Excitations in organic solids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2009
|
Ausgabe: | 1. publ. |
Schriftenreihe: | International series of monographs on physics
142 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 455 - 483 |
Beschreibung: | XVI, 496 S. graph. Darst. |
ISBN: | 9780199234417 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035014723 | ||
003 | DE-604 | ||
005 | 20140813 | ||
007 | t | ||
008 | 080821s2009 d||| |||| 00||| eng d | ||
020 | |a 9780199234417 |c (hbk.) : £65.00 hbk. |9 978-0-19-923441-7 | ||
035 | |a (OCoLC)605444939 | ||
035 | |a (DE-599)BSZ284302139 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-11 |a DE-20 |a DE-19 | ||
082 | 0 | |a 530.416 | |
084 | |a UP 3710 |0 (DE-625)146388: |2 rvk | ||
100 | 1 | |a Agranovič, Vladimir M. |d 1929- |e Verfasser |0 (DE-588)136905889 |4 aut | |
245 | 1 | 0 | |a Excitations in organic solids |c Vladimir M. Agranovich |
250 | |a 1. publ. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2009 | |
300 | |a XVI, 496 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a International series of monographs on physics |v 142 | |
500 | |a Literaturverz. S. 455 - 483 | ||
650 | 4 | |a CRYSTAL LATTICES/ORGANIC COMPOUNDS | |
650 | 4 | |a EXCITON (PHYSIQUE DE LA MATIÈRE CONDENSÉE) | |
650 | 4 | |a EXCITONS (CONDENSED MATTER PHYSICS) | |
650 | 4 | |a EXZITON (PHYSIK DER KONDENSIERTEN MATERIE) | |
650 | 4 | |a KRISTALLGITTER/ORGANISCHER VERBINDUNGEN | |
650 | 4 | |a MANY-BODY SYSTEMS (QUANTUM THEORY) | |
650 | 4 | |a QUANTENREGELN + QUANTISIERUNG (QUANTENTHEORIE) | |
650 | 4 | |a QUANTUMRULES + QUANTIZATION (QUANTUM MECHANICS) | |
650 | 4 | |a RÈGLES DE SÉLECTION QUANTIQUES + QUANTIFICATION (MÉCANIQUE QUANTIQUE) | |
650 | 4 | |a RÉSEAUX CRISTALLINS/COMPOSÉS ORGANIQUES | |
650 | 4 | |a SYSTÈMES À PLUSIEURS PARTICULES (THÉORIE QUANTIQUE) | |
650 | 4 | |a VIELTEILCHENSYSTEME (QUANTENTHEORIE) | |
650 | 7 | |a Angeregter Zustand - Organischer Festkörper |2 idsbb | |
650 | 7 | |a Organischer Festkörper - Angeregter Zustand |2 idsbb | |
650 | 4 | |a Exciton theory | |
650 | 4 | |a Organic solid state chemistry | |
650 | 4 | |a Nanostructured materials | |
830 | 0 | |a International series of monographs on physics |v 142 |w (DE-604)BV000106406 |9 142 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016683913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016683913 |
Datensatz im Suchindex
_version_ | 1804137937290395648 |
---|---|
adam_text | CONTENTS
1
Introduction
Prenkel excitonic
states in the Heitler-London ap¬
proximation
10
2.1
Excitons
in
a molecular crystal with fixed molecules.
Splitting of molecular terms in a crystal
10
2.2
Frenkel, Coulomb, and mechanical
excitons
15
2.3
Application of group theory for the determination of
polarization and selection rules for excitonic light
absorption. Degeneracy of excitonic levels
23
2.3.1
Winston theory
23
2.3.2
Applications to crystals of naphthalene type
26
2.3.3
Symmetry properties of Coulomb
excitons
28
2.4
Triplet
excitons
30
The second-quantized theory of Frenkel
excitons
36
3.1
Energy operator for a molecular crystal with fixed molecules
in the second-quantization representation.
Paulions
and Bosons
36
3.2
Excitonic states in the two-level model. Transition to
the Heitler-London approximation
39
3.2.1
Crystals with one molecule per unit cell
42
3.2.2
Crystals with several molecules per unit cell
43
3.3
Exciton states beyond the Heitler-London approxima¬
tion
46
3.3.1
Small corrections to Heitler-London approxima¬
tion
49
3.4
Exciton states in the presence of several molecular states
(mixing of molecular configurations)
53
3.4.1
One molecule per unit cell
55
3.4.2
Several molecules per unit cell
56
3.5
Perturbation theory. A comparison with results ob¬
tained in the Heitler-London approximation
60
3.6
Sum rules for the oscillator strengths of excitonic tran¬
sitions and the hypochromatic effect
62
3.7
Exciton-phonon interaction
67
3.8
Spectra and mobility of self-trapped (ST)
excitons
71
3.8.1
Mechanism of self-trapping of Frenkel
excitons
73
3.8.2
Spectra and transport of self-trapped
excitons
75
3.8.3
Self-trapping barrier
75
CONTENTS
3.8.4
Self-trapping of charge-transfer
excitons
76
3.8.5
Self-trapping in one-dimensional structures
76
3.9
Electron-vibrational excited states in molecular crys¬
tals
77
3.10
Calculation of the exciton states in molecular crystals
85
3.10.1
Anthracene and naphthalene
91
3.10.2
Tetracene and pentacene
93
3.11
Exact transformation from paulions to bosons
94
3.12
Kinematic biexcitons
98
Polaritons: Excitonic States Taking Account Of Re¬
tardation.
103
4.1
The crystal energy operator in the presence of a re¬
tarded interaction
103
4.2
Dispersion of polaritons and refraction index of elec¬
tromagnetic waves
108
4.2.1
Operators of electric and magnetic fields
116
4.3
Polariton mechanism of exciton luminescence
118
4.4
The dielectric tensor and the phenomenology of long-
wavelength
excitons
121
4.5
Giant radiative width of small
wavevector
polaritons in
one- and two-dimensional structures ( polariton
superradiance
) 128
4.6
Effective radiative lifetime
136
4.7
Concluding remarks
137
Dielectric theory of Frenkel
excitons:
local field ef¬
fects
140
5.1
Introduction: the local field method
140
5.2
Dielectric tensor of cubic crystals
144
5.3
Effects of impurities
145
5.4
Dielectric tensor of organic anisotropic crystals
148
5.5
Dielectric constant of mixed crystalline solutions and
polarization of impurity absorption bands
151
5.6
Optical properties of mixed crystalline solutions
156
5.7
Energy of the resonance interaction of the impurity
molecules
159
5.8
The higher multipoles in the local field method
162
Biphonons and Fermi Resonance in Vibrational Spec¬
tra of Crystals
166
6.1
Effects of strong anharmonicity in vibrational spectra
of crystals
166
6.2
Biphonon theory
169
6.2.1
Biphonons in the overtone frequency region of
CONTENTS xi
an
intramolecular vibrations:
qualitative
consideration
169
6.2.2 Biphonon
states
174
6.2.3 Biphonons in
the sum frequency region of the
spectrum
-
the Van
Kranendonk
model
178
6.3
Green s functions in biphonon theory and Fermi reso¬
nance in crystals
180
6.3.1
Fermi resonance
188
6.4
Fermi resonance with polaritons
189
6.4.1
Microscopic theory
189
6.4.2
Macroscopic theory
-
Transverse, longitudinal,
and surface biphonons
194
6.5
Dielectric tensor of a crystal in the spectral region of
two-particle phonon states: microscopic theory
196
6.6
Biphonons and biexcitons and the gigantic nonlinear
polarizability effect
199
6.7
Experimental investigations of biphonons and Fermi
resonance with polariton
202
6.8
Local biphonons in crystals with
isotopie
substitution
impurities
208
6.8.1
Where does the formation of local states begin
in a spectrum of optical vibrations? Ef¬
fects of strong anharmonicity
208
6.8.2
Local biphonon in an 14NH4Br crystal contain¬
ing the
isotopie
substitution impurity I5N
210
6.9
Conclusion and prospects for further investigations
211
The dielectric tensor of crystals in the region of ex-
citonic resonances
215
7.1
On the calculation of the dielectric tensor
215
7.2
The Pitaevsky-Dzyaloshinsky formula for the dielec¬
tric tensor
217
7.3
Polariton states in the calculation of the dielectric ten¬
sor in the region of Frenkel exciton resonances
220
7.4
The transverse dielectric tensor and dissipation of light
waves
224
7.4.1
The transverse dielectric tensor
224
7.4.2
The dissipation of polaritons in the vicinity of
exciton resonances
227
7.5
Macroscopic and microscopic theories of optical non-
linearity in the region of exciton resonances
229
7.5.1
On polariton anharmonicity in the nonlinear op¬
tical response
231
xii CONTENTS
8
Dielectric tensor of superlattices
233
8.1
Long-period superlattices
233
8.2
Spatial dispersion in superlattices
234
8.2.1
Spatial dispersion in the vicinity of an excitonic
resonance
(£1,2 >
ав)
234
8.2.2
Spatial dispersion in the vicinity of an excitonic
resonance (ii
<авЛ2
> ßß) 237
8.2.3
Gyrotropy in superlattices
238
8.3
Dielectric tensor of superlattices with anisotropic lay¬
ers
239
8.3.1
Dielectric tensor of a superlattice
239
8.3.2
Magnetooptical effects in superlattices
241
8.3.3
Influence of a static electric field
243
8.4
Optical nonlinearities in organic multilayers
244
8.4.1
χ 2
optical nonlinearities in superlattices
244
9
Excitations in organic multilayers
246
9.1
Gas-condensed matter shift and the possibility of gov¬
erning spectra of Frenkel
excitons
in thin layers
246
9.2
Fermi resonance interface modes in organic superlat¬
tices
251
9.2.1
Fermi resonance in molecules
251
9.2.2
Fermi-resonance wave in a two-layer system
257
9.2.3
Fermi resonance interface waves
259
9.2.4
Bistable energy transmission through the inter¬
face with Fermi resonance interaction
262
10
Cavity polaritons in organic microcavities
266
10.1
Giant
Rabi
splitting in organic microcavities
266
10.2
Microcavities with crystalline organics
269
10.2.1
Introduction
269
10.2.2
Cavity photons and Coulomb
excitons
270
10.2.3
Cavity polaritons
272
10.2.4
One molecule in the unit cell
274
10.2.5
Two molecules in the unit cell
275
10.2.6
Conclusions
278
10.3
Microcavities with disordered organics
278
10.3.1
Qualitative picture
278
10.4
Macroscopic classical theory
280
10.4.1
General expressions
280
10.4.2
The case of vanishing
q
284
10.4.3
The case of large
q
286
10.4.4
Microscopic quantum theory
288
10.5
The localized end-point polariton states
290
CONTENTS xiii
10.5.1 Dynamics
of a low-energy wavepacket in a per¬
fect microcavity
290
10.5.2
Time evolution of the lowest wavepacket
293
10.5.3
Concluding remarks
300
11
Charge transfer
excitons
301
11.1
Introduction
301
11.2
Stark effect and electroabsorption of CTEs
303
11.3
Phase transition from the dielectric to the conducting
state (cold photoconductivity)
305
11.3.1
Analytical approach
306
11.3.2
Numerical simulations
309
11.3.3
Results of numerical simulations
310
11.3.4
Concluding remarks
313
11.4
Cumulative
photovoltage
in asymmetrical donor-acceptor
organic superlattices
315
11.4.1
Introduction
315
11.4.2
On the mechanisms of the photovoltaic effects
in organics
317
11.4.3
Cumulative
photovoltage
in an asymmetrical stack
of
D
-А
interfaces
318
11.5
Nonlinear optical response of charge-transfer
excitons
at donor-acceptor interface
321
11.5.1
Resonant optical nonlinearity of CTEs: the role
of the exciton-exciton repulsion
321
11.5.2 Photogenerated
static electric field: influence on
the
nonresonant
optical response
323
12
Surface
excitons
325
12.1
Introduction
325
12.1.1
Surface
excitons
and polaritons
325
12.1.2
Coulomb surface
excitons
327
12.1.3
The exciton-phonon interaction and the role of
surface defects
328
12.2
Phenomenological theory of surface Coulomb
excitons
and polaritons
329
12.2.1
Surface polaritons at the sharp interface between
media
329
12.2.2
Observation of exciton surface polaritons at room
temperature
332
12.2.3
Surface
excitons
in the presence of a transition
layer
333
12.2.4
Nonlinear surface polaritons
335
12.3
Site shift surface
excitons
in molecular crystals
337
12.3.1
Site shift surface
excitons (SSSE)
in anthracene
337
xiv CONTENTS
12.3.2
On the radiative width of site shift surface
ex¬
citons
341
12.4
Edge exciton states in molecular chains
345
12.4.1
Introduction. Tamm states
345
12.4.2
Mixing of Frenkel and charge-transfer
excitons
in a finite molecular chain
346
12.4.3
Edge and bulk states in a finite molecular chain
with mixing of Frenkel and charge-transfer
excitons
351
12.5
Application to PTCDA and MePTCDI crystals
354
12.6
Frenkel surface
excitons
in disordered media
356
12.6.1
Macroscopic surface
excitons
and polaritons in
isotopically mixed crystalline solutions
356
12.7
Conclusion
359
13
Excitons
in Organic-Based Nanostructures
360
13.1
Introduction
360
13.2
Hybrid 2D Frenkel-Wannier-Mott
excitons
at the in¬
terface of organic and inorganic quantum wells.
Strong coupling regime
362
13.2.1
Configuration of heterostructure and general re¬
lations
362
13.2.2
The coupling matrix element
364
13.2.3
Dispersion relations of hybrid states
368
13.2.4
Linear optical response of hybrid states
370
13.3
Hybrid
excitons
in parallel organic and inorganic semi¬
conductor quantum wires
372
13.4
On the hybridization of zero-dimensional Frenkel and
Wannier-Mott
excitons
376
13.5
Nonlinear optics of 2D Hybrid Frenkel-Wannier-Mott
excitons
377
13.5.1
The resonant
χ(3)
nonlinearity
377
13.5.2
Second-order susceptibility
χ^
383
13.6
Weak coupling regime in hybrid nanostructures
384
13.6.1
The
Förster
energy transfer
384
13.6.2 Förster
energy transfer in a planar geometry
385
13.6.3
Noncontact
pumping of light emitters via nonra-
diative energy transfer: new concept for
light-emitting devices
387
13.6.4
First experiments
388
13.6.5 Förster
energy transfer from quantum dots to
organics
392
13.6.6
Exciton energy transfer from a quantum dot to
its surface states
395
CONTENTS xv
13.6.7 Exciton
energy transfer from
organice
to semi¬
conductor nanocrystals and carrier mul¬
tiplication
396
13.7
Hybridization of Frenkel and Wannier-Mott
excitons
in a 2D microcavity in the regime of strong cou¬
pling
398
13.7.1
Microcavity embedded resonant organic and in¬
organic quantum wells
398
13.7.2
Dispersion and relaxation of a polariton in a hy¬
brid microcavity containing a crystalline
organic layer and a resonant inorganic
quantum well
400
13.7.3
Classical formalism
400
13.7.4
QED approach
402
13.7.5
Exciton-phonon scattering in a microcavity
404
13.7.6
Estimation of transfer rates
404
13.7.7
Conclusion
408
14
Mobility of Frenkel
Excitons
410
14.1
Diffusion of Frenkel
excitons
410
14.2
The diffusion tensor
412
14.3
Weak exciton-phonon coupling: coherent
excitons
413
14.3.1
General expressions
413
14.3.2
Isotropie
exciton effective mass and scattering
by acoustic phonons
415
14.3.3
Temperature dependence of the diffusion con¬
stant
417
14.4
Strong exciton-phonon coupling: incoherent
excitons
418
14.5
Transport measurements and diffusion of polaritons
420
15
Statistics and collective properties of Frenkel
exci¬
tons
423
15.1
Approximate second quantization and kinematic inter¬
action
423
15.2
Collective properties of an ideal gas of paulions
425
15.3
Collective properties of Frenkel
excitons
in the pres¬
ence of a dynamic interaction
429
15.3.1
On biexcitons in organic crystals
432
15.4
Kinematic interaction of exciton-polaritons in crystalline
organic microcavities
433
15.5
Fermionic character of Frenkel
excitons
in one-dimensional
molecular crystals
434
A Diagonalization of a Hamiltonian quadratic in the
Bose-amplitudes
437
xvi CONTENTS
В
Calculations of Polarization in Inorganic Quantum
Wells and in
Organice
439
B.I General relations
439
B.2 Polarization in a semiconductor
440
B.3 Polarization in organics
442
С
Microscopic Quantum-Mechanical Calculations of the
Energy Transfer Rate
444
D
Energy transfer in the planar geometry
446
D.I Free
excitons
446
D.
2
Localized
excitons
451
References
455
Tables
484
Figures
485
Index
489
|
adam_txt |
CONTENTS
1
Introduction
Prenkel excitonic
states in the Heitler-London ap¬
proximation
10
2.1
Excitons
in
a molecular crystal with fixed molecules.
Splitting of molecular terms in a crystal
10
2.2
Frenkel, Coulomb, and mechanical
excitons
15
2.3
Application of group theory for the determination of
polarization and selection rules for excitonic light
absorption. Degeneracy of excitonic levels
23
2.3.1
Winston theory
23
2.3.2
Applications to crystals of naphthalene type
26
2.3.3
Symmetry properties of Coulomb
excitons
28
2.4
Triplet
excitons
30
The second-quantized theory of Frenkel
excitons
36
3.1
Energy operator for a molecular crystal with fixed molecules
in the second-quantization representation.
Paulions
and Bosons
36
3.2
Excitonic states in the two-level model. Transition to
the Heitler-London approximation
39
3.2.1
Crystals with one molecule per unit cell
42
3.2.2
Crystals with several molecules per unit cell
43
3.3
Exciton states beyond the Heitler-London approxima¬
tion
46
3.3.1
Small corrections to Heitler-London approxima¬
tion
49
3.4
Exciton states in the presence of several molecular states
(mixing of molecular configurations)
53
3.4.1
One molecule per unit cell
55
3.4.2
Several molecules per unit cell
56
3.5
Perturbation theory. A comparison with results ob¬
tained in the Heitler-London approximation
60
3.6
Sum rules for the oscillator strengths of excitonic tran¬
sitions and the hypochromatic effect
62
3.7
Exciton-phonon interaction
67
3.8
Spectra and mobility of self-trapped (ST)
excitons
71
3.8.1
Mechanism of self-trapping of Frenkel
excitons
73
3.8.2
Spectra and transport of self-trapped
excitons
75
3.8.3
Self-trapping barrier
75
CONTENTS
3.8.4
Self-trapping of charge-transfer
excitons
76
3.8.5
Self-trapping in one-dimensional structures
76
3.9
Electron-vibrational excited states in molecular crys¬
tals
77
3.10
Calculation of the exciton states in molecular crystals
85
3.10.1
Anthracene and naphthalene
91
3.10.2
Tetracene and pentacene
93
3.11
Exact transformation from paulions to bosons
94
3.12
Kinematic biexcitons
98
Polaritons: Excitonic States Taking Account Of Re¬
tardation.
103
4.1
The crystal energy operator in the presence of a re¬
tarded interaction
103
4.2
Dispersion of polaritons and refraction index of elec¬
tromagnetic waves
108
4.2.1
Operators of electric and magnetic fields
116
4.3
Polariton mechanism of exciton luminescence
118
4.4
The dielectric tensor and the phenomenology of long-
wavelength
excitons
121
4.5
Giant radiative width of small
wavevector
polaritons in
one- and two-dimensional structures ("polariton
superradiance"
) 128
4.6
Effective radiative lifetime
136
4.7
Concluding remarks
137
Dielectric theory of Frenkel
excitons:
local field ef¬
fects
140
5.1
Introduction: the local field method
140
5.2
Dielectric tensor of cubic crystals
144
5.3
Effects of impurities
145
5.4
Dielectric tensor of organic anisotropic crystals
148
5.5
Dielectric constant of mixed crystalline solutions and
polarization of impurity absorption bands
151
5.6
Optical properties of mixed crystalline solutions
156
5.7
Energy of the resonance interaction of the impurity
molecules
159
5.8
The higher multipoles in the local field method
162
Biphonons and Fermi Resonance in Vibrational Spec¬
tra of Crystals
166
6.1
Effects of strong anharmonicity in vibrational spectra
of crystals
166
6.2
Biphonon theory
169
6.2.1
Biphonons in the overtone frequency region of
CONTENTS xi
an
intramolecular vibrations:
qualitative
consideration
169
6.2.2 Biphonon
states
174
6.2.3 Biphonons in
the sum frequency region of the
spectrum
-
the Van
Kranendonk
model
178
6.3
Green's functions in biphonon theory and Fermi reso¬
nance in crystals
180
6.3.1
Fermi resonance
188
6.4
Fermi resonance with polaritons
189
6.4.1
Microscopic theory
189
6.4.2
Macroscopic theory
-
Transverse, longitudinal,
and surface biphonons
194
6.5
Dielectric tensor of a crystal in the spectral region of
two-particle phonon states: microscopic theory
196
6.6
Biphonons and biexcitons and the gigantic nonlinear
polarizability effect
199
6.7
Experimental investigations of biphonons and Fermi
resonance with polariton
202
6.8
Local biphonons in crystals with
isotopie
substitution
impurities
208
6.8.1
Where does the formation of local states begin
in a spectrum of optical vibrations? Ef¬
fects of strong anharmonicity
208
6.8.2
Local biphonon in an 14NH4Br crystal contain¬
ing the
isotopie
substitution impurity I5N
210
6.9
Conclusion and prospects for further investigations
211
The dielectric tensor of crystals in the region of ex-
citonic resonances
215
7.1
On the calculation of the dielectric tensor
215
7.2
The Pitaevsky-Dzyaloshinsky formula for the dielec¬
tric tensor
217
7.3
Polariton states in the calculation of the dielectric ten¬
sor in the region of Frenkel exciton resonances
220
7.4
The transverse dielectric tensor and dissipation of light
waves
224
7.4.1
The transverse dielectric tensor
224
7.4.2
The dissipation of polaritons in the vicinity of
exciton resonances
227
7.5
Macroscopic and microscopic theories of optical non-
linearity in the region of exciton resonances
229
7.5.1
On polariton anharmonicity in the nonlinear op¬
tical response
231
xii CONTENTS
8
Dielectric tensor of superlattices
233
8.1
Long-period superlattices
233
8.2
Spatial dispersion in superlattices
234
8.2.1
Spatial dispersion in the vicinity of an excitonic
resonance
(£1,2 >
ав)
234
8.2.2
Spatial dispersion in the vicinity of an excitonic
resonance (ii
<авЛ2
> ßß) 237
8.2.3
Gyrotropy in superlattices
238
8.3
Dielectric tensor of superlattices with anisotropic lay¬
ers
239
8.3.1
Dielectric tensor of a superlattice
239
8.3.2
Magnetooptical effects in superlattices
241
8.3.3
Influence of a static electric field
243
8.4
Optical nonlinearities in organic multilayers
244
8.4.1
χ'2'
optical nonlinearities in superlattices
244
9
Excitations in organic multilayers
246
9.1
Gas-condensed matter shift and the possibility of gov¬
erning spectra of Frenkel
excitons
in thin layers
246
9.2
Fermi resonance interface modes in organic superlat¬
tices
251
9.2.1
Fermi resonance in molecules
251
9.2.2
Fermi-resonance wave in a two-layer system
257
9.2.3
Fermi resonance interface waves
259
9.2.4
Bistable energy transmission through the inter¬
face with Fermi resonance interaction
262
10
Cavity polaritons in organic microcavities
266
10.1
Giant
Rabi
splitting in organic microcavities
266
10.2
Microcavities with crystalline organics
269
10.2.1
Introduction
269
10.2.2
Cavity photons and Coulomb
excitons
270
10.2.3
Cavity polaritons
272
10.2.4
One molecule in the unit cell
274
10.2.5
Two molecules in the unit cell
275
10.2.6
Conclusions
278
10.3
Microcavities with disordered organics
278
10.3.1
Qualitative picture
278
10.4
Macroscopic classical theory
280
10.4.1
General expressions
280
10.4.2
The case of vanishing
q
284
10.4.3
The case of large
q
286
10.4.4
Microscopic quantum theory
288
10.5
The localized end-point polariton states
290
CONTENTS xiii
10.5.1 Dynamics
of a low-energy wavepacket in a per¬
fect microcavity
290
10.5.2
Time evolution of the lowest wavepacket
293
10.5.3
Concluding remarks
300
11
Charge transfer
excitons
301
11.1
Introduction
301
11.2
Stark effect and electroabsorption of CTEs
303
11.3
Phase transition from the dielectric to the conducting
state (cold photoconductivity)
305
11.3.1
Analytical approach
306
11.3.2
Numerical simulations
309
11.3.3
Results of numerical simulations
310
11.3.4
Concluding remarks
313
11.4
Cumulative
photovoltage
in asymmetrical donor-acceptor
organic superlattices
315
11.4.1
Introduction
315
11.4.2
On the mechanisms of the photovoltaic effects
in organics
317
11.4.3
Cumulative
photovoltage
in an asymmetrical stack
of
D
-А
interfaces
318
11.5
Nonlinear optical response of charge-transfer
excitons
at donor-acceptor interface
321
11.5.1
Resonant optical nonlinearity of CTEs: the role
of the exciton-exciton repulsion
321
11.5.2 Photogenerated
static electric field: influence on
the
nonresonant
optical response
323
12
Surface
excitons
325
12.1
Introduction
325
12.1.1
Surface
excitons
and polaritons
325
12.1.2
Coulomb surface
excitons
327
12.1.3
The exciton-phonon interaction and the role of
surface defects
328
12.2
Phenomenological theory of surface Coulomb
excitons
and polaritons
329
12.2.1
Surface polaritons at the sharp interface between
media
329
12.2.2
Observation of exciton surface polaritons at room
temperature
332
12.2.3
Surface
excitons
in the presence of a transition
layer
333
12.2.4
Nonlinear surface polaritons
335
12.3
Site shift surface
excitons
in molecular crystals
337
12.3.1
Site shift surface
excitons (SSSE)
in anthracene
337
xiv CONTENTS
12.3.2
On the radiative width of site shift surface
ex¬
citons
341
12.4
Edge exciton states in molecular chains
345
12.4.1
Introduction. Tamm states
345
12.4.2
Mixing of Frenkel and charge-transfer
excitons
in a finite molecular chain
346
12.4.3
Edge and bulk states in a finite molecular chain
with mixing of Frenkel and charge-transfer
excitons
351
12.5
Application to PTCDA and MePTCDI crystals
354
12.6
Frenkel surface
excitons
in disordered media
356
12.6.1
Macroscopic surface
excitons
and polaritons in
isotopically mixed crystalline solutions
356
12.7
Conclusion
359
13
Excitons
in Organic-Based Nanostructures
360
13.1
Introduction
360
13.2
Hybrid 2D Frenkel-Wannier-Mott
excitons
at the in¬
terface of organic and inorganic quantum wells.
Strong coupling regime
362
13.2.1
Configuration of heterostructure and general re¬
lations
362
13.2.2
The coupling matrix element
364
13.2.3
Dispersion relations of hybrid states
368
13.2.4
Linear optical response of hybrid states
370
13.3
Hybrid
excitons
in parallel organic and inorganic semi¬
conductor quantum wires
372
13.4
On the hybridization of '"zero-dimensional" Frenkel and
Wannier-Mott
excitons
376
13.5
Nonlinear optics of 2D Hybrid Frenkel-Wannier-Mott
excitons
377
13.5.1
The resonant
χ(3)
nonlinearity
377
13.5.2
Second-order susceptibility
χ^
383
13.6
Weak coupling regime in hybrid nanostructures
384
13.6.1
The
Förster
energy transfer
384
13.6.2 Förster
energy transfer in a planar geometry
385
13.6.3
Noncontact
pumping of light emitters via nonra-
diative energy transfer: new concept for
light-emitting devices
387
13.6.4
First experiments
388
13.6.5 Förster
energy transfer from quantum dots to
organics
392
13.6.6
Exciton energy transfer from a quantum dot to
its surface states
395
CONTENTS xv
13.6.7 Exciton
energy transfer from
organice
to semi¬
conductor nanocrystals and carrier mul¬
tiplication
396
13.7
Hybridization of Frenkel and Wannier-Mott
excitons
in a 2D microcavity in the regime of strong cou¬
pling
398
13.7.1
Microcavity embedded resonant organic and in¬
organic quantum wells
398
13.7.2
Dispersion and relaxation of a polariton in a hy¬
brid microcavity containing a crystalline
organic layer and a resonant inorganic
quantum well
400
13.7.3
Classical formalism
400
13.7.4
QED approach
402
13.7.5
Exciton-phonon scattering in a microcavity
404
13.7.6
Estimation of transfer rates
404
13.7.7
Conclusion
408
14
Mobility of Frenkel
Excitons
410
14.1
Diffusion of Frenkel
excitons
410
14.2
The diffusion tensor
412
14.3
Weak exciton-phonon coupling: coherent
excitons
413
14.3.1
General expressions
413
14.3.2
Isotropie
exciton effective mass and scattering
by acoustic phonons
415
14.3.3
Temperature dependence of the diffusion con¬
stant
417
14.4
Strong exciton-phonon coupling: incoherent
excitons
418
14.5
Transport measurements and diffusion of polaritons
420
15
Statistics and collective properties of Frenkel
exci¬
tons
423
15.1
Approximate second quantization and kinematic inter¬
action
423
15.2
Collective properties of an ideal gas of paulions
425
15.3
Collective properties of Frenkel
excitons
in the pres¬
ence of a dynamic interaction
429
15.3.1
On biexcitons in organic crystals
432
15.4
Kinematic interaction of exciton-polaritons in crystalline
organic microcavities
433
15.5
Fermionic character of Frenkel
excitons
in one-dimensional
molecular crystals
434
A Diagonalization of a Hamiltonian quadratic in the
Bose-amplitudes
437
xvi CONTENTS
В
Calculations of Polarization in Inorganic Quantum
Wells and in
Organice
439
B.I General relations
439
B.2 Polarization in a semiconductor
440
B.3 Polarization in organics
442
С
Microscopic Quantum-Mechanical Calculations of the
Energy Transfer Rate
444
D
Energy transfer in the planar geometry
446
D.I Free
excitons
446
D.
2
Localized
excitons
451
References
455
Tables
484
Figures
485
Index
489 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Agranovič, Vladimir M. 1929- |
author_GND | (DE-588)136905889 |
author_facet | Agranovič, Vladimir M. 1929- |
author_role | aut |
author_sort | Agranovič, Vladimir M. 1929- |
author_variant | v m a vm vma |
building | Verbundindex |
bvnumber | BV035014723 |
classification_rvk | UP 3710 |
ctrlnum | (OCoLC)605444939 (DE-599)BSZ284302139 |
dewey-full | 530.416 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.416 |
dewey-search | 530.416 |
dewey-sort | 3530.416 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02329nam a2200541 cb4500</leader><controlfield tag="001">BV035014723</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140813 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080821s2009 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199234417</subfield><subfield code="c">(hbk.) : £65.00 hbk.</subfield><subfield code="9">978-0-19-923441-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)605444939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ284302139</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.416</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3710</subfield><subfield code="0">(DE-625)146388:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agranovič, Vladimir M.</subfield><subfield code="d">1929-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136905889</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Excitations in organic solids</subfield><subfield code="c">Vladimir M. Agranovich</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 496 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">International series of monographs on physics</subfield><subfield code="v">142</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 455 - 483</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CRYSTAL LATTICES/ORGANIC COMPOUNDS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EXCITON (PHYSIQUE DE LA MATIÈRE CONDENSÉE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EXCITONS (CONDENSED MATTER PHYSICS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EXZITON (PHYSIK DER KONDENSIERTEN MATERIE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KRISTALLGITTER/ORGANISCHER VERBINDUNGEN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MANY-BODY SYSTEMS (QUANTUM THEORY)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QUANTENREGELN + QUANTISIERUNG (QUANTENTHEORIE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QUANTUMRULES + QUANTIZATION (QUANTUM MECHANICS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RÈGLES DE SÉLECTION QUANTIQUES + QUANTIFICATION (MÉCANIQUE QUANTIQUE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RÉSEAUX CRISTALLINS/COMPOSÉS ORGANIQUES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SYSTÈMES À PLUSIEURS PARTICULES (THÉORIE QUANTIQUE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VIELTEILCHENSYSTEME (QUANTENTHEORIE)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Angeregter Zustand - Organischer Festkörper</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Organischer Festkörper - Angeregter Zustand</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exciton theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic solid state chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">International series of monographs on physics</subfield><subfield code="v">142</subfield><subfield code="w">(DE-604)BV000106406</subfield><subfield code="9">142</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016683913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016683913</subfield></datafield></record></collection> |
id | DE-604.BV035014723 |
illustrated | Illustrated |
index_date | 2024-07-02T21:45:03Z |
indexdate | 2024-07-09T21:20:13Z |
institution | BVB |
isbn | 9780199234417 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016683913 |
oclc_num | 605444939 |
open_access_boolean | |
owner | DE-703 DE-11 DE-20 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-11 DE-20 DE-19 DE-BY-UBM |
physical | XVI, 496 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Oxford Univ. Press |
record_format | marc |
series | International series of monographs on physics |
series2 | International series of monographs on physics |
spelling | Agranovič, Vladimir M. 1929- Verfasser (DE-588)136905889 aut Excitations in organic solids Vladimir M. Agranovich 1. publ. Oxford [u.a.] Oxford Univ. Press 2009 XVI, 496 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier International series of monographs on physics 142 Literaturverz. S. 455 - 483 CRYSTAL LATTICES/ORGANIC COMPOUNDS EXCITON (PHYSIQUE DE LA MATIÈRE CONDENSÉE) EXCITONS (CONDENSED MATTER PHYSICS) EXZITON (PHYSIK DER KONDENSIERTEN MATERIE) KRISTALLGITTER/ORGANISCHER VERBINDUNGEN MANY-BODY SYSTEMS (QUANTUM THEORY) QUANTENREGELN + QUANTISIERUNG (QUANTENTHEORIE) QUANTUMRULES + QUANTIZATION (QUANTUM MECHANICS) RÈGLES DE SÉLECTION QUANTIQUES + QUANTIFICATION (MÉCANIQUE QUANTIQUE) RÉSEAUX CRISTALLINS/COMPOSÉS ORGANIQUES SYSTÈMES À PLUSIEURS PARTICULES (THÉORIE QUANTIQUE) VIELTEILCHENSYSTEME (QUANTENTHEORIE) Angeregter Zustand - Organischer Festkörper idsbb Organischer Festkörper - Angeregter Zustand idsbb Exciton theory Organic solid state chemistry Nanostructured materials International series of monographs on physics 142 (DE-604)BV000106406 142 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016683913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Agranovič, Vladimir M. 1929- Excitations in organic solids International series of monographs on physics CRYSTAL LATTICES/ORGANIC COMPOUNDS EXCITON (PHYSIQUE DE LA MATIÈRE CONDENSÉE) EXCITONS (CONDENSED MATTER PHYSICS) EXZITON (PHYSIK DER KONDENSIERTEN MATERIE) KRISTALLGITTER/ORGANISCHER VERBINDUNGEN MANY-BODY SYSTEMS (QUANTUM THEORY) QUANTENREGELN + QUANTISIERUNG (QUANTENTHEORIE) QUANTUMRULES + QUANTIZATION (QUANTUM MECHANICS) RÈGLES DE SÉLECTION QUANTIQUES + QUANTIFICATION (MÉCANIQUE QUANTIQUE) RÉSEAUX CRISTALLINS/COMPOSÉS ORGANIQUES SYSTÈMES À PLUSIEURS PARTICULES (THÉORIE QUANTIQUE) VIELTEILCHENSYSTEME (QUANTENTHEORIE) Angeregter Zustand - Organischer Festkörper idsbb Organischer Festkörper - Angeregter Zustand idsbb Exciton theory Organic solid state chemistry Nanostructured materials |
title | Excitations in organic solids |
title_auth | Excitations in organic solids |
title_exact_search | Excitations in organic solids |
title_exact_search_txtP | Excitations in organic solids |
title_full | Excitations in organic solids Vladimir M. Agranovich |
title_fullStr | Excitations in organic solids Vladimir M. Agranovich |
title_full_unstemmed | Excitations in organic solids Vladimir M. Agranovich |
title_short | Excitations in organic solids |
title_sort | excitations in organic solids |
topic | CRYSTAL LATTICES/ORGANIC COMPOUNDS EXCITON (PHYSIQUE DE LA MATIÈRE CONDENSÉE) EXCITONS (CONDENSED MATTER PHYSICS) EXZITON (PHYSIK DER KONDENSIERTEN MATERIE) KRISTALLGITTER/ORGANISCHER VERBINDUNGEN MANY-BODY SYSTEMS (QUANTUM THEORY) QUANTENREGELN + QUANTISIERUNG (QUANTENTHEORIE) QUANTUMRULES + QUANTIZATION (QUANTUM MECHANICS) RÈGLES DE SÉLECTION QUANTIQUES + QUANTIFICATION (MÉCANIQUE QUANTIQUE) RÉSEAUX CRISTALLINS/COMPOSÉS ORGANIQUES SYSTÈMES À PLUSIEURS PARTICULES (THÉORIE QUANTIQUE) VIELTEILCHENSYSTEME (QUANTENTHEORIE) Angeregter Zustand - Organischer Festkörper idsbb Organischer Festkörper - Angeregter Zustand idsbb Exciton theory Organic solid state chemistry Nanostructured materials |
topic_facet | CRYSTAL LATTICES/ORGANIC COMPOUNDS EXCITON (PHYSIQUE DE LA MATIÈRE CONDENSÉE) EXCITONS (CONDENSED MATTER PHYSICS) EXZITON (PHYSIK DER KONDENSIERTEN MATERIE) KRISTALLGITTER/ORGANISCHER VERBINDUNGEN MANY-BODY SYSTEMS (QUANTUM THEORY) QUANTENREGELN + QUANTISIERUNG (QUANTENTHEORIE) QUANTUMRULES + QUANTIZATION (QUANTUM MECHANICS) RÈGLES DE SÉLECTION QUANTIQUES + QUANTIFICATION (MÉCANIQUE QUANTIQUE) RÉSEAUX CRISTALLINS/COMPOSÉS ORGANIQUES SYSTÈMES À PLUSIEURS PARTICULES (THÉORIE QUANTIQUE) VIELTEILCHENSYSTEME (QUANTENTHEORIE) Angeregter Zustand - Organischer Festkörper Organischer Festkörper - Angeregter Zustand Exciton theory Organic solid state chemistry Nanostructured materials |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016683913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000106406 |
work_keys_str_mv | AT agranovicvladimirm excitationsinorganicsolids |