Optical microcavities:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New Jersey [u.a.]
World Scientific
2007
|
Ausgabe: | Reprinted |
Schriftenreihe: | Advanced series in applied physics
5 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 502 S. Ill., graph. Darst. |
ISBN: | 9812387757 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035014413 | ||
003 | DE-604 | ||
005 | 20080825 | ||
007 | t | ||
008 | 080821s2007 ad|| |||| 00||| eng d | ||
020 | |a 9812387757 |9 981-238-775-7 | ||
035 | |a (OCoLC)254323797 | ||
035 | |a (DE-599)GBV563508779 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
050 | 0 | |a TA1677 | |
082 | 0 | |a 621.366 | |
084 | |a UH 5680 |0 (DE-625)145685: |2 rvk | ||
245 | 1 | 0 | |a Optical microcavities |c ed. by Kerry Vahala |
250 | |a Reprinted | ||
264 | 1 | |a New Jersey [u.a.] |b World Scientific |c 2007 | |
300 | |a XIII, 502 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advanced series in applied physics |v 5 | |
650 | 0 | 7 | |a Mikrooptik |0 (DE-588)4362762-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optischer Resonator |0 (DE-588)4172678-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optischer Resonator |0 (DE-588)4172678-9 |D s |
689 | 0 | 1 | |a Mikrooptik |0 (DE-588)4362762-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Vahala, Kerry |e Sonstige |0 (DE-588)133722015 |4 oth | |
830 | 0 | |a Advanced series in applied physics |v 5 |w (DE-604)BV001338942 |9 5 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016683606&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016683606 |
Datensatz im Suchindex
_version_ | 1804137936831119360 |
---|---|
adam_text | CONTENTS
Preface v
Chapter
1.
Optical Resonators and Filters
1
H. A.
Haus,
Μ.
A. Popović,
M. R.
Watts,
C. Manolatou,
В.
E.
Little and
S. T. Chu
1.
Introduction
2.
Microwave Circuits
and Optical
Circuits
4
3.
High-lVansmission-Cavity-Waveguide (HTC-WG) Design
5
4.
Add/Drop Ring- and Racetrack-Resonator Filters
8
4.1.
Analysis by Coupled Mode Theory 9
4.2.
Synthesis of Filter Responses 12
4.3.
Design and Numerical Simulation
13
4.4.
Fabricated High-Order
Microring
Filters
16
5.
Distributed Feedback Resonators with Quarter-Wave Shift
17
6.
Polarization Splitter-Rotator and Fiber-Chip Coupler
20
7.
Review of
Microring
Resonator Technologies
23
7.1.
Material Systems ^
7.2.
Coupling Geometries
7.3.
Devices
8.
Commercial Applications of Ring Resonators ^
8.1.
Universal Demultiplexers
8.2.
Widely Tunable Wavelength Filters
30
9.
Conclusion
References
vii
viii
Contenu
Chapter
2.
Micro fabricated Optical Cavities and
Photonic Crystals
39
M.
Lončar
and A. Scherer
1.
Introduction
39
2.
Vertical Microcavities
40
3.
Photonic Crystals
44
3.1.
The Origin of the Photonic
Bandgap
46
3.2.
Photonic Crystal Slabs
49
3.3.
Comparison between Square and Triangular Photonic
Crystal Lattices
51
3.4.
Geometry-Dependent Properties of Photonic Crystals
53
4.
Propagation of Light through Photonic Crystal Slabs
56
4.1.
Self-Collimation in Square Lattice PPCs
58
4.2.
Complete Band-Diagram of Triangular Lattice PPC
60
5.
Planar Photonic Crystal Cavities and Lasers
60
5.1.
High
Q
Cavity Designs
63
5.2.
Low-Threshold Planar Photonic Crystal Nanolasers
68
5.3.
Fabrication Procedure
69
5.4.
Characterization of High
Q
Cavities
72
5.5.
Room Temperature Lasers
75
6.
Photonic Crystal Lasers as Chemical Sensors
79
6.1.
Fabrication of Photonic Crystal Biochemical Sensors
80
6.2.
Chemical Sensing
82
6.3.
Dense Integration of Laser Sensors
85
6.4.
Future Directions
86
7.
Conclusions and Comparison between Types
of Optical Cavities
88
References
90
Chapter
3.
Semiconductor Lasers for
Telecommunications
95
T. L.
Koch
1.
Introduction
95
1.1.
Applications
96
1.2.
Brief Materials Background
98
2.
Basic Semiconductor Laser Structures
101
Contents ix
3. Laser Resonator
Static
and Dynamic Characteristics 104
3.1.
Distributed
Feedback Lasers HO
3.2.
Direct
Modulation 116
4. Integration and Higher
Functionality
Modules 119
4.1.
Recent Advances
125
References
129
Chapter
4.
Cavity-Enhanced Single Photons from a
Quantum Dot
133
J.
Vučković,
С.
Santori,
D.
Fattal,
M. Pelton, G. S.
Solomon
and Y. Yamamoto
1.
Introduction
and Overview
133
2.
Single Quantum
Dots: Assembly and
Spectroscopy
136
3.
Microcavities for Interaction
with Semiconductor
Quantum Dots
142
3.1.
Motivation
for Maximizing the
Ratio
of Quality
Factor to Mode Volume
142
3.2. Micropost
Microcavities
145
3.3.
Photonic Crystal Microcavities
155
4.
Experimental Demonstration of Solid-State Cavity Quantum
Electrodynamics
160
5.
Cavity-Enhanced Single Photons on Demand
163
5.1.
Generation of Single Photons with Small Multiphoton
Probability and Large
Purceii
Factor
163
5.2.
Generation of Indistinguishable Single Photons
on Demand
165
6.
Conclusions and Future Prospects
171
References
172
Chapter
5.
Fabrication, Coupling and Nonlinear Optics
of Ultra-High-Q Micro-Sphere and Chip-Based
Toroid Microcavities
177
T. J.
Kippenberg,
S. M.
Spillane,
D. K.
Armani,
В.
Min, L. Yang
and K. J. Váhala
1.
Introduction
178
2.
Ultra-High-
Q
Microcavity Fabrication and Background
181
2.1.
Microspheres
181
χ
Contents
2.2.
Fabrication
of
Ultra-ffigh-Q Microtoroids On-a-Chip
182
2.3.
Toroid
Dimensional Control by Preform Design
185
3.
Coupling to Ultra-High-
Q Microcavities
Using
Tapered Optical Fibers
186
3.1.
Modal Coupling in Whispering Gallery
Mode Microcavities
196
4.
Mode Structure and Q-Factors of Toroid
Microcavities On-a-Chip
202
4.1.
Q-Factors of Microtoroids
202
4.2.
Mode Structure of a Toroid Microcavity
206
4.3.
Mode Volume of a Toroid Microcavity
208
5.
Observation of Nonlinear Oscillations in Ultra-ffigh-Q Silica
Microcavities
209
5.1.
Stimulated Raman Scattering in Microcavities
210
5.2.
Cascaded Stimulated Raman Scattering
in Microcavities
218
5.3.
Stimulated Raman Scattering in Microtoroids
222
5.4.
Optical Parametric Oscillations in Toroid Microcavities
225
6.
Surface Functionalization
231
7.
Outlook and Summary
233
References
234
Chapter
6.
Nonlinear Optical Properties of
Semiconductor Quantum Wells inside Microcavities
239
T. Meier, C.
Sieh,
S.
W.
Koch,
Y.-S. Lee, T.
В.
Norris,
F. Jahnke,
G. Khitrova and H. M. Gibbs
1.
Introduction
240
2.
Optical Properties of Semiconductor Nanostructures
241
2.1.
Introduction
241
2.2.
Semiclassical Theory
244
2.3.
Hartree-Fock Approximation
244
2.4.
Many-Body Correlation Effects and Their
Influence on Experiments
250
3.
Optical Properties of Semiconductor Quantum Wells
in Microcavities
283
3.1.
Introduction
283
3.2.
Description of Light Propagation and Normal-Mode
Splitting
286
Contenta
xi
3.3.
Nonlinear Optical Properties of Semiconductor
Microcavities Viewed by Pump-Probe Experiments
290
3.4.
Second Born Approximation in Semiconductor
Microcavities
297
3.5.
Dynamics-Controlled Truncation Scheme
in Semiconductor Microcavities
304
4.
Summary and Conclusions
312
References
314
Chapter
7.
Polymer
Microring
Resonators
319
P.
Rabiei
and W. H. Steier
1.
Introduction
319
2.
Analysis of
Microring
Resonators
321
2.1.
Microresonator
Transfer Function
321
2.2.
Microresonator
Parameters
324
3.
Simulations of Polymer
Microresonators
and Calculation of Parameters
3.1.
Mode Profiles
3.2.
Bending Loss
3.3.
Effective Index
3.4.
Scattering Loss
3.5.
Material Loss
3.6.
Expected Parameters of Polymer
Microresonators
4.
Waveguide Coupling to
Microresonators
4.1.
Beam Propagation Coupling Calculations
4.2.
Required Fabrication Accuracy
5.
Passive Polymer
Microresonators
5.1.
Larger Devices
5.2.
Higher FSR
Microresonators
5.3.
Summary of Passive Devices
5.4.
Resonant Wavelength Control by Temperature Tuning
5.5.
Resonance Wavelength Control by Fabrication
6.
Microresonator
Modulators
6.1.
Sensitivity and Bandwidth
6.2.
Larger Diameter Modulators
6.3.
High FSR Modulators
7.
Coupled Double
Microresonators
for Wide Band Tuning
7.1.
Thermo-Optic Device
xii Contents
7.2. Electro-Optic Tuning 359
7.3.
Summary of
Double Microresonators 361
8. Applications 361
References
364
Chapter
8. Atoms in Microcavities: Quantum
Electrodynamics,
Quantum
Statistical Mechanics,
and Quantum Information Science 367
А. С
Doherty and H. Mabuchi
1.
Introduction and Overview
367
1.1.
Cavity QED and Strong Coupling
369
1.2. Applications
of Strong Coupling
371
2.
The Atom-Cavity System as an Open Quantum System
374
2.1.
Model for the Optical Cavity
375
2.2.
Master Equation for Cavity Decay
378
2.3.
Master Equation for Spontaneous Emission
381
2.4.
Master Equation for the Atom-Cavity System
383
2.5.
Input-Output Formalism: The Transmitted Field
385
3.
Dissipation, Decoherence, and Continuous Observation
390
3.1.
Conditional Evolution and Quantum Trajectories
390
3.2.
Quantum Trajectories
391
3.3.
Counting Photons
393
3.4.
Measuring Field Quadratures
397
3.5.
Quantum Feedback Control
405
3.6.
Semi-Classical Limits and the Quantum-Classical Tran¬
sition
408
4.
Conclusions
410
References
410
Chapter
9.
Progress in Asymmetric Resonant Cavities:
Using Shape as a Design Parameter in
Dielectric Microcavity Lasers
415
H. G. L.
Schwefel,
H.
E. Tureci, A.
D. Stone
and
R. K.
Chang
1.
Introduction
416
1.1.
Overview
416
2.
Review of Theoretical Techniques
417
Contents xiii
2.1.
Background
417
2.2.
Failure of Conventional Geometric Optics
418
2.3.
The Phase Space Method for Ray Dynamics
426
2.4.
The Resonance Problem
430
3.
Ray Dynamics and Shape-Dependent Directional
Emission from ARCs
436
3.1.
The Imaging Technique for the Study
of Microcavity Resonators
436
3.2.
Phase Space Ray Escape Model for Emission from ARCs
439
3.3.
Tests of the Ray Model in Polymer ARC Lasers
441
3.4.
Experimental Results
443
3.5.
Ray and Wave Simulations of Polymer Experiments
445
4.
Surprising Features of the Data
447
4.1.
Dynamical Eclipsing Effect
448
4.2.
Short-Time Dynamics and Unstable Manifolds
452
4.3.
Unstable Manifolds
453
4.4.
Directional Emission from Completely
Chaotic Resonators
457
4.5.
Tunneling versus Refractive Directional Emission
458
4.6.
Overview of Low Index ARCs
463
5.
Semiconductor ARC Lasers
463
5.1.
Quantum Cascade ARC Lasers
464
6.
Unidirectional GaN Spiral
Microlasers
483
7.
Summary and Outlook
491
References
492
Index
497
|
adam_txt |
CONTENTS
Preface v
Chapter
1.
Optical Resonators and Filters
1
H. A.
Haus,
Μ.
A. Popović,
M. R.
Watts,
C. Manolatou,
В.
E.
Little and
S. T. Chu
1.
Introduction
2.
Microwave Circuits
and Optical
"Circuits"
4
3.
High-lVansmission-Cavity-Waveguide (HTC-WG) Design
5
4.
Add/Drop Ring- and Racetrack-Resonator Filters
8
4.1.
Analysis by Coupled Mode Theory 9
4.2.
Synthesis of Filter Responses 12
4.3.
Design and Numerical Simulation
13
4.4.
Fabricated High-Order
Microring
Filters
16
5.
Distributed Feedback Resonators with Quarter-Wave Shift
17
6.
Polarization Splitter-Rotator and Fiber-Chip Coupler
20
7.
Review of
Microring
Resonator Technologies
23
7.1.
Material Systems ^
7.2.
Coupling Geometries
7.3.
Devices
8.
Commercial Applications of Ring Resonators ^
8.1.
Universal Demultiplexers
8.2.
Widely Tunable Wavelength Filters
30
9.
Conclusion
References
vii
viii
Contenu
Chapter
2.
Micro fabricated Optical Cavities and
Photonic Crystals
39
M.
Lončar
and A. Scherer
1.
Introduction
39
2.
Vertical Microcavities
40
3.
Photonic Crystals
44
3.1.
The Origin of the Photonic
Bandgap
46
3.2.
Photonic Crystal Slabs
49
3.3.
Comparison between Square and Triangular Photonic
Crystal Lattices
51
3.4.
Geometry-Dependent Properties of Photonic Crystals
53
4.
Propagation of Light through Photonic Crystal Slabs
56
4.1.
Self-Collimation in Square Lattice PPCs
58
4.2.
Complete Band-Diagram of Triangular Lattice PPC
60
5.
Planar Photonic Crystal Cavities and Lasers
60
5.1.
High
Q
Cavity Designs
63
5.2.
Low-Threshold Planar Photonic Crystal Nanolasers
68
5.3.
Fabrication Procedure
69
5.4.
Characterization of High
Q
Cavities
72
5.5.
Room Temperature Lasers
75
6.
Photonic Crystal Lasers as Chemical Sensors
79
6.1.
Fabrication of Photonic Crystal Biochemical Sensors
80
6.2.
Chemical Sensing
82
6.3.
Dense Integration of Laser Sensors
85
6.4.
Future Directions
86
7.
Conclusions and Comparison between Types
of Optical Cavities
88
References
90
Chapter
3.
Semiconductor Lasers for
Telecommunications
95
T. L.
Koch
1.
Introduction
95
1.1.
Applications
96
1.2.
Brief Materials Background
98
2.
Basic Semiconductor Laser Structures
101
Contents ix
3. Laser Resonator
Static
and Dynamic Characteristics 104
3.1.
Distributed
Feedback Lasers HO
3.2.
Direct
Modulation 116
4. Integration and Higher
Functionality
Modules 119
4.1.
Recent Advances
125
References
129
Chapter
4.
Cavity-Enhanced Single Photons from a
Quantum Dot
133
J.
Vučković,
С.
Santori,
D.
Fattal,
M. Pelton, G. S.
Solomon
and Y. Yamamoto
1.
Introduction
and Overview
133
2.
Single Quantum
Dots: Assembly and
Spectroscopy
136
3.
Microcavities for Interaction
with Semiconductor
Quantum Dots
142
3.1.
Motivation
for Maximizing the
Ratio
of Quality
Factor to Mode Volume
142
3.2. Micropost
Microcavities
145
3.3.
Photonic Crystal Microcavities
155
4.
Experimental Demonstration of Solid-State Cavity Quantum
Electrodynamics
160
5.
Cavity-Enhanced Single Photons on Demand
163
5.1.
Generation of Single Photons with Small Multiphoton
Probability and Large
Purceii
Factor
163
5.2.
Generation of Indistinguishable Single Photons
on Demand
165
6.
Conclusions and Future Prospects
171
References
172
Chapter
5.
Fabrication, Coupling and Nonlinear Optics
of Ultra-High-Q Micro-Sphere and Chip-Based
Toroid Microcavities
177
T. J.
Kippenberg,
S. M.
Spillane,
D. K.
Armani,
В.
Min, L. Yang
and K. J. Váhala
1.
Introduction
178
2.
Ultra-High-
Q
Microcavity Fabrication and Background
181
2.1.
Microspheres
181
χ
Contents
2.2.
Fabrication
of
Ultra-ffigh-Q Microtoroids On-a-Chip
182
2.3.
Toroid
Dimensional Control by Preform Design
185
3.
Coupling to Ultra-High-
Q Microcavities
Using
Tapered Optical Fibers
186
3.1.
Modal Coupling in Whispering Gallery
Mode Microcavities
196
4.
Mode Structure and Q-Factors of Toroid
Microcavities On-a-Chip
202
4.1.
Q-Factors of Microtoroids
202
4.2.
Mode Structure of a Toroid Microcavity
206
4.3.
Mode Volume of a Toroid Microcavity
208
5.
Observation of Nonlinear Oscillations in Ultra-ffigh-Q Silica
Microcavities
209
5.1.
Stimulated Raman Scattering in Microcavities
210
5.2.
Cascaded Stimulated Raman Scattering
in Microcavities
218
5.3.
Stimulated Raman Scattering in Microtoroids
222
5.4.
Optical Parametric Oscillations in Toroid Microcavities
225
6.
Surface Functionalization
231
7.
Outlook and Summary
233
References
234
Chapter
6.
Nonlinear Optical Properties of
Semiconductor Quantum Wells inside Microcavities
239
T. Meier, C.
Sieh,
S.
W.
Koch,
Y.-S. Lee, T.
В.
Norris,
F. Jahnke,
G. Khitrova and H. M. Gibbs
1.
Introduction
240
2.
Optical Properties of Semiconductor Nanostructures
241
2.1.
Introduction
241
2.2.
Semiclassical Theory
244
2.3.
Hartree-Fock Approximation
244
2.4.
Many-Body Correlation Effects and Their
Influence on Experiments
250
3.
Optical Properties of Semiconductor Quantum Wells
in Microcavities
283
3.1.
Introduction
283
3.2.
Description of Light Propagation and Normal-Mode
Splitting
286
Contenta
xi
3.3.
Nonlinear Optical Properties of Semiconductor
Microcavities Viewed by Pump-Probe Experiments
290
3.4.
Second Born Approximation in Semiconductor
Microcavities
297
3.5.
Dynamics-Controlled Truncation Scheme
in Semiconductor Microcavities
304
4.
Summary and Conclusions
312
References
314
Chapter
7.
Polymer
Microring
Resonators
319
P.
Rabiei
and W. H. Steier
1.
Introduction
319
2.
Analysis of
Microring
Resonators
321
2.1.
Microresonator
Transfer Function
321
2.2.
Microresonator
Parameters
324
3.
Simulations of Polymer
Microresonators
and Calculation of Parameters
3.1.
Mode Profiles
3.2.
Bending Loss
3.3.
Effective Index
3.4.
Scattering Loss
3.5.
Material Loss
3.6.
Expected Parameters of Polymer
Microresonators
4.
Waveguide Coupling to
Microresonators
4.1.
Beam Propagation Coupling Calculations
4.2.
Required Fabrication Accuracy
5.
Passive Polymer
Microresonators
5.1.
Larger Devices
5.2.
Higher FSR
Microresonators
5.3.
Summary of Passive Devices
5.4.
Resonant Wavelength Control by Temperature Tuning
5.5.
Resonance Wavelength Control by Fabrication
6.
Microresonator
Modulators
6.1.
Sensitivity and Bandwidth
6.2.
Larger Diameter Modulators
6.3.
High FSR Modulators
7.
Coupled Double
Microresonators
for Wide Band Tuning
7.1.
Thermo-Optic Device
xii Contents
7.2. Electro-Optic Tuning 359
7.3.
Summary of
Double Microresonators 361
8. Applications 361
References
364
Chapter
8. Atoms in Microcavities: Quantum
Electrodynamics,
Quantum
Statistical Mechanics,
and Quantum Information Science 367
А. С
Doherty and H. Mabuchi
1.
Introduction and Overview
367
1.1.
Cavity QED and Strong Coupling
369
1.2. Applications
of Strong Coupling
371
2.
The Atom-Cavity System as an Open Quantum System
374
2.1.
Model for the Optical Cavity
375
2.2.
Master Equation for Cavity Decay
378
2.3.
Master Equation for Spontaneous Emission
381
2.4.
Master Equation for the Atom-Cavity System
383
2.5.
Input-Output Formalism: The Transmitted Field
385
3.
Dissipation, Decoherence, and Continuous Observation
390
3.1.
Conditional Evolution and Quantum Trajectories
390
3.2.
Quantum Trajectories
391
3.3.
Counting Photons
393
3.4.
Measuring Field Quadratures
397
3.5.
Quantum Feedback Control
405
3.6.
Semi-Classical Limits and the Quantum-Classical Tran¬
sition
408
4.
Conclusions
410
References
410
Chapter
9.
Progress in Asymmetric Resonant Cavities:
Using Shape as a Design Parameter in
Dielectric Microcavity Lasers
415
H. G. L.
Schwefel,
H.
E. Tureci, A.
D. Stone
and
R. K.
Chang
1.
Introduction
416
1.1.
Overview
416
2.
Review of Theoretical Techniques
417
Contents xiii
2.1.
Background
417
2.2.
Failure of Conventional Geometric Optics
418
2.3.
The Phase Space Method for Ray Dynamics
426
2.4.
The Resonance Problem
430
3.
Ray Dynamics and Shape-Dependent Directional
Emission from ARCs
436
3.1.
The Imaging Technique for the Study
of Microcavity Resonators
436
3.2.
Phase Space Ray Escape Model for Emission from ARCs
439
3.3.
Tests of the Ray Model in Polymer ARC Lasers
441
3.4.
Experimental Results
443
3.5.
Ray and Wave Simulations of Polymer Experiments
445
4.
Surprising Features of the Data
447
4.1.
Dynamical Eclipsing Effect
448
4.2.
Short-Time Dynamics and Unstable Manifolds
452
4.3.
Unstable Manifolds
453
4.4.
Directional Emission from Completely
Chaotic Resonators
457
4.5.
Tunneling versus Refractive Directional Emission
458
4.6.
Overview of Low Index ARCs
463
5.
Semiconductor ARC Lasers
463
5.1.
Quantum Cascade ARC Lasers
464
6.
Unidirectional GaN Spiral
Microlasers
483
7.
Summary and Outlook
491
References
492
Index
497 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)133722015 |
building | Verbundindex |
bvnumber | BV035014413 |
callnumber-first | T - Technology |
callnumber-label | TA1677 |
callnumber-raw | TA1677 |
callnumber-search | TA1677 |
callnumber-sort | TA 41677 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UH 5680 |
ctrlnum | (OCoLC)254323797 (DE-599)GBV563508779 |
dewey-full | 621.366 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.366 |
dewey-search | 621.366 |
dewey-sort | 3621.366 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | Reprinted |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01496nam a2200397 cb4500</leader><controlfield tag="001">BV035014413</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080825 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080821s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812387757</subfield><subfield code="9">981-238-775-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254323797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV563508779</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1677</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.366</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5680</subfield><subfield code="0">(DE-625)145685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical microcavities</subfield><subfield code="c">ed. by Kerry Vahala</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprinted</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 502 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series in applied physics</subfield><subfield code="v">5</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrooptik</subfield><subfield code="0">(DE-588)4362762-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optischer Resonator</subfield><subfield code="0">(DE-588)4172678-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optischer Resonator</subfield><subfield code="0">(DE-588)4172678-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikrooptik</subfield><subfield code="0">(DE-588)4362762-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vahala, Kerry</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)133722015</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series in applied physics</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV001338942</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016683606&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016683606</subfield></datafield></record></collection> |
id | DE-604.BV035014413 |
illustrated | Illustrated |
index_date | 2024-07-02T21:44:56Z |
indexdate | 2024-07-09T21:20:13Z |
institution | BVB |
isbn | 9812387757 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016683606 |
oclc_num | 254323797 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XIII, 502 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific |
record_format | marc |
series | Advanced series in applied physics |
series2 | Advanced series in applied physics |
spelling | Optical microcavities ed. by Kerry Vahala Reprinted New Jersey [u.a.] World Scientific 2007 XIII, 502 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Advanced series in applied physics 5 Mikrooptik (DE-588)4362762-6 gnd rswk-swf Optischer Resonator (DE-588)4172678-9 gnd rswk-swf Optischer Resonator (DE-588)4172678-9 s Mikrooptik (DE-588)4362762-6 s DE-604 Vahala, Kerry Sonstige (DE-588)133722015 oth Advanced series in applied physics 5 (DE-604)BV001338942 5 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016683606&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Optical microcavities Advanced series in applied physics Mikrooptik (DE-588)4362762-6 gnd Optischer Resonator (DE-588)4172678-9 gnd |
subject_GND | (DE-588)4362762-6 (DE-588)4172678-9 |
title | Optical microcavities |
title_auth | Optical microcavities |
title_exact_search | Optical microcavities |
title_exact_search_txtP | Optical microcavities |
title_full | Optical microcavities ed. by Kerry Vahala |
title_fullStr | Optical microcavities ed. by Kerry Vahala |
title_full_unstemmed | Optical microcavities ed. by Kerry Vahala |
title_short | Optical microcavities |
title_sort | optical microcavities |
topic | Mikrooptik (DE-588)4362762-6 gnd Optischer Resonator (DE-588)4172678-9 gnd |
topic_facet | Mikrooptik Optischer Resonator |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016683606&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001338942 |
work_keys_str_mv | AT vahalakerry opticalmicrocavities |