Spectroscopy of low temperature plasma:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Aus dem Russ. übers. |
Beschreibung: | XXI, 609 S. Ill., graph. Darst. |
ISBN: | 9783527407781 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035012187 | ||
003 | DE-604 | ||
005 | 20160713 | ||
007 | t | ||
008 | 080820s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N06,0771 |2 dnb | ||
016 | 7 | |a 987215817 |2 DE-101 | |
020 | |a 9783527407781 |c Gb. : EUR 159.00 (freier Pr.), sfr 251.00 (freier Pr.) |9 978-3-527-40778-1 | ||
024 | 3 | |a 9783527407781 | |
028 | 5 | 2 | |a 1140778 000 |
035 | |a (OCoLC)311059400 | ||
035 | |a (DE-599)DNB987215817 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-11 |a DE-384 | ||
082 | 0 | |a 530.44 |2 22/ger | |
084 | |a UR 8200 |0 (DE-625)146643: |2 rvk | ||
084 | |a VG 8930 |0 (DE-625)147232:253 |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Očkin, Vladimir N. |e Verfasser |0 (DE-588)103567194 |4 aut | |
245 | 1 | 0 | |a Spectroscopy of low temperature plasma |c Vladimir N. Ochkin |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2009 | |
300 | |a XXI, 609 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Aus dem Russ. übers. | ||
650 | 0 | 7 | |a Kaltes Plasma |0 (DE-588)4248658-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Plasmaspektroskopie |0 (DE-588)4046265-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kaltes Plasma |0 (DE-588)4248658-0 |D s |
689 | 0 | 1 | |a Plasmaspektroskopie |0 (DE-588)4046265-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016681414&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016681414 |
Datensatz im Suchindex
_version_ | 1804137933619331072 |
---|---|
adam_text | VII
Contents
Preface
XIII
References
XVI
1
Plasma as an Object of Spectroscopy
1
General Notions
í
1.1
The Concept of Low-Temperature Plasma. Diagnostics
Problems
1
1.2
Equilibrium Plasma
6
1.2.1
Energy Distribution of Particles
6
1.2.2
Law of Mass Action. Neutral and Charged Particle Densities
7
1.2.3
Heat Emission.
Kirchhoff s
Law
11
1.3
Models of Equilibrium and the Associated Parameters
14
1.3.1
Local Thermal Equilibrium (LTE) Model
14
1.3.2
Partial Local Thermal Equilibrium
(PLTE)
Model
16
1.3.3
Model of Coronal Equilibrium (MCE)
20
1.3.4
Collisional-Radiative Model (CRM)
21
1.4
Optical Spectrum and Plasma Parameters
22
References
25
2
Basic Concepts and Parameters Associated with the Emission,
Absorption and Scattering of Light by Plasma
27
2.1
Photometric Quantities. Remarks on Terminology
27
2.2
Spectral Line Profile
31
2.2.1
Lorentz
Broadening
32
2.2.2
Doppler
Broadening
38
2.2.3
Joint Action of Natural,
Doppler
and Collision Broadening
41
2.3
Absorption in Lines
44
2.4
Emission in Lines. Optical Density Manifestations
46
2.5
Emission and Absorption in Continuous Spectrum
50
2.5.1 ff Bremsstrahlung
Emission
52
Spectroscopy of Low Temperature Plasma. Vladimir
N.
Ochkin
Copyright
© 2009
WILEY-VCH
Verlag
GmbH
&
Co. KGaA,
Weinheim
ISBN:
978-3-527-40778-1
VIII Contents
2.5.2 ff Bremsstrahlung Absorption 54
2.5.3 fb
Recombination
Emission 55
2.5.4 Absorption
Cross Section
in bf Photoionization 57
2.5.5 Emission and Absorption
of
Radiation in
the Case of
Joint
Action of thejff
Bremsstrahlung
and/b Recombination
Mechanisms
58
2.6
Scattering of Light
60
2.6.1
Thomson Scattering on a Free Electron
60
2.6.2
Scattering on a Bound Electron
63
References
63
3
Emission, Absorption and Scattering Techniques for Determining
the Densities of Particles in Discrete Energy States
67
3.1
Emission Techniques
67
3.1.1
Identification of Spectra
67
3.1.2
Absolute Measurements
68
3.1.3
Emission of Extended Inhomogeneous Sources
71
3.2
Absorption Techniques Using Classical Emitters
75
3.2.1
Absorption Against the Background of Continuous Spectrum
75
3.2.2
Line Absorption
78
3.2.3
Self-Absorption of
Multiplet
Lines
83
3.3
Absorption Spectroscopy Using Tunable and Broadband
Lasers
84
3.3.1
On the Advantages of Laser Sources Over Their Classical
Counterparts in Direct Absorption Measurements
84
3.3.2
On the Noise Limitation of Sensitivity
86
3.3.3
Diode Laser Spectroscopy in the
IR
Region
88
3.3.4
Nonstationary Coherent Effects in Absorption Measurements
92
3.3.5
Use of the Classical Multipass Absorption Cells
95
3.3.6
Intracavity Absorption
95
3.3.7
Measuring Absorption from the Attenuation of Light with Time
99
3.4
Indirect Methods for Measuring Absorption of Laser Light
203
3.4.1
Induced Fluorescence
204
3.4.1.1
General Characteristic
204
3.4.1.2
Fluorescence Excitation by Continuous-Wave and Pulsed
Laser Light
207
3.4.1.3
Induced Fluorescence Saturation and Decay
209
3.4.1.4
Induced Fluorescence Quenching and Taking Account
of this Process
222
3.4.1.5
Restrictions Imposed by the Plasma s Own Glow
118
3.4.2
Optogalvanic Spectroscopy
222
Contents
IX
3.4.2.1
The Use of the Optogalvanic Effect to Measure Light Absorption
in Plasma
222
3.4.2.2
High-Resolution Optogalvanic Spectroscopy
224
3.5
Multiphoton Processes. Raman Scattering
229
3.5.1
Two-Photon Absorption
230
3.5.2
Spontaneous Raman Scattering
233
3.5.3
Stimulated Raman Scattering
235
3.5.4
Coherent Anti-Stokes Scattering
237
References
243
4
Intensities in Spectra and Plasma Energy Distribution in the
Internal and Translational Degrees of Freedom of Atoms and
Molecules
147
4.1
Doppler
Broadening, Velocity Distribution of Particles, Neutral
Gas Temperature
247
4.1.1
Remarks on the Processing of Line Profiles
148
4.1.1.1
Registered and True Profiles
2 48
4.1.1.2
Predominantly
Doppler
Broadening Regions
249
4.1.1.3
Recovery of the Form of the Velocity Distribution of Particles
250
4.1.2
Examples of Abnormal
Doppler
Broadening and Nonequilibrium
Velocity Distributions of Neutral Particles in Plasma
252
4.1.3
Excitation and Relaxation of Atoms and Molecules with
Nonequilibrium Velocity in Interactions with Heavy Particles
254
4.1.3.1
Source Function
254
4.1.3.2
Relaxation of the Average Kinetic Energy of Particles with a
Finite Lifetime
255
4.1.3.3
Relaxation of the Form of the Velocity Distributions of Particles
in the Case of Large Deviations from Equilibrium and Finite
Lifetime
259
4.1.4
On the Determination of the Gas Temperature from the
Doppler
Broadening of the Lines Emitted by Atoms and Molecules
Excited by Electrons
262
4.1.5
Spectroscopie
Manifestations of the Motion of Ions in Plasma
264
4.2
Distribution of Molecules Among Rotational Levels
267
4.2.1
On the Isolation of the Boltzmann Ensembles in the Bound State
System of Particles
267
4.2.2
Distributions of Molecules Among Rotational Levels in an
Electronic State with a Long Lifetime
2 70
4.2.3
Electron Impact Excitation of the Electronic-Vibrational-
Rotational
(EVR)
Levels of Molecules
2 74
4.2.3.1
Observations and General Considerations
274
X
Contents
4.2.3.2
Experimental
Determination
of the Electron-Impact-Induced
Changes in the Rotational States of Molecules in Plasma
177
4.2.4
Excitation of EVR Levels by Heavy Particles
181
4.2.4.1
OH Radical. Violet Bands
181
4.2.4.2
N2 Molecules. Second Positive System
183
4.2.5
On Gas Temperature Measurements in the Presence of Parallel
Molecular Rotation Excitation Channels
184
4.2.5.1
Extension of the Form of Distribution of the Hot Molecules
to the Region of Low Rotational Levels
185
4.2.5.2
Spectral Resolution
285
4.2.5.3
Effect of the Conditions Occuring in Plasma on the Rotational
Temperature of the Hot Group
188
4.3
Line Intensities in the Vibrational Structure of Spectra and
Distributions of Molecules Among Vibrational Levels
191
4.3.1
Elements of Vibrational Kinetics. Vibrational Energy and
Temperature
191
4.3.1.1
Harmonic Oscillator Approximation
192
4.3.1.2
Effect of Anharmonicity
294
4.3.1.3
Diatomic Molecular Mixture and Polyatomic Molecules
297
4.3.2
Vibrational Temperature and Distribution Measurements by
Absorption
Spectroscopy Techniques
299
4.3.3
Emission Methods in the
IR
Region of the Spectrum
206
4.3.4
Combinations of Emission and Absorption Techniques.
Spectrum Inversion
222
4.3.5
Raman Scattering
226
4.3.6
Determination of the Vibrational Temperatures of Molecules in
the Electronic Ground States from Electronic Transition Spectra
220
4.4
Distribution of Particles Among Electronic Levels
224
References
227
5
Measuring Concentrations of Atoms and Molecules
235
5.1
General
235
5.2
Determining Atomic Concentrations by Absorption
Techniques
237
5.2.1
Neutral Unexcited Atoms
237
5.2.2
Metastable Atoms
249
5.2.3
Low-Multiplicity Positive Ions
266
5.3
Determination of Molecular Concentration by the Absorption
Method 26S
5.3.1
Probabilities of Optical Transitions in Diatomic Molecules
269
Contents
I XI
5.3.2 Determination
of Diatomic Molecular Concentrations from
Absorption on Electronic Spectrum Lines
272
5.3.3
Determination of Molecular Concentration from Absorption
in Vibrational-Rotational Spectra
278
5.3.4
Absorption of Radiation by Diatomic Molecules
in Metastable Electronic States
281
5.3.5
Absorption of
IR
Radiation by Polyatomic Molecules
281
5.3.6
Absorption of Radiation by Molecular Ions
284
5.4
Actinometric Methods
288
5.5
Negative Ions
297
5.5.1
Concentration Measurements
298
5.5.2
Absorption of Light by the H~~ Ions in Hydrogen LTE Plasma
301
References
303
6
Spectral Methods of Determining Electronic and Magnetic Fields
in Plasma
307
6.1
Determination of Electric Fields from the Spontaneous Emission
of Radiation by Atoms in Plasma
312
6.1.1
Hydrogen-Like Atoms
322
6.1.2
Non-Hydrogen-Like Atoms
318
6.2
Laser Stark Spectroscopy
322
6.2.1
Stark Spectroscopy of Atoms
323
6.2.2
Laser-Induced Fluorescence of Polar Molecules in Electric
Field
329
6.2.3
Multiphoton Excitation of Atoms
334
6.2.4
Coherent Four-Wave Stark Scattering Spectroscopy
337
6.3
Magnetic Field Investigations
342
6.3.1
Measurements Based on the Faraday Effect
342
6.3.2
Spectral Methods
343
References
346
7
Determination of the Parameters of the Electronic Component
of Plasma
351
7.1
Interferometry
351
7.2
Stark Broadening of Spectral Lines
356
7.2.1
General
356
7.2.2
Plasma Microfields
357
7.2.3
Linear Stark Effect
358
7.2.4
Quadratic Stark Effect
364
7.3
Truncation of Spectral Series of Hydrogen-Like Atoms
367
7
A Intensities in Continuous Spectrum
371
7.5
Scattering of Light on Electrons
374
XII Contents
7.5.1
Scattering of Light by Randomly Moving Electrons (Thomson
Scattering)
375
7.5.2
Manifestation Regions of the Thomson and Collective
Scattering Mechanisms
377
7.5.3
Scattered Spectrum and Plasma Parameters (Direct Problem)
379
7.5.4
Determination of Plasma Parameters from Scattered Spectra
(Inverse Problem)
382
7.5.5
Limitations of the Method, Sensitivity and Examples
385
7.6
Some Remarks on Measurements from Intensities in Line and
Band Spectra
391
References
393
8
Some Information on Spectroscopy Techniques
397
8.1
Characteristics of Optical Materials. Main Relations
398
8.1.1
Reflection at an Interface
398
8.1.2
Dispersion of the Optical Properties of Materials
399
8.1.3
Transmission and Reflection of Thin Films
400
8.1.3.1
Metal Films
400
8.1.3.2
Dielectric Films
402
8.2
Spectral Instruments
406
8.2.1
Slit Instruments
409
8.2.2
Interferometers
414
8.2.3
Spectral Instruments with Interference Modulation
425
8.2.3.1
Fourier-Transform) Spectrometers
425
8.2.3.2
Interference Spectrometers with Selective Amplitude
Modulation (ISSAM)
430
8.2.4
Raster Spectrometers
432
8.2.5
Acousto-optic Spectrometers
433
8.3
Gas-Discharge Light Sources
439
8.3.1
Illumination Engineering Quantities
439
8.3.2
Gas Discharges in an Envelope (Lamps)
442
8.3.2.1
Continuous-Discharge Lamps
442
8.3.2.2
Pulsed-Discharge Lamps
448
8.3.3
Open Light Sources
456
8.3.3.1
Continuous-Discharge Sources
456
8.3.3.2
Pulsed-Discharge Sources
456
8.4
Photodetectors
460
8.4.1
Parameters
462
8.4.1.1
Sensitivity
462
8.4.1.2
Noise
462
8.4.1.3
Effective and Ultimate Sensitivity
463
8.4.1.4
Inertia
464
Contents XIII
8.4.2 Main
Types of Single-Element Detectors
464
8.4.2.1
Thermal Detectors
464
8.4.2.2
Photoelectric (Quantum, Photonic) Detectors with
Extrinsic Photoeffect
466
8.4.2.3
Photoelectric Detectors with Intrinsic Photoeffect
470
8.4.2.4 Photoemulsion 472
8.4.2.5
Comparative Characteristics of Single-Element Detectors
473
8.4.3
Multielement and Distributed Photodetectors
477
8.4.3.1
Spatial Resolution
477
8.4.3.2
Photographic Detectors
478
8.4.3.3
Image Converter and
Intensifier
Tubes
479
8.4.3.4
Charge-Coupled Detectors
480
References
484
Appendix A
Statistical Weights and Statistical Sums
487
A.I Statistical Weight of Energy Levels in Atoms and Ions
487
A.2 Statistical Weight of Electronic States in Molecules
488
A.3 Statistical Weight of Vibrational Levels of Molecules
488
A.4 Statistical Weight of Rotational Levels of Molecules
489
A.4.1 Statistical Sum of Atoms and Ions
492
A.4.2 Statistical Sum of Molecules
492
References
495
Appendix
В
Conversion of Quantities Used to Describe Optical
Transition Probabilities in Line Spectra
497
References
497
Appendix
С
Two-Photon Absorption Cross Sections for Some Atoms and
Molecules in the Ground State
499
References
503
Appendix
D
Information on Some Diatomic Molecules for the Identification
and Processing of Low-Temperature Plasma Spectra
505
D.I Brief Information from Molecular Spectroscopy
-
Designations
of States and Transitions, Coupling Types, Selection Rules,
General Spectrum Structure
505
D.I.I General Rules
508
D.1.2 More Particular Rules
509
D.2 Nitrogen N2, N2+
513
XIV Contents
D.2.1 Electronic States, Electronic
Transition
Systems
(Bands)
513
D.2.2 Molecular
Constants of the Ground and Combining States
523
D.2.3 Second Positive
(2+)
System
523
D.2.3.1 Vibrational Structure of the
С3П(і; )-В3П(і; )
Transition
527
D.2.3.2 Rotational Structure
527
D.2.4 First Positive (1+) System
529
D.2.4.1 Vibrational Structure of the
Β3Π^(ΐ7 )-Α3Σ+(ι; )
Transition
529
D.2.4.2 Rotational Structure
529
D.2.5 First Negative
(1 )
System
522
D.2.6 Vibrational Structure of the
Β2Σ+ (ν )-Χ2Σ+ (ν )
Transition
522
D.2.6.1 Rotational Structure
522
D.3 Carbon Oxide CO
526
D.3.1 Electronic States, Electronic Transitions
526
D.3.2 Molecular Constants of the Ground and Combining States
526
D.3.3
Ångström
Bands System
Β1 Σ+-Α1 Π
526
О.З.З.І
Vibrational Structure
526
D.3.3.2 Rotational Structure of the B^-A1!! Bands
526
Ό
A Hydrogen H2 and Deuterium D2 52S
D.4.1 Electronic States, Electronic Transitions
528
D.4.2 Molecular Constants of the Ground and Combining States
528
D.4.3 Ortho- and Para-Modifications
529
D.4.4 Fulcher-a Bands System
d3ľlu-a3Z+
530
D.4.4.1 Vibrational Structure
532
D.4.4.2 Rotational Structure
532
D.4.5
Ι1Π?-β1Σ+
Transition
533
D.4.5.1 Vibrational Structure
533
D.4.5.2 Rotational Structure
535
D.4.6 G^+-B^+ Transition
537
D.4.6.1 Vibrational Structure
537
D.4.6.2 Rotational Structure
537
D.5 Nitrogen Oxide NO
542
D.5.1 Electronic States, Electronic Transitions
542
D.5.2 Molecular Constants of the Ground and Combining States
542
D.5.3
7
System
(195-340
nm)
542
D.5.3.1
Vibrational Structure
542
D.5.3.2 Rotational Structure
542
D.6 Cyanogen CN
543
D.6.1 Electronic States, Electronic Transitions
543
D.6.2 Molecular Constants of the Ground and Combining States
545
D.6.3 Violet System
546
D.6.3.1 Vibrational Structure
546
Contents
XV
D.6.3.2
Rotational Structure
546
Ό.7
Carbon
Radical C2
548
D.7.1 Electronic States, Electronic Transitions 548
D.7.2
Molecular Constants of
States 548
D.7.3
Swan
Bands System 548
D.7.3.1 Vibrational
Structure
548
D.7.3.2
Rotational Structure
550
D.8
CH
Radical
551
D.8.1 Electronic States, Electronic Transitions
552
D.8.2 Molecular Constants of the Ground and Combining States
553
D.8.3
Β2Σ~-Χ2Π
Transition
555
D.8.3.1 Rotational Structure
556
D.8.4 C2L+-X2n Transition
556
D.9 Hydroxyl Radical OH
558
D.9.1 Electronic States, Electronic Transitions
558
D.9.2 Molecular Constants of the Ground and Combining States
560
D.9.2.1 Rotational Structure
560
References
566
Appendix
E
Rotational Line Intensity Factors in the Electronic-Vibrational
Transition Spectra of Diatomic Molecules
569
E.I Singlet Transitions
570
E.1.1 ^-^X,
ΔΛ
= 0
Transitions
570
E.1.2
ϊχ-ΐγ, ΔΛ
= ±1
Transitions
570
E.2 Doublet Transitions
570
E.2.1 2X-2X,
ΔΛ
= 0
Transitions
571
E.2.2 2X-2Y,
ΔΛ
= ±1
Transitions
572
E.3 Triplet Transitions
573
E.3.1 3X-3X,
ΔΛ
= 0
Transitions
574
Е.З.І.І
Dipole-Forbidden Branches
576
E.3.2 3X-3Y,
ΔΛ
= ±1
Transitions
577
E.3.3 3
Ε-3Δ, ΔΛ =
±2
Transitions
579
E.4 Remarks on the Normalization of Rotational Line Intensity
Factors
580
E.5 On Symbolic Notation
581
References
582
XVI Contents
Appendix
F
Measurement of the Absolute Populations of Excited Atoms by
Classical Spectroscopy Techniques
583
Yu. B. Golubovskii
References
595
Appendix
G
General Information for Plasma Spectroscopy Problems
597
G.I Physical Constants
597
G.2 Atomic Values
598
G.3 Correspondence between Spectral and Traditional Energy
Measurement Units
598
G.4 Electrical Units
599
G.5 Units from Molecular Kinetics
599
G.6 Quantities from Gas-Discharge Physics
600
References
600
Index
603
Appendix
H
Optical Constants of Materials*
611
H.I Transmission
611
H.2 Refractive Indices
635
H.3 Reflection
638
References
652
*
Appendix
H
is availible on:
www.wiley-vch.de/publish/en/books/bysubjectEE00/ISBN3-527-40778-2
|
adam_txt |
VII
Contents
Preface
XIII
References
XVI
1
Plasma as an Object of Spectroscopy
1
General Notions
í
1.1
The Concept of Low-Temperature Plasma. Diagnostics
Problems
1
1.2
Equilibrium Plasma
6
1.2.1
Energy Distribution of Particles
6
1.2.2
Law of Mass Action. Neutral and Charged Particle Densities
7
1.2.3
Heat Emission.
Kirchhoff 's
Law
11
1.3
Models of Equilibrium and the Associated Parameters
14
1.3.1
Local Thermal Equilibrium (LTE) Model
14
1.3.2
Partial Local Thermal Equilibrium
(PLTE)
Model
16
1.3.3
Model of Coronal Equilibrium (MCE)
20
1.3.4
Collisional-Radiative Model (CRM)
21
1.4
Optical Spectrum and Plasma Parameters
22
References
25
2
Basic Concepts and Parameters Associated with the Emission,
Absorption and Scattering of Light by Plasma
27
2.1
Photometric Quantities. Remarks on Terminology
27
2.2
Spectral Line Profile
31
2.2.1
Lorentz
Broadening
32
2.2.2
Doppler
Broadening
38
2.2.3
Joint Action of Natural,
Doppler
and Collision Broadening
41
2.3
Absorption in Lines
44
2.4
Emission in Lines. Optical Density Manifestations
46
2.5
Emission and Absorption in Continuous Spectrum
50
2.5.1 ff Bremsstrahlung
Emission
52
Spectroscopy of Low Temperature Plasma. Vladimir
N.
Ochkin
Copyright
© 2009
WILEY-VCH
Verlag
GmbH
&
Co. KGaA,
Weinheim
ISBN:
978-3-527-40778-1
VIII Contents
2.5.2 ff Bremsstrahlung Absorption 54
2.5.3 fb
Recombination
Emission 55
2.5.4 Absorption
Cross Section
in bf Photoionization 57
2.5.5 Emission and Absorption
of
Radiation in
the Case of
Joint
Action of thejff
Bremsstrahlung
and/b Recombination
Mechanisms
58
2.6
Scattering of Light
60
2.6.1
Thomson Scattering on a Free Electron
60
2.6.2
Scattering on a Bound Electron
63
References
63
3
Emission, Absorption and Scattering Techniques for Determining
the Densities of Particles in Discrete Energy States
67
3.1
Emission Techniques
67
3.1.1
Identification of Spectra
67
3.1.2
Absolute Measurements
68
3.1.3
Emission of Extended Inhomogeneous Sources
71
3.2
Absorption Techniques Using Classical Emitters
75
3.2.1
Absorption Against the Background of Continuous Spectrum
75
3.2.2
Line Absorption
78
3.2.3
Self-Absorption of
Multiplet
Lines
83
3.3
Absorption Spectroscopy Using Tunable and Broadband
Lasers
84
3.3.1
On the Advantages of Laser Sources Over Their Classical
Counterparts in Direct Absorption Measurements
84
3.3.2
On the Noise Limitation of Sensitivity
86
3.3.3
Diode Laser Spectroscopy in the
IR
Region
88
3.3.4
Nonstationary Coherent Effects in Absorption Measurements
92
3.3.5
Use of the Classical Multipass Absorption Cells
95
3.3.6
Intracavity Absorption
95
3.3.7
Measuring Absorption from the Attenuation of Light with Time
99
3.4
Indirect Methods for Measuring Absorption of Laser Light
203
3.4.1
Induced Fluorescence
204
3.4.1.1
General Characteristic
204
3.4.1.2
Fluorescence Excitation by Continuous-Wave and Pulsed
Laser Light
207
3.4.1.3
Induced Fluorescence Saturation and Decay
209
3.4.1.4
Induced Fluorescence Quenching and Taking Account
of this Process
222
3.4.1.5
Restrictions Imposed by the Plasma's Own Glow
118
3.4.2
Optogalvanic Spectroscopy
222
Contents
IX
3.4.2.1
The Use of the Optogalvanic Effect to Measure Light Absorption
in Plasma
222
3.4.2.2
High-Resolution Optogalvanic Spectroscopy
224
3.5
Multiphoton Processes. Raman Scattering
229
3.5.1
Two-Photon Absorption
230
3.5.2
Spontaneous Raman Scattering
233
3.5.3
Stimulated Raman Scattering
235
3.5.4
Coherent Anti-Stokes Scattering
237
References
243
4
Intensities in Spectra and Plasma Energy Distribution in the
Internal and Translational Degrees of Freedom of Atoms and
Molecules
147
4.1
Doppler
Broadening, Velocity Distribution of Particles, Neutral
Gas Temperature
247
4.1.1
Remarks on the Processing of Line Profiles
148
4.1.1.1
Registered and True Profiles
2 48
4.1.1.2
Predominantly
Doppler
Broadening Regions
249
4.1.1.3
Recovery of the Form of the Velocity Distribution of Particles
250
4.1.2
Examples of Abnormal
Doppler
Broadening and Nonequilibrium
Velocity Distributions of Neutral Particles in Plasma
252
4.1.3
Excitation and Relaxation of Atoms and Molecules with
Nonequilibrium Velocity in Interactions with Heavy Particles
254
4.1.3.1
Source Function
254
4.1.3.2
Relaxation of the Average Kinetic Energy of Particles with a
Finite Lifetime
255
4.1.3.3
Relaxation of the Form of the Velocity Distributions of Particles
in the Case of Large Deviations from Equilibrium and Finite
Lifetime
259
4.1.4
On the Determination of the Gas Temperature from the
Doppler
Broadening of the Lines Emitted by Atoms and Molecules
Excited by Electrons
262
4.1.5
Spectroscopie
Manifestations of the Motion of Ions in Plasma
264
4.2
Distribution of Molecules Among Rotational Levels
267
4.2.1
On the Isolation of the Boltzmann Ensembles in the Bound State
System of Particles
267
4.2.2
Distributions of Molecules Among Rotational Levels in an
Electronic State with a Long Lifetime
2 70
4.2.3
Electron Impact Excitation of the Electronic-Vibrational-
Rotational
(EVR)
Levels of Molecules
2 74
4.2.3.1
Observations and General Considerations
274
X
Contents
4.2.3.2
Experimental
Determination
of the Electron-Impact-Induced
Changes in the Rotational States of Molecules in Plasma
177
4.2.4
Excitation of EVR Levels by Heavy Particles
181
4.2.4.1
OH Radical. Violet Bands
181
4.2.4.2
N2 Molecules. Second Positive System
183
4.2.5
On Gas Temperature Measurements in the Presence of Parallel
Molecular Rotation Excitation Channels
184
4.2.5.1
Extension of the Form of Distribution of the Hot Molecules
to the Region of Low Rotational Levels
185
4.2.5.2
Spectral Resolution
285
4.2.5.3
Effect of the Conditions Occuring in Plasma on the Rotational
Temperature of the Hot Group
188
4.3
Line Intensities in the Vibrational Structure of Spectra and
Distributions of Molecules Among Vibrational Levels
191
4.3.1
Elements of Vibrational Kinetics. Vibrational Energy and
Temperature
191
4.3.1.1
Harmonic Oscillator Approximation
192
4.3.1.2
Effect of Anharmonicity
294
4.3.1.3
Diatomic Molecular Mixture and Polyatomic Molecules
297
4.3.2
Vibrational Temperature and Distribution Measurements by
Absorption
Spectroscopy Techniques
299
4.3.3
Emission Methods in the
IR
Region of the Spectrum
206
4.3.4
Combinations of Emission and Absorption Techniques.
Spectrum Inversion
222
4.3.5
Raman Scattering
226
4.3.6
Determination of the Vibrational Temperatures of Molecules in
the Electronic Ground States from Electronic Transition Spectra
220
4.4
Distribution of Particles Among Electronic Levels
224
References
227
5
Measuring Concentrations of Atoms and Molecules
235
5.1
General
235
5.2
Determining Atomic Concentrations by Absorption
Techniques
237
5.2.1
Neutral Unexcited Atoms
237
5.2.2
Metastable Atoms
249
5.2.3
Low-Multiplicity Positive Ions
266
5.3
Determination of Molecular Concentration by the Absorption
Method 26S
5.3.1
Probabilities of Optical Transitions in Diatomic Molecules
269
Contents
I XI
5.3.2 Determination
of Diatomic Molecular Concentrations from
Absorption on Electronic Spectrum Lines
272
5.3.3
Determination of Molecular Concentration from Absorption
in Vibrational-Rotational Spectra
278
5.3.4
Absorption of Radiation by Diatomic Molecules
in Metastable Electronic States
281
5.3.5
Absorption of
IR
Radiation by Polyatomic Molecules
281
5.3.6
Absorption of Radiation by Molecular Ions
284
5.4
Actinometric Methods
288
5.5
Negative Ions
297
5.5.1
Concentration Measurements
298
5.5.2
Absorption of Light by the H~~ Ions in Hydrogen LTE Plasma
301
References
303
6
Spectral Methods of Determining Electronic and Magnetic Fields
in Plasma
307
6.1
Determination of Electric Fields from the Spontaneous Emission
of Radiation by Atoms in Plasma
312
6.1.1
Hydrogen-Like Atoms
322
6.1.2
Non-Hydrogen-Like Atoms
318
6.2
Laser Stark Spectroscopy
322
6.2.1
Stark Spectroscopy of Atoms
323
6.2.2
Laser-Induced Fluorescence of Polar Molecules in Electric
Field
329
6.2.3
Multiphoton Excitation of Atoms
334
6.2.4
Coherent Four-Wave Stark Scattering Spectroscopy
337
6.3
Magnetic Field Investigations
342
6.3.1
Measurements Based on the Faraday Effect
342
6.3.2
Spectral Methods
343
References
346
7
Determination of the Parameters of the Electronic Component
of Plasma
351
7.1
Interferometry
351
7.2
Stark Broadening of Spectral Lines
356
7.2.1
General
356
7.2.2
Plasma Microfields
357
7.2.3
Linear Stark Effect
358
7.2.4
Quadratic Stark Effect
364
7.3
Truncation of Spectral Series of Hydrogen-Like Atoms
367
7
A Intensities in Continuous Spectrum
371
7.5
Scattering of Light on Electrons
374
XII Contents
7.5.1
Scattering of Light by Randomly Moving Electrons (Thomson
Scattering)
375
7.5.2
Manifestation Regions of the Thomson and Collective
Scattering Mechanisms
377
7.5.3
Scattered Spectrum and Plasma Parameters (Direct Problem)
379
7.5.4
Determination of Plasma Parameters from Scattered Spectra
(Inverse Problem)
382
7.5.5
Limitations of the Method, Sensitivity and Examples
385
7.6
Some Remarks on Measurements from Intensities in Line and
Band Spectra
391
References
393
8
Some Information on Spectroscopy Techniques
397
8.1
Characteristics of Optical Materials. Main Relations
398
8.1.1
Reflection at an Interface
398
8.1.2
Dispersion of the Optical Properties of Materials
399
8.1.3
Transmission and Reflection of Thin Films
400
8.1.3.1
Metal Films
400
8.1.3.2
Dielectric Films
402
8.2
Spectral Instruments
406
8.2.1
Slit Instruments
409
8.2.2
Interferometers
414
8.2.3
Spectral Instruments with Interference Modulation
425
8.2.3.1
Fourier-Transform) Spectrometers
425
8.2.3.2
Interference Spectrometers with Selective Amplitude
Modulation (ISSAM)
430
8.2.4
Raster Spectrometers
432
8.2.5
Acousto-optic Spectrometers
433
8.3
Gas-Discharge Light Sources
439
8.3.1
Illumination Engineering Quantities
439
8.3.2
Gas Discharges in an Envelope (Lamps)
442
8.3.2.1
Continuous-Discharge Lamps
442
8.3.2.2
Pulsed-Discharge Lamps
448
8.3.3
Open Light Sources
456
8.3.3.1
Continuous-Discharge Sources
456
8.3.3.2
Pulsed-Discharge Sources
456
8.4
Photodetectors
460
8.4.1
Parameters
462
8.4.1.1
Sensitivity
462
8.4.1.2
Noise
462
8.4.1.3
Effective and Ultimate Sensitivity
463
8.4.1.4
Inertia
464
Contents XIII
8.4.2 Main
Types of Single-Element Detectors
464
8.4.2.1
Thermal Detectors
464
8.4.2.2
Photoelectric (Quantum, Photonic) Detectors with
Extrinsic Photoeffect
466
8.4.2.3
Photoelectric Detectors with Intrinsic Photoeffect
470
8.4.2.4 Photoemulsion 472
8.4.2.5
Comparative Characteristics of Single-Element Detectors
473
8.4.3
Multielement and Distributed Photodetectors
477
8.4.3.1
Spatial Resolution
477
8.4.3.2
Photographic Detectors
478
8.4.3.3
Image Converter and
Intensifier
Tubes
479
8.4.3.4
Charge-Coupled Detectors
480
References
484
Appendix A
Statistical Weights and Statistical Sums
487
A.I Statistical Weight of Energy Levels in Atoms and Ions
487
A.2 Statistical Weight of Electronic States in Molecules
488
A.3 Statistical Weight of Vibrational Levels of Molecules
488
A.4 Statistical Weight of Rotational Levels of Molecules
489
A.4.1 Statistical Sum of Atoms and Ions
492
A.4.2 Statistical Sum of Molecules
492
References
495
Appendix
В
Conversion of Quantities Used to Describe Optical
Transition Probabilities in Line Spectra
497
References
497
Appendix
С
Two-Photon Absorption Cross Sections for Some Atoms and
Molecules in the Ground State
499
References
503
Appendix
D
Information on Some Diatomic Molecules for the Identification
and Processing of Low-Temperature Plasma Spectra
505
D.I Brief Information from Molecular Spectroscopy
-
Designations
of States and Transitions, Coupling Types, Selection Rules,
General Spectrum Structure
505
D.I.I General Rules
508
D.1.2 More Particular Rules
509
D.2 Nitrogen N2, N2+
513
XIV Contents
D.2.1 Electronic States, Electronic
Transition
Systems
(Bands)
513
D.2.2 Molecular
Constants of the Ground and Combining States
523
D.2.3 Second Positive
(2+)
System
523
D.2.3.1 Vibrational Structure of the
С3П(і;')-В3П(і;")
Transition
527
D.2.3.2 Rotational Structure
527
D.2.4 First Positive (1+) System
529
D.2.4.1 Vibrational Structure of the
Β3Π^(ΐ7')-Α3Σ+(ι;")
Transition
529
D.2.4.2 Rotational Structure
529
D.2.5 First Negative
(1")
System
522
D.2.6 Vibrational Structure of the
Β2Σ+ (ν')-Χ2Σ+ (ν")
Transition
522
D.2.6.1 Rotational Structure
522
D.3 Carbon Oxide CO
526
D.3.1 Electronic States, Electronic Transitions
526
D.3.2 Molecular Constants of the Ground and Combining States
526
D.3.3
Ångström
Bands System
Β1 Σ+-Α1 Π
526
О.З.З.І
Vibrational Structure
526
D.3.3.2 Rotational Structure of the B^-A1!! Bands
526
Ό
A Hydrogen H2 and Deuterium D2 52S
D.4.1 Electronic States, Electronic Transitions
528
D.4.2 Molecular Constants of the Ground and Combining States
528
D.4.3 Ortho- and Para-Modifications
529
D.4.4 Fulcher-a Bands System
d3ľlu-a3Z+
530
D.4.4.1 Vibrational Structure
532
D.4.4.2 Rotational Structure
532
D.4.5
Ι1Π?-β1Σ+
Transition
533
D.4.5.1 Vibrational Structure
533
D.4.5.2 Rotational Structure
535
D.4.6 G^+-B^+ Transition
537
D.4.6.1 Vibrational Structure
537
D.4.6.2 Rotational Structure
537
D.5 Nitrogen Oxide NO
542
D.5.1 Electronic States, Electronic Transitions
542
D.5.2 Molecular Constants of the Ground and Combining States
542
D.5.3
7
System
(195-340
nm)
542
D.5.3.1
Vibrational Structure
542
D.5.3.2 Rotational Structure
542
D.6 Cyanogen CN
543
D.6.1 Electronic States, Electronic Transitions
543
D.6.2 Molecular Constants of the Ground and Combining States
545
D.6.3 Violet System
546
D.6.3.1 Vibrational Structure
546
Contents
XV
D.6.3.2
Rotational Structure
546
Ό.7
Carbon
Radical C2
548
D.7.1 Electronic States, Electronic Transitions 548
D.7.2
Molecular Constants of
States 548
D.7.3
Swan
Bands System 548
D.7.3.1 Vibrational
Structure
548
D.7.3.2
Rotational Structure
550
D.8
CH
Radical
551
D.8.1 Electronic States, Electronic Transitions
552
D.8.2 Molecular Constants of the Ground and Combining States
553
D.8.3
Β2Σ~-Χ2Π
Transition
555
D.8.3.1 Rotational Structure
556
D.8.4 C2L+-X2n Transition
556
D.9 Hydroxyl Radical OH
558
D.9.1 Electronic States, Electronic Transitions
558
D.9.2 Molecular Constants of the Ground and Combining States
560
D.9.2.1 Rotational Structure
560
References
566
Appendix
E
Rotational Line Intensity Factors in the Electronic-Vibrational
Transition Spectra of Diatomic Molecules
569
E.I Singlet Transitions
570
E.1.1 ^-^X,
ΔΛ
= 0
Transitions
570
E.1.2
ϊχ-ΐγ, ΔΛ
= ±1
Transitions
570
E.2 Doublet Transitions
570
E.2.1 2X-2X,
ΔΛ
= 0
Transitions
571
E.2.2 2X-2Y,
ΔΛ
= ±1
Transitions
572
E.3 Triplet Transitions
573
E.3.1 3X-3X,
ΔΛ
= 0
Transitions
574
Е.З.І.І
Dipole-Forbidden Branches
576
E.3.2 3X-3Y,
ΔΛ
= ±1
Transitions
577
E.3.3 3
Ε-3Δ, ΔΛ =
±2
Transitions
579
E.4 Remarks on the Normalization of Rotational Line Intensity
Factors
580
E.5 On Symbolic Notation
581
References
582
XVI Contents
Appendix
F
Measurement of the Absolute Populations of Excited Atoms by
Classical Spectroscopy Techniques
583
Yu. B. Golubovskii
References
595
Appendix
G
General Information for Plasma Spectroscopy Problems
597
G.I Physical Constants
597
G.2 Atomic Values
598
G.3 Correspondence between Spectral and Traditional Energy
Measurement Units
598
G.4 Electrical Units
599
G.5 Units from Molecular Kinetics
599
G.6 Quantities from Gas-Discharge Physics
600
References
600
Index
603
Appendix
H
Optical Constants of Materials*
611
H.I Transmission
611
H.2 Refractive Indices
635
H.3 Reflection
638
References
652
*
Appendix
H
is availible on:
www.wiley-vch.de/publish/en/books/bysubjectEE00/ISBN3-527-40778-2 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Očkin, Vladimir N. |
author_GND | (DE-588)103567194 |
author_facet | Očkin, Vladimir N. |
author_role | aut |
author_sort | Očkin, Vladimir N. |
author_variant | v n o vn vno |
building | Verbundindex |
bvnumber | BV035012187 |
classification_rvk | UR 8200 VG 8930 |
ctrlnum | (OCoLC)311059400 (DE-599)DNB987215817 |
dewey-full | 530.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.44 |
dewey-search | 530.44 |
dewey-sort | 3530.44 |
dewey-tens | 530 - Physics |
discipline | Chemie / Pharmazie Physik |
discipline_str_mv | Chemie / Pharmazie Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01680nam a2200445 c 4500</leader><controlfield tag="001">BV035012187</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160713 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080820s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N06,0771</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987215817</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527407781</subfield><subfield code="c">Gb. : EUR 159.00 (freier Pr.), sfr 251.00 (freier Pr.)</subfield><subfield code="9">978-3-527-40778-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527407781</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1140778 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)311059400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987215817</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.44</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UR 8200</subfield><subfield code="0">(DE-625)146643:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 8930</subfield><subfield code="0">(DE-625)147232:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Očkin, Vladimir N.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)103567194</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectroscopy of low temperature plasma</subfield><subfield code="c">Vladimir N. Ochkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 609 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aus dem Russ. übers.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kaltes Plasma</subfield><subfield code="0">(DE-588)4248658-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmaspektroskopie</subfield><subfield code="0">(DE-588)4046265-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kaltes Plasma</subfield><subfield code="0">(DE-588)4248658-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Plasmaspektroskopie</subfield><subfield code="0">(DE-588)4046265-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016681414&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016681414</subfield></datafield></record></collection> |
id | DE-604.BV035012187 |
illustrated | Illustrated |
index_date | 2024-07-02T21:44:12Z |
indexdate | 2024-07-09T21:20:10Z |
institution | BVB |
isbn | 9783527407781 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016681414 |
oclc_num | 311059400 |
open_access_boolean | |
owner | DE-703 DE-11 DE-384 |
owner_facet | DE-703 DE-11 DE-384 |
physical | XXI, 609 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Očkin, Vladimir N. Verfasser (DE-588)103567194 aut Spectroscopy of low temperature plasma Vladimir N. Ochkin Weinheim WILEY-VCH 2009 XXI, 609 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Aus dem Russ. übers. Kaltes Plasma (DE-588)4248658-0 gnd rswk-swf Plasmaspektroskopie (DE-588)4046265-1 gnd rswk-swf Kaltes Plasma (DE-588)4248658-0 s Plasmaspektroskopie (DE-588)4046265-1 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016681414&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Očkin, Vladimir N. Spectroscopy of low temperature plasma Kaltes Plasma (DE-588)4248658-0 gnd Plasmaspektroskopie (DE-588)4046265-1 gnd |
subject_GND | (DE-588)4248658-0 (DE-588)4046265-1 |
title | Spectroscopy of low temperature plasma |
title_auth | Spectroscopy of low temperature plasma |
title_exact_search | Spectroscopy of low temperature plasma |
title_exact_search_txtP | Spectroscopy of low temperature plasma |
title_full | Spectroscopy of low temperature plasma Vladimir N. Ochkin |
title_fullStr | Spectroscopy of low temperature plasma Vladimir N. Ochkin |
title_full_unstemmed | Spectroscopy of low temperature plasma Vladimir N. Ochkin |
title_short | Spectroscopy of low temperature plasma |
title_sort | spectroscopy of low temperature plasma |
topic | Kaltes Plasma (DE-588)4248658-0 gnd Plasmaspektroskopie (DE-588)4046265-1 gnd |
topic_facet | Kaltes Plasma Plasmaspektroskopie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016681414&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ockinvladimirn spectroscopyoflowtemperatureplasma |