Linear and nonlinear structural mechanics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley-Interscience
2004
|
Schriftenreihe: | Wiley series in nonlinear science
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 746 S. graph. Darst. |
ISBN: | 9780471593560 0471593567 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035005664 | ||
003 | DE-604 | ||
005 | 20081001 | ||
007 | t | ||
008 | 080814s2004 d||| |||| 00||| eng d | ||
015 | |a bA3W3031 |2 dnb | ||
020 | |a 9780471593560 |9 978-0-471-59356-0 | ||
020 | |a 0471593567 |9 0-471-59356-7 | ||
035 | |a (OCoLC)52567246 | ||
035 | |a (DE-599)HBZHT013814854 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
050 | 0 | |a TA645 | |
082 | 0 | |a 624.1/71 |2 22 | |
084 | |a UF 1000 |0 (DE-625)145552: |2 rvk | ||
100 | 1 | |a Nayfeh, Ali Hasan |d 1933-2017 |e Verfasser |0 (DE-588)151240388 |4 aut | |
245 | 1 | 0 | |a Linear and nonlinear structural mechanics |c Ali H. Nayfeh ; P. Frank Pai |
264 | 1 | |a Hoboken, NJ |b Wiley-Interscience |c 2004 | |
300 | |a XVII, 746 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Wiley series in nonlinear science | |
650 | 4 | |a Nonlinear mechanics | |
650 | 4 | |a Structural analysis (Engineering) | |
650 | 0 | 7 | |a Strukturmechanik |0 (DE-588)4126904-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strukturmechanik |0 (DE-588)4126904-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Pai, P. Frank |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016674989&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016674989 |
Datensatz im Suchindex
_version_ | 1804137923801513984 |
---|---|
adam_text | Contents
PREFACE
χ»
1
INTRODUCTION
1
1.1
Structural
Elements 1
1.2
Nonlinearities
4
1.3
Composite Materials
6
1.4
Damping
7
1.5
Dynamic
Characteristics
of Linear Discrete Systems
9
1.5.1
One-Degree-of-Freedom Systems
9
1.5.2
Multi-Degree-of-Freedom Systems
14
1.6
Dynamic Characteristics of Nonlinear Discrete
Systems
22
1.7
Analyses of Linear Continuous Systems
27
1.7.1
Natural Frequencies and Eigenfunctions
30
1.7.2
Discretization Using Eigenfunctions
34
1.7.3
The
Ritz
Method
35
1.7.4
Finite Element Method
42
1.7.5
Weighted Residual Methods
46
1.7.6
Initial-Value Methods
48
1.8
Analyses of Nonlinear Continuous Systems
53
vii
Viii
CONTENTS
1.8.1
Attacking the Continuous System
57
1.8.2
Attacking the Discretized System
60
1.8.3
Time-Averaged Lagrangian
63
2
ELASTICITY
65
2.1
Principles of Dynamics
65
2.1.1
Newton s Second Law and Energy of a
Discrete System
67
2.1.2
Principle of Virtual Work
69
2.1.3
Hamilton s Theories
70
2.1.4
Euler-Lagrange Equations
72
2.1.5
Hamilton s Equations
74
2.2
Strain-Displacement Relations
75
2.3
Transformation of Strains and Stresses
82
2.4
Stress-Strain Relations
85
2.4.1 Anisotropie
Materials
86
2.4.2
Orthotropic Materials
87
2.4.3 Isotropie
Materials
90
2.4.4
Material Stiffness and Compliance Matrices
94
2.4.5
Fiber-Reinforced Lamina
96
2.5
Governing Equations
98
2.5.1
Equilibrium Equations
99
2.5.2
Compatibility Conditions
107
2.5.3
Energy Formulation of Structures
109
3
STRINGS AND CABLES 111
3.1
Modeling of Taut Strings 111
3.1.1
Exact Equations of Motion
113
3.1.2
Approximate Equations of Motion without
Poisson s Effect
115
3.1.3
Approximate Equations of Motion with
Poisson s Effect
117
3.2
Reduction of String Model to Two Equations
118
3.2.1
Attacking the Three-Equation Model
121
3.2.2
Evaluation of the Two-Equation Model
124
3.2.3
Discretized Model
126
3.3
Nonlinear Response of Strings
129
3.3.1
Frequency-Response Curves
130
3.3.2
Experiments
132
CONTENTS
ІХ
3.4
Modeling of Cables
136
3.4.1
Exact Equations of Motion
139
3.4.2
Static Deflections
141
3.4.3
Approximate Equations of Motion
145
3.5
Reduction of Cable Model to Two Equations
146
3.6
Natural Frequencies and Modes of Cables
148
3.7
Discretization of the Cable Equations
150
3.8
Single-Mode Response with Direct Approach
152
3.8.1
Primary Resonance of an
Inpiane Mode
153
3.8.2
Primary Resonance of an out-of-Plane Mode
158
3.9
Single-Mode Response with Discretization Approach
161
3.9.1
The Case of an Inplane Mode
162
3.9.2
The Case of an out-of-Plane Mode
167
3.10
Extensional Bars
168
4
BEAMS
171
4.1
Introduction
171
4.1.1
BeamTheories
172
4.1.2
Geometric Nonlinearities
176
4.1.3
Shear Deformations, Rotary Inertias, and
Gravity
179
4.1.4
Elastic Couplings
180
4.1.5
External and Internal Resonances
180
4.2
Linear Euler-Bemoulli Beam Theory
183
4.3
Linear Shear-Deformable Beam Theories
186
4.3.1
Third-Order Shear-Deformable Theory
189
4.3.2
Timoshenko
s
Beam Theory
191
4.3.3
Layerwise Shear-Deformable Theory
192
4.4
Mathematics for Nonlinear Modeling
194
4.4.1
Coordinate Transformations and Curvatures
194
4.4.2
Concept of Orthogonal Virtual Rotations
207
4.4.3
Variation of Curvatures
210
4.4.4
Concept of Local Displacements
211
4.5
Nonlinear 2-D Euler-Bernoulli Beam Theory
215
4.5.1
Shortening Effect
221
4.5.2
Stretching Effect
224
4.5.3
Lagrangian and Eulerian Coordinates
225
4.6
Nonlinear
3-D
Euler-Bernoulli Beam Theory
226
4.6.1
Isotropie
Beams
234
X
CONTENTS
4.6.2
Composite Beams
235
4.6.3
Taylor-Series Expansions
235
4.6.4
Cantilevered Inextensional Beams
240
4.6.5
Flexural-Flexural Vibration
244
4.7
Nonlinear
3-D
Curved Beam Theory Accounting for
Warpings
245
4.7.1
Inplane andout-of-Plane Warpings
247
4.7.2
Fully Nonlinear Jaumann Strains
251
4.7.3
Equations of Motion
254
4.7.4
Expansions and Simplified Beam Theories
262
4.7.5
Applications
263
5
DYNAMICS OF BEAMS
267
5.1
Parametrically Excited Cantilever Beams
267
5.1.1
Experiments
267
5.1.2
Principal Parametric Resonance
270
5.1.3
Combination Parametric Resonance
278
5.1.4
Nonplanar Dynamics
284
5.2
Transversely Excited Cantilever Beams
291
5.2.1
Planar Response to a Primary-Resonance
Excitation
291
5.2.2
External Subcombination Resonance
298
5.2.3
Nonplanar Dynamics
304
5.3
Clamped-Clamped Buckled Beams
316
5.3.1
Buckling Problem
320
5.3.2
Linear
Vibration
Problem
321
5.3.3
Nonlinear Local Vibrations
-
Direct Approach
324
5.3.4
Nonlinear Local Vibrations
-
Discretization
Approach
327
5.3.5
Experiment
331
5.3.6
Global Dynamics
334
5.4
Microbeams
341
5.4.1
Modeling of MEMS Devices
342
5.4.2
Static Deflection
344
5.4.3
Linear Mode Shapes and Frequencies
345
5.4.4
Nonlinear Response to a Primary-Resonance
Excitation
346
5.4.5
Reduced-Order Models of MEMS Devices
351
CONTENTS
XI
6
SURFACE
ANALYSIS
355
6.1
Initial Curvatures
355
6.2
Inplane Strains and Deformed Curvatures
358
6.3
Orthogonal Virtual Rotations
362
6.3.1
Without Inplane Shear Strains
362
6.3.2
With Inplane Shear Strains
363
6.4
Variation of Curvatures
365
6.5
Local Displacements and Jaumann Strains
366
7
PLATES
371
7.1
Introduction
371
7.1.1
Plate Theories
371
7.1.2
Geometric Nonlinearities
375
7.1.3
Plates with Integrated Piezoelectric Materials
376
7.1.4
Linear Vibrations and Buckling of Plates
377
7.1.5
Nonlinear Analyses of Plates
379
7.2
Linear Classical Plate Theory
382
7.2.1
Rectangular Plates
382
7.2.2
Circular Plates
388
7.2.3
General Plates
392
7.3
Linear Shear-Deformable Plate Theories
396
7.3.1
Formulation for Curvilinear Coordinate
Systems
396
7.3.2
Rectangular and Circular Plates
401
7.3.3
Different Shear-Warping Functions
402
7.4
Nonlinear Classical Plate Theory
403
7.4.1
Rectangular Plates
403
7.4.2
von Kármán
Plate Theory in Polar Coordinates
408
7.4.3
Thermoelastic Equations in Cartesian
Coordinates
412
7.4.4
Thermoelastic Equations in Polar Coordinates
415
7.5
Nonlinear Modeling of Rectangular Surfaces
417
7.5.1
Coordinate Transformation, Inplane Strains,
and Curvatures
417
7.5.2
Influence of the Inplane Shear Deformation
420
7.5.3
Variation of the Global Strains
425
7.6
General Nonlinear Classical Plate Theory
426
7.7
Nonlinear Shear-Deformable Plate Theory
435
7.7.1
Equations of Motion
436
Х/7
CONTENTS
7.7.2
Nonlinear First-Order Theory
446
7.7.3
Third-Order Theory with
von Kármán
Nonlinearìty
446
7.8
Nonlinear Layerwise Shear-Deformable Plate Theory
446
7.8.1
Warpings Due to External Loads and Actuators
447
7.8.2
Equations of Motion
457
7.8.3
Linear Piezoelectric Plate Theory
465
7.8.4
Actuator-Induced Loads
467
7.8.5
Thermal and Moisture Effects
467
8
DYNAMICS OF PLATES
469
8.1
Linear Vibrations of Rectangular Plates
469
8.1.1
Hinged Edges
470
8.1.2
Two Hinged Opposite Edges
470
8.2
Linear Vibrations of Membranes
474
8.2.1
Circular Membranes
474
8.2.2
Near Circular Membranes
477
8.2.3
Elliptic Membranes
480
8.3
Linear Vibrations of Circular and Annular Plates
481
8.3.1
Circular Plates
482
8.3.2
Near Circular and Elliptic Plates
487
8.3.3
Annular Plates
491
8.4
Nonlinear Vibrations of Circular Plates
498
8.4.1
Axisymmetric Vibrations
503
8.4.2
Asymmetric Vibrations
507
8.5
Nonlinear Vibrations of Rotating DisL·
513
8.5.1
Static Problem
516
8.5.2
Natural Frequencies and Mode Shapes
517
8.5.3
Response to a Primary-Resonance Excitation
522
8.6
Nonlinear Vibrations of Near-Square Plates
527
8.7
Micropumps
531
8.7.1
Annular Plates
532
8.7.2
Circular Plates
536
8.8
Thermally Loaded Plates
543
8.8.1
Linear Natural Frequencies and Mode Shapes
548
8.8.2
Combination Parametric Resonance of Two
Axisymmetric Modes
549
9
SHELLS
559
CONTENTS xlii
9.1
Introduction
559
9.1.1 Shell
Theories
560
9.1.2
Nonlinear Vibrations of
Shells 563
9.2
Linear Classical Shell Theory
566
9.2.1
Different Shell Geometries
566
9.2.2
Doubly-Curved Shell Theory
571
9.2.3
Circular Cylindrical Shell Theory
576
9.3
Linear Shear-Deformable Shell Theories
577
9.3.1
Formulation for General Shells
577
9.3.2
Equations of Motion for Different Shells
581
9.3.3
Shear-Warping Functions
581
9.4
Nonlinear Classical Theory for Doubly-Curved Shells
582
9.5
Nonlinear Shear-Deformable Theories for Circular
Cylindrical Shells
588
9.5.1
Equations of Motion
589
9.5.2
Simplified Shell Theories
603
9.5.3
Stiffness Matrices
608
9.5.4
Classical Linear Theories of Circular
Cylindrical Shells
611
9.6
Nonlinear Layerwise Shear-Deformable Shell Theory
615
9.6.1
Strains and Shear-Warping Functions
615
9.6.2
Inertia Terms
620
9.6.3
Structural Terms
622
9.6.4
Equations of Motion
625
9.6.5
Shear-Warping Functions
627
9.7
Nonlinear Dynamics of Infinitely Long Circular
Cylindrical Shells
630
9.7.1
Governing Equations
631
9.7.2
Natural Frequencies and Mode Shapes
635
9.7.3
Primary Resonance of the Breathing Mode
638
9.8
Nonlinear Dynamics of Axisymmetric Motion of
Closed Spherical Shells
641
9.8.1
Equations of Motion
641
9.8.2
Natural Frequencies and Mode Shapes
646
9.8.3
Two-to-One Internal Resonance
649
BIBLIOGRAPHY
654
SUBJECT INDEX
732
|
adam_txt |
Contents
PREFACE
χ»
1
INTRODUCTION
1
1.1
Structural
Elements 1
1.2
Nonlinearities
4
1.3
Composite Materials
6
1.4
Damping
7
1.5
Dynamic
Characteristics
of Linear Discrete Systems
9
1.5.1
One-Degree-of-Freedom Systems
9
1.5.2
Multi-Degree-of-Freedom Systems
14
1.6
Dynamic Characteristics of Nonlinear Discrete
Systems
22
1.7
Analyses of Linear Continuous Systems
27
1.7.1
Natural Frequencies and Eigenfunctions
30
1.7.2
Discretization Using Eigenfunctions
34
1.7.3
The
Ritz
Method
35
1.7.4
Finite Element Method
42
1.7.5
Weighted Residual Methods
46
1.7.6
Initial-Value Methods
48
1.8
Analyses of Nonlinear Continuous Systems
53
vii
Viii
CONTENTS
1.8.1
Attacking the Continuous System
57
1.8.2
Attacking the Discretized System
60
1.8.3
Time-Averaged Lagrangian
63
2
ELASTICITY
65
2.1
Principles of Dynamics
65
2.1.1
Newton's Second Law and Energy of a
Discrete System
67
2.1.2
Principle of Virtual Work
69
2.1.3
Hamilton's Theories
70
2.1.4
Euler-Lagrange Equations
72
2.1.5
Hamilton's Equations
74
2.2
Strain-Displacement Relations
75
2.3
Transformation of Strains and Stresses
82
2.4
Stress-Strain Relations
85
2.4.1 Anisotropie
Materials
86
2.4.2
Orthotropic Materials
87
2.4.3 Isotropie
Materials
90
2.4.4
Material Stiffness and Compliance Matrices
94
2.4.5
Fiber-Reinforced Lamina
96
2.5
Governing Equations
98
2.5.1
Equilibrium Equations
99
2.5.2
Compatibility Conditions
107
2.5.3
Energy Formulation of Structures
109
3
STRINGS AND CABLES 111
3.1
Modeling of Taut Strings 111
3.1.1
Exact Equations of Motion
113
3.1.2
Approximate Equations of Motion without
Poisson's Effect
115
3.1.3
Approximate Equations of Motion with
Poisson's Effect
117
3.2
Reduction of String Model to Two Equations
118
3.2.1
Attacking the Three-Equation Model
121
3.2.2
Evaluation of the Two-Equation Model
124
3.2.3
Discretized Model
126
3.3
Nonlinear Response of Strings
129
3.3.1
Frequency-Response Curves
130
3.3.2
Experiments
132
CONTENTS
ІХ
3.4
Modeling of Cables
136
3.4.1
Exact Equations of Motion
139
3.4.2
Static Deflections
141
3.4.3
Approximate Equations of Motion
145
3.5
Reduction of Cable Model to Two Equations
146
3.6
Natural Frequencies and Modes of Cables
148
3.7
Discretization of the Cable Equations
150
3.8
Single-Mode Response with Direct Approach
152
3.8.1
Primary Resonance of an
Inpiane Mode
153
3.8.2
Primary Resonance of an out-of-Plane Mode
158
3.9
Single-Mode Response with Discretization Approach
161
3.9.1
The Case of an Inplane Mode
162
3.9.2
The Case of an out-of-Plane Mode
167
3.10
Extensional Bars
168
4
BEAMS
171
4.1
Introduction
171
4.1.1
BeamTheories
172
4.1.2
Geometric Nonlinearities
176
4.1.3
Shear Deformations, Rotary Inertias, and
Gravity
179
4.1.4
Elastic Couplings
180
4.1.5
External and Internal Resonances
180
4.2
Linear Euler-Bemoulli Beam Theory
183
4.3
Linear Shear-Deformable Beam Theories
186
4.3.1
Third-Order Shear-Deformable Theory
189
4.3.2
Timoshenko'
s
Beam Theory
191
4.3.3
Layerwise Shear-Deformable Theory
192
4.4
Mathematics for Nonlinear Modeling
194
4.4.1
Coordinate Transformations and Curvatures
194
4.4.2
Concept of Orthogonal Virtual Rotations
207
4.4.3
Variation of Curvatures
210
4.4.4
Concept of Local Displacements
211
4.5
Nonlinear 2-D Euler-Bernoulli Beam Theory
215
4.5.1
Shortening Effect
221
4.5.2
Stretching Effect
224
4.5.3
Lagrangian and Eulerian Coordinates
225
4.6
Nonlinear
3-D
Euler-Bernoulli Beam Theory
226
4.6.1
Isotropie
Beams
234
X
CONTENTS
4.6.2
Composite Beams
235
4.6.3
Taylor-Series Expansions
235
4.6.4
Cantilevered Inextensional Beams
240
4.6.5
Flexural-Flexural Vibration
244
4.7
Nonlinear
3-D
Curved Beam Theory Accounting for
Warpings
245
4.7.1
Inplane andout-of-Plane Warpings
247
4.7.2
Fully Nonlinear Jaumann Strains
251
4.7.3
Equations of Motion
254
4.7.4
Expansions and Simplified Beam Theories
262
4.7.5
Applications
263
5
DYNAMICS OF BEAMS
267
5.1
Parametrically Excited Cantilever Beams
267
5.1.1
Experiments
267
5.1.2
Principal Parametric Resonance
270
5.1.3
Combination Parametric Resonance
278
5.1.4
Nonplanar Dynamics
284
5.2
Transversely Excited Cantilever Beams
291
5.2.1
Planar Response to a Primary-Resonance
Excitation
291
5.2.2
External Subcombination Resonance
298
5.2.3
Nonplanar Dynamics
304
5.3
Clamped-Clamped Buckled Beams
316
5.3.1
Buckling Problem
320
5.3.2
Linear
Vibration
Problem
321
5.3.3
Nonlinear Local Vibrations
-
Direct Approach
324
5.3.4
Nonlinear Local Vibrations
-
Discretization
Approach
327
5.3.5
Experiment
331
5.3.6
Global Dynamics
334
5.4
Microbeams
341
5.4.1
Modeling of MEMS Devices
342
5.4.2
Static Deflection
344
5.4.3
Linear Mode Shapes and Frequencies
345
5.4.4
Nonlinear Response to a Primary-Resonance
Excitation
346
5.4.5
Reduced-Order Models of MEMS Devices
351
CONTENTS
XI
6
SURFACE
ANALYSIS
355
6.1
Initial Curvatures
355
6.2
Inplane Strains and Deformed Curvatures
358
6.3
Orthogonal Virtual Rotations
362
6.3.1
Without Inplane Shear Strains
362
6.3.2
With Inplane Shear Strains
363
6.4
Variation of Curvatures
365
6.5
Local Displacements and Jaumann Strains
366
7
PLATES
371
7.1
Introduction
371
7.1.1
Plate Theories
371
7.1.2
Geometric Nonlinearities
375
7.1.3
Plates with Integrated Piezoelectric Materials
376
7.1.4
Linear Vibrations and Buckling of Plates
377
7.1.5
Nonlinear Analyses of Plates
379
7.2
Linear Classical Plate Theory
382
7.2.1
Rectangular Plates
382
7.2.2
Circular Plates
388
7.2.3
General Plates
392
7.3
Linear Shear-Deformable Plate Theories
396
7.3.1
Formulation for Curvilinear Coordinate
Systems
396
7.3.2
Rectangular and Circular Plates
401
7.3.3
Different Shear-Warping Functions
402
7.4
Nonlinear Classical Plate Theory
403
7.4.1
Rectangular Plates
403
7.4.2
von Kármán
Plate Theory in Polar Coordinates
408
7.4.3
Thermoelastic Equations in Cartesian
Coordinates
412
7.4.4
Thermoelastic Equations in Polar Coordinates
415
7.5
Nonlinear Modeling of Rectangular Surfaces
417
7.5.1
Coordinate Transformation, Inplane Strains,
and Curvatures
417
7.5.2
Influence of the Inplane Shear Deformation
420
7.5.3
Variation of the Global Strains
425
7.6
General Nonlinear Classical Plate Theory
426
7.7
Nonlinear Shear-Deformable Plate Theory
435
7.7.1
Equations of Motion
436
Х/7
CONTENTS
7.7.2
Nonlinear First-Order Theory
446
7.7.3
Third-Order Theory with
von Kármán
Nonlinearìty
446
7.8
Nonlinear Layerwise Shear-Deformable Plate Theory
446
7.8.1
Warpings Due to External Loads and Actuators
447
7.8.2
Equations of Motion
457
7.8.3
Linear Piezoelectric Plate Theory
465
7.8.4
Actuator-Induced Loads
467
7.8.5
Thermal and Moisture Effects
467
8
DYNAMICS OF PLATES
469
8.1
Linear Vibrations of Rectangular Plates
469
8.1.1
Hinged Edges
470
8.1.2
Two Hinged Opposite Edges
470
8.2
Linear Vibrations of Membranes
474
8.2.1
Circular Membranes
474
8.2.2
Near Circular Membranes
477
8.2.3
Elliptic Membranes
480
8.3
Linear Vibrations of Circular and Annular Plates
481
8.3.1
Circular Plates
482
8.3.2
Near Circular and Elliptic Plates
487
8.3.3
Annular Plates
491
8.4
Nonlinear Vibrations of Circular Plates
498
8.4.1
Axisymmetric Vibrations
503
8.4.2
Asymmetric Vibrations
507
8.5
Nonlinear Vibrations of Rotating DisL·
513
8.5.1
Static Problem
516
8.5.2
Natural Frequencies and Mode Shapes
517
8.5.3
Response to a Primary-Resonance Excitation
522
8.6
Nonlinear Vibrations of Near-Square Plates
527
8.7
Micropumps
531
8.7.1
Annular Plates
532
8.7.2
Circular Plates
536
8.8
Thermally Loaded Plates
543
8.8.1
Linear Natural Frequencies and Mode Shapes
548
8.8.2
Combination Parametric Resonance of Two
Axisymmetric Modes
549
9
SHELLS
559
CONTENTS xlii
9.1
Introduction
559
9.1.1 Shell
Theories
560
9.1.2
Nonlinear Vibrations of
Shells 563
9.2
Linear Classical Shell Theory
566
9.2.1
Different Shell Geometries
566
9.2.2
Doubly-Curved Shell Theory
571
9.2.3
Circular Cylindrical Shell Theory
576
9.3
Linear Shear-Deformable Shell Theories
577
9.3.1
Formulation for General Shells
577
9.3.2
Equations of Motion for Different Shells
581
9.3.3
Shear-Warping Functions
581
9.4
Nonlinear Classical Theory for Doubly-Curved Shells
582
9.5
Nonlinear Shear-Deformable Theories for Circular
Cylindrical Shells
588
9.5.1
Equations of Motion
589
9.5.2
Simplified Shell Theories
603
9.5.3
Stiffness Matrices
608
9.5.4
Classical Linear Theories of Circular
Cylindrical Shells
611
9.6
Nonlinear Layerwise Shear-Deformable Shell Theory
615
9.6.1
Strains and Shear-Warping Functions
615
9.6.2
Inertia Terms
620
9.6.3
Structural Terms
622
9.6.4
Equations of Motion
625
9.6.5
Shear-Warping Functions
627
9.7
Nonlinear Dynamics of Infinitely Long Circular
Cylindrical Shells
630
9.7.1
Governing Equations
631
9.7.2
Natural Frequencies and Mode Shapes
635
9.7.3
Primary Resonance of the Breathing Mode
638
9.8
Nonlinear Dynamics of Axisymmetric Motion of
Closed Spherical Shells
641
9.8.1
Equations of Motion
641
9.8.2
Natural Frequencies and Mode Shapes
646
9.8.3
Two-to-One Internal Resonance
649
BIBLIOGRAPHY
654
SUBJECT INDEX
732 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Nayfeh, Ali Hasan 1933-2017 Pai, P. Frank |
author_GND | (DE-588)151240388 |
author_facet | Nayfeh, Ali Hasan 1933-2017 Pai, P. Frank |
author_role | aut aut |
author_sort | Nayfeh, Ali Hasan 1933-2017 |
author_variant | a h n ah ahn p f p pf pfp |
building | Verbundindex |
bvnumber | BV035005664 |
callnumber-first | T - Technology |
callnumber-label | TA645 |
callnumber-raw | TA645 |
callnumber-search | TA645 |
callnumber-sort | TA 3645 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 1000 |
ctrlnum | (OCoLC)52567246 (DE-599)HBZHT013814854 |
dewey-full | 624.1/71 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 624 - Civil engineering |
dewey-raw | 624.1/71 |
dewey-search | 624.1/71 |
dewey-sort | 3624.1 271 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Bauingenieurwesen |
discipline_str_mv | Physik Bauingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01524nam a2200409 c 4500</leader><controlfield tag="001">BV035005664</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081001 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080814s2004 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">bA3W3031</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471593560</subfield><subfield code="9">978-0-471-59356-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471593567</subfield><subfield code="9">0-471-59356-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52567246</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT013814854</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA645</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">624.1/71</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nayfeh, Ali Hasan</subfield><subfield code="d">1933-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)151240388</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear and nonlinear structural mechanics</subfield><subfield code="c">Ali H. Nayfeh ; P. Frank Pai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley-Interscience</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 746 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in nonlinear science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural analysis (Engineering)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pai, P. Frank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016674989&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016674989</subfield></datafield></record></collection> |
id | DE-604.BV035005664 |
illustrated | Illustrated |
index_date | 2024-07-02T21:42:01Z |
indexdate | 2024-07-09T21:20:01Z |
institution | BVB |
isbn | 9780471593560 0471593567 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016674989 |
oclc_num | 52567246 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XVII, 746 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Wiley-Interscience |
record_format | marc |
series2 | Wiley series in nonlinear science |
spelling | Nayfeh, Ali Hasan 1933-2017 Verfasser (DE-588)151240388 aut Linear and nonlinear structural mechanics Ali H. Nayfeh ; P. Frank Pai Hoboken, NJ Wiley-Interscience 2004 XVII, 746 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Wiley series in nonlinear science Nonlinear mechanics Structural analysis (Engineering) Strukturmechanik (DE-588)4126904-4 gnd rswk-swf Strukturmechanik (DE-588)4126904-4 s DE-604 Pai, P. Frank Verfasser aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016674989&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nayfeh, Ali Hasan 1933-2017 Pai, P. Frank Linear and nonlinear structural mechanics Nonlinear mechanics Structural analysis (Engineering) Strukturmechanik (DE-588)4126904-4 gnd |
subject_GND | (DE-588)4126904-4 |
title | Linear and nonlinear structural mechanics |
title_auth | Linear and nonlinear structural mechanics |
title_exact_search | Linear and nonlinear structural mechanics |
title_exact_search_txtP | Linear and nonlinear structural mechanics |
title_full | Linear and nonlinear structural mechanics Ali H. Nayfeh ; P. Frank Pai |
title_fullStr | Linear and nonlinear structural mechanics Ali H. Nayfeh ; P. Frank Pai |
title_full_unstemmed | Linear and nonlinear structural mechanics Ali H. Nayfeh ; P. Frank Pai |
title_short | Linear and nonlinear structural mechanics |
title_sort | linear and nonlinear structural mechanics |
topic | Nonlinear mechanics Structural analysis (Engineering) Strukturmechanik (DE-588)4126904-4 gnd |
topic_facet | Nonlinear mechanics Structural analysis (Engineering) Strukturmechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016674989&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nayfehalihasan linearandnonlinearstructuralmechanics AT paipfrank linearandnonlinearstructuralmechanics |