Seismische Welle (DE-588)4180762-5 gnd rswk-swf Seismische Welle (DE-588)4180762-5 s Elastische Welle (DE-588)4151684-9 s Wellenausbreitung (DE-588)4121912-0 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016698541&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016698541&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Borcherdt, Roger 1941- Viscoelastic waves in layered media Waves / Mathematics Viscoelasticity Viscoelastic materials Mathematik Waves Mathematics Wellenausbreitung (DE-588)4121912-0 gnd Mathematisches Modell (DE-588)4114528-8 gnd Elastische Welle (DE-588)4151684-9 gnd Seismische Welle (DE-588)4180762-5 gnd |
subject_GND | (DE-588)4121912-0 (DE-588)4114528-8 (DE-588)4151684-9 (DE-588)4180762-5 |
title | Viscoelastic waves in layered media |
title_auth | Viscoelastic waves in layered media |
title_exact_search | Viscoelastic waves in layered media |
title_exact_search_txtP | Viscoelastic waves in layered media |
title_full | Viscoelastic waves in layered media Roger D. Borcherdt |
title_fullStr | Viscoelastic waves in layered media Roger D. Borcherdt |
title_full_unstemmed | Viscoelastic waves in layered media Roger D. Borcherdt |
title_short | Viscoelastic waves in layered media |
title_sort | viscoelastic waves in layered media |
topic | Waves / Mathematics Viscoelasticity Viscoelastic materials Mathematik Waves Mathematics Wellenausbreitung (DE-588)4121912-0 gnd Mathematisches Modell (DE-588)4114528-8 gnd Elastische Welle (DE-588)4151684-9 gnd Seismische Welle (DE-588)4180762-5 gnd |
topic_facet | Waves / Mathematics Viscoelasticity Viscoelastic materials Mathematik Waves Mathematics Wellenausbreitung Mathematisches Modell Elastische Welle Seismische Welle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016698541&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016698541&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT borcherdtroger viscoelasticwavesinlayeredmedia |