Lie theory: unitary representations and compactifications of symmetric spaces
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2005
|
Schriftenreihe: | Progress in mathematics
229 |
Schlagworte: | |
Beschreibung: | X, 207 S. |
ISBN: | 0817635262 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV025939938 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 100417s2005 |||| 00||| eng d | ||
020 | |a 0817635262 |9 0-8176-3526-2 | ||
035 | |a (OCoLC)249676112 | ||
035 | |a (DE-599)BVBBV025939938 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
245 | 1 | 0 | |a Lie theory |b unitary representations and compactifications of symmetric spaces |c Jean-Philippe Anker..., eds. |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2005 | |
300 | |a X, 207 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 229 | |
650 | 0 | 7 | |a Symmetrischer Raum |0 (DE-588)4184206-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Theorie |0 (DE-588)4251836-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Symmetrischer Raum |0 (DE-588)4184206-6 |D s |
689 | 1 | 1 | |a Lie-Theorie |0 (DE-588)4251836-2 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Anker, Jean-Philippe |4 edt | |
830 | 0 | |a Progress in mathematics |v 229 |w (DE-604)BV000004120 |9 229 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-019183821 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804141402157744128 |
---|---|
any_adam_object | |
author2 | Anker, Jean-Philippe |
author2_role | edt |
author2_variant | j p a jpa |
author_facet | Anker, Jean-Philippe |
building | Verbundindex |
bvnumber | BV025939938 |
classification_rvk | SK 340 |
ctrlnum | (OCoLC)249676112 (DE-599)BVBBV025939938 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01577nam a2200433 cb4500</leader><controlfield tag="001">BV025939938</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2005 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817635262</subfield><subfield code="9">0-8176-3526-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249676112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025939938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie theory</subfield><subfield code="b">unitary representations and compactifications of symmetric spaces</subfield><subfield code="c">Jean-Philippe Anker..., eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 207 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">229</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrischer Raum</subfield><subfield code="0">(DE-588)4184206-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Symmetrischer Raum</subfield><subfield code="0">(DE-588)4184206-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anker, Jean-Philippe</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">229</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">229</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019183821</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV025939938 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:15:18Z |
institution | BVB |
isbn | 0817635262 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-019183821 |
oclc_num | 249676112 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | X, 207 S. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker..., eds. Boston [u.a.] Birkhäuser 2005 X, 207 S. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 229 Symmetrischer Raum (DE-588)4184206-6 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lie-Theorie (DE-588)4251836-2 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Lie-Algebra (DE-588)4130355-6 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Symmetrischer Raum (DE-588)4184206-6 s Lie-Theorie (DE-588)4251836-2 s 1\p DE-604 Anker, Jean-Philippe edt Progress in mathematics 229 (DE-604)BV000004120 229 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lie theory unitary representations and compactifications of symmetric spaces Progress in mathematics Symmetrischer Raum (DE-588)4184206-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Lie-Theorie (DE-588)4251836-2 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4184206-6 (DE-588)4148816-7 (DE-588)4251836-2 (DE-588)4130355-6 (DE-588)4151278-9 |
title | Lie theory unitary representations and compactifications of symmetric spaces |
title_auth | Lie theory unitary representations and compactifications of symmetric spaces |
title_exact_search | Lie theory unitary representations and compactifications of symmetric spaces |
title_full | Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker..., eds. |
title_fullStr | Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker..., eds. |
title_full_unstemmed | Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker..., eds. |
title_short | Lie theory |
title_sort | lie theory unitary representations and compactifications of symmetric spaces |
title_sub | unitary representations and compactifications of symmetric spaces |
topic | Symmetrischer Raum (DE-588)4184206-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Lie-Theorie (DE-588)4251836-2 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Symmetrischer Raum Darstellungstheorie Lie-Theorie Lie-Algebra Einführung |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT ankerjeanphilippe lietheoryunitaryrepresentationsandcompactificationsofsymmetricspaces |