Introduction to linear algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
[2000]
|
Ausgabe: | 2. ed., [reprint.] |
Schriftenreihe: | Undergraduate texts in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 293 S. graph. Darst. |
ISBN: | 9780387962054 0387962050 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035004863 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080814s2000 gw d||| |||| 00||| eng d | ||
020 | |a 9780387962054 |9 978-0-387-96205-4 | ||
020 | |a 0387962050 |9 0-387-96205-0 | ||
035 | |a (OCoLC)615028058 | ||
035 | |a (DE-599)BVBBV035004863 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-898 |a DE-20 | ||
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
100 | 1 | |a Lang, Serge |d 1927-2005 |e Verfasser |0 (DE-588)119305119 |4 aut | |
245 | 1 | 0 | |a Introduction to linear algebra |c Serge Lang |
250 | |a 2. ed., [reprint.] | ||
264 | 1 | |a New York [u.a.] |b Springer |c [2000] | |
300 | |a VIII, 293 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Undergraduate texts in mathematics | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016674197&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016674197 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137922729869312 |
---|---|
adam_text | Contents
CHAPTER I
Vectors
......................................... 1
§1.
Definition of Points in Space
.......................... 1
§2.
Located Vectors
.................................. 9
§3.
Scalar Product
................................... 12
§4.
The Norm of a Vector
.............................. 15
§5.
Parametric Lines
.................................. 30
§6.
Planes
........................................ 34
CHAPTER
И
Matrices and Linear Equations
......................... 42
§1.
Matrices
....................................... 43
§2.
Multiplication of Matrices
............................ 47
§3.
Homogeneous Linear Equations and Elimination
.............. 64
§4.
Row Operations and Gauss Elimination
................... 70
§5
Row Operations and Elementary Matrices
.................. 77
§6.
Linear Combinations
............................... 85
CHAPTER III
Vector Spaces
..................................... 88
§1.
Definitions
...................................... 88
§2.
Linear Combinations
............................... 93
§3.
Convex Sets
..................................... 99
§4.
Linear Independence
............................... 104
§5.
Dimension
...................................... 110
§6.
The Rank of a Matrix
.............................. 115
Vlil
CONTENTS
CHAPTER TV
Linear Mappings
................................... 123
§1.
Mappings
...................................... 123
§2.
Linear Mappings
.................................. 127
§3.
The Kerne] and Image of a Linear Map
................... 136
§4.
The Rank and Linear Equations Again
.................... 144
§5.
The Matrix Associated with a Linear Map
.................. 150
Appendix: Change of Bases
............................. 154
CHAPTER V
Composition and Inverse Mappings
....................... 158
§1.
Composition of Linear Maps
.......................... 158
§2.
Inverses
....................................... 164
CHAPTER VI
Scalar Products and Orthogonality
....................... 171
§1.
Scalar Products
................................... 171
§2.
Orthogonal Bases
................................. 180
§3.
Bilinear Maps and Matrices
........................... 190
CHAPTER
VII
Determinants
..................................... 195
§1.
Determinants of Order
2............................. 195
§2. 3
χ
3
and
η χ
и
Determinants
......................... 200
§3.
The Rank of a Matrix and Subdeterminants
................. 210
§4.
Cramer s Rule
................................... 214
§5.
Inverse of a Matrix
................................ 217
§6.
Determinants as Area and Volume
....................... 221
CHAPTER
VIII
Eigenvectors and Eigenvalues
........................... 233
§1.
Eigenvectors and Eigenvalues
.......................... 233
§2.
The Characteristic Polynomial
......................... 238
§3.
Eigenvalues and Eigenvectors of Symmetric Matrices
........... 250
§4.
Diagonalization of a Symmetric Linear Map
................. 255
Appendix. Complex Numbers
............................ 260
Answers to Exercises
................................ 265
Index
........................................... 291
|
adam_txt |
Contents
CHAPTER I
Vectors
. 1
§1.
Definition of Points in Space
. 1
§2.
Located Vectors
. 9
§3.
Scalar Product
. 12
§4.
The Norm of a Vector
. 15
§5.
Parametric Lines
. 30
§6.
Planes
. 34
CHAPTER
И
Matrices and Linear Equations
. 42
§1.
Matrices
. 43
§2.
Multiplication of Matrices
. 47
§3.
Homogeneous Linear Equations and Elimination
. 64
§4.
Row Operations and Gauss Elimination
. 70
§5
Row Operations and Elementary Matrices
. 77
§6.
Linear Combinations
. 85
CHAPTER III
Vector Spaces
. 88
§1.
Definitions
. 88
§2.
Linear Combinations
. 93
§3.
Convex Sets
. 99
§4.
Linear Independence
. 104
§5.
Dimension
. 110
§6.
The Rank of a Matrix
. 115
Vlil
CONTENTS
CHAPTER TV
Linear Mappings
. 123
§1.
Mappings
. 123
§2.
Linear Mappings
. 127
§3.
The Kerne] and Image of a Linear Map
. 136
§4.
The Rank and Linear Equations Again
. 144
§5.
The Matrix Associated with a Linear Map
. 150
Appendix: Change of Bases
. 154
CHAPTER V
Composition and Inverse Mappings
. 158
§1.
Composition of Linear Maps
. 158
§2.
Inverses
. 164
CHAPTER VI
Scalar Products and Orthogonality
. 171
§1.
Scalar Products
. 171
§2.
Orthogonal Bases
. 180
§3.
Bilinear Maps and Matrices
. 190
CHAPTER
VII
Determinants
. 195
§1.
Determinants of Order
2. 195
§2. 3
χ
3
and
η χ
и
Determinants
. 200
§3.
The Rank of a Matrix and Subdeterminants
. 210
§4.
Cramer's Rule
. 214
§5.
Inverse of a Matrix
. 217
§6.
Determinants as Area and Volume
. 221
CHAPTER
VIII
Eigenvectors and Eigenvalues
. 233
§1.
Eigenvectors and Eigenvalues
. 233
§2.
The Characteristic Polynomial
. 238
§3.
Eigenvalues and Eigenvectors of Symmetric Matrices
. 250
§4.
Diagonalization of a Symmetric Linear Map
. 255
Appendix. Complex Numbers
. 260
Answers to Exercises
. 265
Index
. 291 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Lang, Serge 1927-2005 |
author_GND | (DE-588)119305119 |
author_facet | Lang, Serge 1927-2005 |
author_role | aut |
author_sort | Lang, Serge 1927-2005 |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV035004863 |
classification_rvk | SK 220 |
ctrlnum | (OCoLC)615028058 (DE-599)BVBBV035004863 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed., [reprint.] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01497nam a2200385 c 4500</leader><controlfield tag="001">BV035004863</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080814s2000 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387962054</subfield><subfield code="9">978-0-387-96205-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387962050</subfield><subfield code="9">0-387-96205-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)615028058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035004863</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="d">1927-2005</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119305119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to linear algebra</subfield><subfield code="c">Serge Lang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., [reprint.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2000]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 293 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016674197&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016674197</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV035004863 |
illustrated | Illustrated |
index_date | 2024-07-02T21:41:48Z |
indexdate | 2024-07-09T21:20:00Z |
institution | BVB |
isbn | 9780387962054 0387962050 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016674197 |
oclc_num | 615028058 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-898 DE-BY-UBR DE-20 |
owner_facet | DE-355 DE-BY-UBR DE-898 DE-BY-UBR DE-20 |
physical | VIII, 293 S. graph. Darst. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in mathematics |
spelling | Lang, Serge 1927-2005 Verfasser (DE-588)119305119 aut Introduction to linear algebra Serge Lang 2. ed., [reprint.] New York [u.a.] Springer [2000] VIII, 293 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Undergraduate texts in mathematics Lineare Algebra (DE-588)4035811-2 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Lineare Algebra (DE-588)4035811-2 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016674197&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge 1927-2005 Introduction to linear algebra Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4151278-9 |
title | Introduction to linear algebra |
title_auth | Introduction to linear algebra |
title_exact_search | Introduction to linear algebra |
title_exact_search_txtP | Introduction to linear algebra |
title_full | Introduction to linear algebra Serge Lang |
title_fullStr | Introduction to linear algebra Serge Lang |
title_full_unstemmed | Introduction to linear algebra Serge Lang |
title_short | Introduction to linear algebra |
title_sort | introduction to linear algebra |
topic | Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Lineare Algebra Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016674197&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT langserge introductiontolinearalgebra |