Radon as a natural geochemical tracer for study of groundwater discharge into lakes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Leipzig
UFZ
2008
|
Schriftenreihe: | Dissertation / Helmholtz-Zentrum für Umweltforschung, UFZ
2008,8 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IX, 105 S. graph. Darst., Kt. 26 cm |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035022162 | ||
003 | DE-604 | ||
005 | 20090714 | ||
007 | t | ||
008 | 080826s2008 bd|| m||| 00||| eng d | ||
016 | 7 | |a 989907287 |2 DE-101 | |
035 | |a (OCoLC)246667904 | ||
035 | |a (DE-599)DNB989907287 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-355 |a DE-29 |a DE-634 |a DE-188 | ||
082 | 0 | |a 551.49 |2 22/ger | |
082 | 0 | |a 551.482 |2 22/ger | |
084 | |a RB 10363 |0 (DE-625)142220:12708 |2 rvk | ||
084 | |a 550 |2 sdnb | ||
100 | 1 | |a Schmidt, Axel |e Verfasser |0 (DE-588)136033008 |4 aut | |
245 | 1 | 0 | |a Radon as a natural geochemical tracer for study of groundwater discharge into lakes |c von Axel Schmidt |
264 | 1 | |a Leipzig |b UFZ |c 2008 | |
300 | |a IX, 105 S. |b graph. Darst., Kt. |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Dissertation / Helmholtz-Zentrum für Umweltforschung, UFZ |v 2008,8 | |
502 | |a Zugl.: Köln, Univ., Diss., 2008 | ||
650 | 4 | |a Radon as a groundwater tracer | |
650 | 0 | 7 | |a Grundwasserverschmutzung |0 (DE-588)4020822-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Radonbelastung |0 (DE-588)4132259-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Radonbelastung |0 (DE-588)4132259-9 |D s |
689 | 0 | 1 | |a Grundwasserverschmutzung |0 (DE-588)4020822-9 |D s |
689 | 0 | |5 DE-604 | |
810 | 2 | |a Helmholtz-Zentrum für Umweltforschung, UFZ |t Dissertation |v 2008,8 |w (DE-604)BV035421074 |9 2008,8 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016691265&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016691265 |
Datensatz im Suchindex
_version_ | 1804137948768108544 |
---|---|
adam_text | Table of Contents
Table of Contents
Danksagung....................................................................................................................HI
List of Figures..................................................................................................................V
List of Tables...............................................................................................................VIII
1 Introduction..................................................................................................................1
2 Theoretical background................................................................................................5
2.1 Physical and chemical background.........................................................................5
2.1.1 Basics of radioactive decay................................................................................5
2.1.2 Modes of radioactive decay................................................................................6
2.1.3 Statistics of radioactive decay............................................................................S
2.1.4 Physical and chemical properties of radon.......................................................10
2.2 Geological background..........................................................................................14
2.2.1 Radon as part of the natural decay chains........................................................14
2.2.2 Radon as an omnipresent component of groundwater......................................15
2.2.3 Radon migration in groundwater......................................................................20
2.3 Applicability of radon as a natural geochemical tracer for study of
groundwater discharge into lakes..........................................................................26
3 On-site techniques for determination of radon in water............................................28
3.1 Continuous and discrete on-site ex-situ determination of radon in ground-
and surface waters.................................................................................................28
3.1.1 Introduction......................................................................................................28
3.1.2 Material.............................................................................................................29
3.1.3 Laboratory and field experiments.....................................................................30
.3.1 Continuous measurements...........................................................................31
.3.2 Measurement of discrete samples................................................................32
.4 Results and discussion......................................................................................33
.4.1 Continuous measurements...........................................................................33
.4.2 Measurement of discrete samples................................................................35
3.
3.
3.
3.
3.1
3.1.5 Conclusion........................................................................................................38
3.2 Continuous on-site in-situ determination of radon in surface waters....................39
3.2.1 Introduction......................................................................................................39
3.2.2 Methodology.....................................................................................................39
3.2.2.1 Equipment setup...........................................................................................39
3.2.2.2 Detection limit, data reproducibility, and response time.............................41
3.2.3 Experimental.....................................................................................................43
3.2.3.1 Influence of selected membrane properties and membrane dimensions.....43
3.2.3.2 Test of the radon extraction module............................................................46
3.2.4 Results and discussion......................................................................................50
3.2.4.1 Influence of selected membrane properties and membrane dimensions.....50
3.2.4.2 Test of the radon extraction module............................................................54
Table of Contents
3.2.5 Conclusion........................................................................................................57
4 Application of radon for tracing groundwater discharge into lakes...........................58
4.1 Using radon for tracing groundwater discharge into a meromictic lake................58
4.1.1 Introduction.......................................................................................................58
4.1.2 Basic concept....................................................................................................58
4.1.3 Study area..........................................................................................................63
4.1.4 Material and Methods.......................................................................................65
4.1.4.1 Sampling.......................................................................................................65
4.1.4.2 Methods used................................................................................................65
4.1.5 Results and discussion......................................................................................67
4.1.5.1 pH, electrical conductivity, and temperature depth profiles........................67
4.1.5.2 Excess radon profiles....................................................................................68
4.1.5.3 Radon activity concentration of the discharging groundwater.....................70
4.1.5.4 Diffusive benthic fluxes...............................................................................71
4.1.5.5 Atmospheric evasion....................................................................................73
4.1.5.6 Radon budget and estimation of groundwater discharge.............................73
4.1.6 Conclusion........................................................................................................75
4.2 Using radon for tracing groundwater discharge into a dimictic lake.....................76
4.2.1 Introduction.......................................................................................................76
4.2.2 Study area..........................................................................................................76
4.2.3 Material and Methods.......................................................................................77
4.2.3.1 Modeling approach.......................................................................................77
4.2.3.2 Sampling and measurement..........................................................................78
4.2.3.3 Hydrologic studies based on Darcy s law....................................................79
4.2.4 Results and discussion......................................................................................80
4.2.4.1 pH, electrical conductivity, and temperature depth profiles........................80
4.2.4.2 Excess radon profiles....................................................................................81
4.2.4.3 Radon activity concentration of the discharging groundwater.....................83
4.2.4.4 Diffusive benthic fluxes...............................................................................84
4.2.4.5 Atmospheric evasion....................................................................................85
4.2.4.6 Radon budget and estimation of groundwater discharge.............................85
4.2.5 Summary and Conclusion.................................................................................89
5 Conclusions for the use of radon as a natural geochemical tracer for study of
groundwater discharge into lakes...............................................................................90
Bibliography....................................................................................................................92
List of Figures
List of Figures
Figure 2-1: Gaussian distribution with specific confidence intervals (Turner 2007,
modified)...................................................................................................10
Figure 2-2: Schematic illustration of emanation processes (Tanner 1980,
modified)...................................................................................................19
Figure 3-1: Schematic sketch of the experimental setup for continuous radon-in-
water measurement....................................................................................31
Figure 3-2: Schematic sketch of the experimental setup for radon measurement in
discrete water samples...............................................................................32
Figure 3-3: Comparison of radon-in-water activity concentrations at different
water flow rates. Open circles label the extraction cell, black squares
the RAD Aqua results.................................................................................34
Figure 3-4: Comparison of results achieved with extraction cell and RAD Aqua for
radon activity concentrations along a transect through a harbour area
off Bremerhaven........................................................................................35
Figure 3-5: Polonium-218 count rates for different water sample volumes. For
each measurement radon-in-water activity concentrations and circling
air volumes are the same...........................................................................37
Figure 3-6: a) Radon extraction module; b) scanning electron microscope image
of the membrane material (photo by Membrana)......................................41
Figure 3-7: Experimental setup for varying radon activity concentration in the
donor phase; the air stream is indicated by arrows....................................44
Figure 3-8: Experimental setup for inversion of radon transport direction; the air
stream is indicated by arrows....................................................................46
Figure 3-9: Temperature dependence of kw/ajr..............................................................49
Figure 3-10: Increase in radon activity concentration as f (t) for six different
concentration levels; the experiment with 30 kBq m 3 was carried out
twice...........................................................................................................50
Figure 3-11: Increase in radon activity concentration as f (t); mean values of the
data sets displayed in Figure 3-10.............................................................51
Figure 3-12: Increase in radon activity concentration as f (t) for six different
lengths of the membrane tubing................................................................52
VI List of Figures
Figure 3-13: Decrease in radon activity concentration as f (t) (mean values from
four experiments).......................................................................................53
Figure 3-14: Increase in radon activity concentrations as f (t) in four steps; activity
concentrations determined by LSC are also given partitioning.................54
Figure 3-15: Decrease in radon activity concentration as f (t).......................................56
Figure 3-16: Radon activity concentrations in four depths in a lake determined by
means of the radon extraction module.......................................................57
Figure 4-1: Simple box model showing possible input and output terms supporting
the radon inventory of a lake water body; Fadv-input is the desired
result of this study......................................................................................59
Figure 4-2: a) Location of the study area; b) Lake Waldsee with groundwater
wells (WS) and lake water sampling points (SP); dashed lines indicate
contour lines of lake water depth [m]. Stars show sediment sampling
points: 2 m depth = MIX 1, 2 m depth = MON 1 - 4, with
increasing numbers from SE to NW..........................................................64
Figure 4-3: Depth profiles of pH, electrical conductivity, and temperature at
sampling point SP 2 during a) the October and b) the December 2006
sampling.....................................................................................................68
Figure 4-4: Excess radon depth profiles determined during the two sampling
campaigns...................................................................................................70
Figure 4-5: Sediment surface area [m2] vs. water volume [m3] as a function of
depth...........................................................................................................72
Figure 4-6: a) Location of the investigation area; b) Lake Ammelshainer See
with sampling points (SP); drawn through line indicates lake
boundary, dashed lines indicate contour lines of lake water depth [m].....77
Figure 4-7: Representative vertical profiles of pH, temperature, and electrical
conductivity measured during (a) April and (b) May 2007 at SP 4 (cf.
Figure 4-6b)................................................................................................81
Figure 4-8: Excess radon depth profiles at each sampling point during the April
campaign. Uncertainties are at the 2a level and based on counting
statistics......................................................................................................82
List of Figures
Figure 4-9: Excess radon depth profiles at each sampling point during the May
campaign. Uncertainties are at the 2a level and based on counting
statistics.....................................................................................................82
VIII______________________________________________________________________List of Tables
List of Tables
Table 2-1: Properties of radon-222 under standard state (T = 273.15 K,
p = 101 325 Pa; Weigel 1978, Stein 1983, Cothern 1987, Wilkening
1990)..........................................................................................................11
Table 2-2: Hildebrand parameter (5) of selected liquid phases and their partition
coefficients (kw/air) at 25°C (Barton 1991).................................................13
Table 2-3: Selected members of the naturally decay chains of uranium-238,
thorium-232, and uranium-235, their respective half-lives, and decay
modes. The short-lived radon progeny is marked in grey (Schubert
2006, modified)..........................................................................................14
Table 2-4: Mean specific radium-226 activities of rock species (Nazaroff et al.
1988)..........................................................................................................16
Table 2-5: Emanation coefficient (e) of mineral materials..........................................17
Table 3-1: Comparison of equilibrium activity concentrations achieved with
extraction cell and RAD Aqua; uncertainties (2a-error) are based on
counting statistics.......................................................................................34
Table 3-2: Comparison of extraction cell results and RADAqua results for water
samples taken from different sites in Germany.........................................37
Table 4-1: Excess radon inventories and total benthic radon fluxes (Ftotai = Fadv +
Fdiff) determined in the mixolimnion (MIX) and the monimolimnion
(MON) during the two sampling campaigns..............................................70
Table 4-2: Radon activity concentrations determined during batch experiments
with sediment samples taken from the mixolimnion (MIX) and the
monimolimnion (MON) and respective diffusive radon fluxes.................72
Table 4-3: Parameters used for calculations to estimate groundwater discharge
into Lake Waldsee in October and December 2006..................................74
Table 4-4: Input and output fluxes of radon for Lake Waldsee...................................74
Table 4-5: Average excess radon activity concentrations for the water columns at
each sampling point and resulting excess radon inventories (based on
the average water depth of about 10 m) during the April sampling
campaign....................................................................................................83
Table 4-6: Average excess radon activity concentrations for the water columns at
each sampling point and resulting excess radon inventories (based on
List of Tables
IX
the average water depth of about 10 m) during the May sampling
campaign....................................................................................................83
Table 4-7: Measured specific radium-226 activities of lake sediments and
calculated benthic diffusive fluxes............................................................85
Table 4-8: Radon fluxes and groundwater (GW) discharge rates for the April and
May sampling campaign. As radon activity concentration for the
groundwater endmember 316 ± 12.9 Bq m~3 was used (cf. section
4.2.4.3). Note: X.222I222 represents the decay of the total radon activity
concentration.............................................................................................87
Table 4-9: Groundwater discharge and lake water residence times for the April
and May sampling campaign.....................................................................88
|
adam_txt |
Table of Contents
Table of Contents
Danksagung.HI
List of Figures.V
List of Tables.VIII
1 Introduction.1
2 Theoretical background.5
2.1 Physical and chemical background.5
2.1.1 Basics of radioactive decay.5
2.1.2 Modes of radioactive decay.6
2.1.3 Statistics of radioactive decay.S
2.1.4 Physical and chemical properties of radon.10
2.2 Geological background.14
2.2.1 Radon as part of the natural decay chains.14
2.2.2 Radon as an omnipresent component of groundwater.15
2.2.3 Radon migration in groundwater.20
2.3 Applicability of radon as a natural geochemical tracer for study of
groundwater discharge into lakes.26
3 On-site techniques for determination of radon in water.28
3.1 Continuous and discrete on-site ex-situ determination of radon in ground-
and surface waters.28
3.1.1 Introduction.28
3.1.2 Material.29
3.1.3 Laboratory and field experiments.30
.3.1 Continuous measurements.31
.3.2 Measurement of discrete samples.32
.4 Results and discussion.33
.4.1 Continuous measurements.33
.4.2 Measurement of discrete samples.35
3.
3.
3.
3.
3.1
3.1.5 Conclusion.38
3.2 Continuous on-site in-situ determination of radon in surface waters.39
3.2.1 Introduction.39
3.2.2 Methodology.39
3.2.2.1 Equipment setup.39
3.2.2.2 Detection limit, data reproducibility, and response time.41
3.2.3 Experimental.43
3.2.3.1 Influence of selected membrane properties and membrane dimensions.43
3.2.3.2 Test of the radon extraction module.46
3.2.4 Results and discussion.50
3.2.4.1 Influence of selected membrane properties and membrane dimensions.50
3.2.4.2 Test of the radon extraction module.54
Table of Contents
3.2.5 Conclusion.57
4 Application of radon for tracing groundwater discharge into lakes.58
4.1 Using radon for tracing groundwater discharge into a meromictic lake.58
4.1.1 Introduction.58
4.1.2 Basic concept.58
4.1.3 Study area.63
4.1.4 Material and Methods.65
4.1.4.1 Sampling.65
4.1.4.2 Methods used.65
4.1.5 Results and discussion.67
4.1.5.1 pH, electrical conductivity, and temperature depth profiles.67
4.1.5.2 Excess radon profiles.68
4.1.5.3 Radon activity concentration of the discharging groundwater.70
4.1.5.4 Diffusive benthic fluxes.71
4.1.5.5 Atmospheric evasion.73
4.1.5.6 Radon budget and estimation of groundwater discharge.73
4.1.6 Conclusion.75
4.2 Using radon for tracing groundwater discharge into a dimictic lake.76
4.2.1 Introduction.76
4.2.2 Study area.76
4.2.3 Material and Methods.77
4.2.3.1 Modeling approach.77
4.2.3.2 Sampling and measurement.78
4.2.3.3 Hydrologic studies based on Darcy's law.79
4.2.4 Results and discussion.80
4.2.4.1 pH, electrical conductivity, and temperature depth profiles.80
4.2.4.2 Excess radon profiles.81
4.2.4.3 Radon activity concentration of the discharging groundwater.83
4.2.4.4 Diffusive benthic fluxes.84
4.2.4.5 Atmospheric evasion.85
4.2.4.6 Radon budget and estimation of groundwater discharge.85
4.2.5 Summary and Conclusion.89
5 Conclusions for the use of radon as a natural geochemical tracer for study of
groundwater discharge into lakes.90
Bibliography.92
List of Figures
List of Figures
Figure 2-1: Gaussian distribution with specific confidence intervals (Turner 2007,
modified).10
Figure 2-2: Schematic illustration of emanation processes (Tanner 1980,
modified).19
Figure 3-1: Schematic sketch of the experimental setup for continuous radon-in-
water measurement.31
Figure 3-2: Schematic sketch of the experimental setup for radon measurement in
discrete water samples.32
Figure 3-3: Comparison of radon-in-water activity concentrations at different
water flow rates. Open circles label the extraction cell, black squares
the RAD Aqua results.34
Figure 3-4: Comparison of results achieved with extraction cell and RAD Aqua for
radon activity concentrations along a transect through a harbour area
off Bremerhaven.35
Figure 3-5: Polonium-218 count rates for different water sample volumes. For '
each measurement radon-in-water activity concentrations and circling
air volumes are the same.37
Figure 3-6: a) Radon extraction module; b) scanning electron microscope image
of the membrane material (photo by Membrana).41
Figure 3-7: Experimental setup for varying radon activity concentration in the
donor phase; the air stream is indicated by arrows.44
Figure 3-8: Experimental setup for inversion of radon transport direction; the air
stream is indicated by arrows.46
Figure 3-9: Temperature dependence of kw/ajr.49
Figure 3-10: Increase in radon activity concentration as f (t) for six different
concentration levels; the experiment with 30 kBq m"3 was carried out
twice.50
Figure 3-11: Increase in radon activity concentration as f (t); mean values of the
data sets displayed in Figure 3-10.51
Figure 3-12: Increase in radon activity concentration as f (t) for six different
lengths of the membrane tubing.52
VI List of Figures
Figure 3-13: Decrease in radon activity concentration as f (t) (mean values from
four experiments).53
Figure 3-14: Increase in radon activity concentrations as f (t) in four steps; activity
concentrations determined by LSC are also given partitioning.54
Figure 3-15: Decrease in radon activity concentration as f (t).56
Figure 3-16: Radon activity concentrations in four depths in a lake determined by
means of the radon extraction module.57
Figure 4-1: Simple box model showing possible input and output terms supporting
the radon inventory of a lake water body; Fadv-input is the desired
result of this study.59
Figure 4-2: a) Location of the study area; b) Lake Waldsee with groundwater
wells (WS) and lake water sampling points (SP); dashed lines indicate
contour lines of lake water depth [m]. Stars show sediment sampling
points: 2 m depth = MIX 1, 2 m depth = MON 1 - 4, with
increasing numbers from SE to NW.64
Figure 4-3: Depth profiles of pH, electrical conductivity, and temperature at
sampling point SP 2 during a) the October and b) the December 2006
sampling.68
Figure 4-4: Excess radon depth profiles determined during the two sampling
campaigns.70
Figure 4-5: Sediment surface area [m2] vs. water volume [m3] as a function of
depth.72
Figure 4-6: a) Location of the investigation area; b) Lake "Ammelshainer See"
with sampling points (SP); drawn through line indicates lake
boundary, dashed lines indicate contour lines of lake water depth [m].77
Figure 4-7: Representative vertical profiles of pH, temperature, and electrical
conductivity measured during (a) April and (b) May 2007 at SP 4 (cf.
Figure 4-6b).81
Figure 4-8: Excess radon depth profiles at each sampling point during the April
campaign. Uncertainties are at the 2a level and based on counting
statistics.82
List of Figures
Figure 4-9: Excess radon depth profiles at each sampling point during the May
campaign. Uncertainties are at the 2a level and based on counting
statistics.82
VIII_List of Tables
List of Tables
Table 2-1: Properties of radon-222 under standard state (T = 273.15 K,
p = 101 325 Pa; Weigel 1978, Stein 1983, Cothern 1987, Wilkening
1990).11
Table 2-2: Hildebrand parameter (5) of selected liquid phases and their partition
coefficients (kw/air) at 25°C (Barton 1991).13
Table 2-3: Selected members of the naturally decay chains of uranium-238,
thorium-232, and uranium-235, their respective half-lives, and decay
modes. The short-lived radon progeny is marked in grey (Schubert
2006, modified).14
Table 2-4: Mean specific radium-226 activities of rock species (Nazaroff et al.
1988).16
Table 2-5: Emanation coefficient (e) of mineral materials.17
Table 3-1: Comparison of equilibrium activity concentrations achieved with
extraction cell and RAD Aqua; uncertainties (2a-error) are based on
counting statistics.34
Table 3-2: Comparison of extraction cell results and RADAqua results for water
samples taken from different sites in Germany.37
Table 4-1: Excess radon inventories and total benthic radon fluxes (Ftotai = Fadv +
Fdiff) determined in the mixolimnion (MIX) and the monimolimnion
(MON) during the two sampling campaigns.70
Table 4-2: Radon activity concentrations determined during batch experiments
with sediment samples taken from the mixolimnion (MIX) and the
monimolimnion (MON) and respective diffusive radon fluxes.72
Table 4-3: Parameters used for calculations to estimate groundwater discharge
into Lake Waldsee in October and December 2006.74
Table 4-4: Input and output fluxes of radon for Lake Waldsee.74
Table 4-5: Average excess radon activity concentrations for the water columns at
each sampling point and resulting excess radon inventories (based on
the average water depth of about 10 m) during the April sampling
campaign.83
Table 4-6: Average excess radon activity concentrations for the water columns at
each sampling point and resulting excess radon inventories (based on
List of Tables
IX
the average water depth of about 10 m) during the May sampling
campaign.83
Table 4-7: Measured specific radium-226 activities of lake sediments and
calculated benthic diffusive fluxes.85
Table 4-8: Radon fluxes and groundwater (GW) discharge rates for the April and
May sampling campaign. As radon activity concentration for the
groundwater endmember 316 ± 12.9 Bq m~3 was used (cf. section
4.2.4.3). Note: X.222I222 represents the decay of the total radon activity
concentration.87
Table 4-9: Groundwater discharge and lake water residence times for the April
and May sampling campaign.88 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schmidt, Axel |
author_GND | (DE-588)136033008 |
author_facet | Schmidt, Axel |
author_role | aut |
author_sort | Schmidt, Axel |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV035022162 |
classification_rvk | RB 10363 |
ctrlnum | (OCoLC)246667904 (DE-599)DNB989907287 |
dewey-full | 551.49 551.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.49 551.482 |
dewey-search | 551.49 551.482 |
dewey-sort | 3551.49 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Geographie |
discipline_str_mv | Geologie / Paläontologie Geographie |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01814nam a2200433 cb4500</leader><controlfield tag="001">BV035022162</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090714 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080826s2008 bd|| m||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">989907287</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246667904</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB989907287</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.49</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.482</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10363</subfield><subfield code="0">(DE-625)142220:12708</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">550</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmidt, Axel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136033008</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radon as a natural geochemical tracer for study of groundwater discharge into lakes</subfield><subfield code="c">von Axel Schmidt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Leipzig</subfield><subfield code="b">UFZ</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 105 S.</subfield><subfield code="b">graph. Darst., Kt.</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dissertation / Helmholtz-Zentrum für Umweltforschung, UFZ</subfield><subfield code="v">2008,8</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Köln, Univ., Diss., 2008</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radon as a groundwater tracer</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundwasserverschmutzung</subfield><subfield code="0">(DE-588)4020822-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Radonbelastung</subfield><subfield code="0">(DE-588)4132259-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Radonbelastung</subfield><subfield code="0">(DE-588)4132259-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Grundwasserverschmutzung</subfield><subfield code="0">(DE-588)4020822-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Helmholtz-Zentrum für Umweltforschung, UFZ</subfield><subfield code="t">Dissertation</subfield><subfield code="v">2008,8</subfield><subfield code="w">(DE-604)BV035421074</subfield><subfield code="9">2008,8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016691265&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016691265</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV035022162 |
illustrated | Illustrated |
index_date | 2024-07-02T21:46:44Z |
indexdate | 2024-07-09T21:20:24Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016691265 |
oclc_num | 246667904 |
open_access_boolean | |
owner | DE-706 DE-355 DE-BY-UBR DE-29 DE-634 DE-188 |
owner_facet | DE-706 DE-355 DE-BY-UBR DE-29 DE-634 DE-188 |
physical | IX, 105 S. graph. Darst., Kt. 26 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | UFZ |
record_format | marc |
series2 | Dissertation / Helmholtz-Zentrum für Umweltforschung, UFZ |
spelling | Schmidt, Axel Verfasser (DE-588)136033008 aut Radon as a natural geochemical tracer for study of groundwater discharge into lakes von Axel Schmidt Leipzig UFZ 2008 IX, 105 S. graph. Darst., Kt. 26 cm txt rdacontent n rdamedia nc rdacarrier Dissertation / Helmholtz-Zentrum für Umweltforschung, UFZ 2008,8 Zugl.: Köln, Univ., Diss., 2008 Radon as a groundwater tracer Grundwasserverschmutzung (DE-588)4020822-9 gnd rswk-swf Radonbelastung (DE-588)4132259-9 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Radonbelastung (DE-588)4132259-9 s Grundwasserverschmutzung (DE-588)4020822-9 s DE-604 Helmholtz-Zentrum für Umweltforschung, UFZ Dissertation 2008,8 (DE-604)BV035421074 2008,8 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016691265&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schmidt, Axel Radon as a natural geochemical tracer for study of groundwater discharge into lakes Radon as a groundwater tracer Grundwasserverschmutzung (DE-588)4020822-9 gnd Radonbelastung (DE-588)4132259-9 gnd |
subject_GND | (DE-588)4020822-9 (DE-588)4132259-9 (DE-588)4113937-9 |
title | Radon as a natural geochemical tracer for study of groundwater discharge into lakes |
title_auth | Radon as a natural geochemical tracer for study of groundwater discharge into lakes |
title_exact_search | Radon as a natural geochemical tracer for study of groundwater discharge into lakes |
title_exact_search_txtP | Radon as a natural geochemical tracer for study of groundwater discharge into lakes |
title_full | Radon as a natural geochemical tracer for study of groundwater discharge into lakes von Axel Schmidt |
title_fullStr | Radon as a natural geochemical tracer for study of groundwater discharge into lakes von Axel Schmidt |
title_full_unstemmed | Radon as a natural geochemical tracer for study of groundwater discharge into lakes von Axel Schmidt |
title_short | Radon as a natural geochemical tracer for study of groundwater discharge into lakes |
title_sort | radon as a natural geochemical tracer for study of groundwater discharge into lakes |
topic | Radon as a groundwater tracer Grundwasserverschmutzung (DE-588)4020822-9 gnd Radonbelastung (DE-588)4132259-9 gnd |
topic_facet | Radon as a groundwater tracer Grundwasserverschmutzung Radonbelastung Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016691265&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035421074 |
work_keys_str_mv | AT schmidtaxel radonasanaturalgeochemicaltracerforstudyofgroundwaterdischargeintolakes |