Gröbner bases: a computational approach to commutative algebra
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u. a.]
Springer
1993
|
Schriftenreihe: | Graduate texts in mathematics
141 |
Schlagworte: | |
Beschreibung: | XXII, 574 S. |
ISBN: | 0387979719 3540979719 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV025883938 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 100417s1993 |||| 00||| eng d | ||
020 | |a 0387979719 |9 0-387-97971-9 | ||
020 | |a 3540979719 |9 3-540-97971-9 | ||
035 | |a (OCoLC)246649877 | ||
035 | |a (DE-599)BVBBV025883938 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
082 | 0 | |a 512.24 | |
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Becker, Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Gröbner bases |b a computational approach to commutative algebra |c Thomas Becker; Volker Weispfennig |
264 | 1 | |a New York [u. a.] |b Springer |c 1993 | |
300 | |a XXII, 574 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 141 | |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gröbner-Basis |0 (DE-588)4276378-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gröbner-Basis |0 (DE-588)4276378-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 1 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
689 | 4 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 4 | |8 3\p |5 DE-604 | |
700 | 1 | |a Weispfennig, Volker |e Verfasser |4 aut | |
830 | 0 | |a Graduate texts in mathematics |v 141 |w (DE-604)BV000000067 |9 141 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-019130709 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804141343308513280 |
---|---|
any_adam_object | |
author | Becker, Thomas Weispfennig, Volker |
author_facet | Becker, Thomas Weispfennig, Volker |
author_role | aut aut |
author_sort | Becker, Thomas |
author_variant | t b tb v w vw |
building | Verbundindex |
bvnumber | BV025883938 |
classification_rvk | SK 200 SK 220 SK 230 |
ctrlnum | (OCoLC)246649877 (DE-599)BVBBV025883938 |
dewey-full | 512.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.24 |
dewey-search | 512.24 |
dewey-sort | 3512.24 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02206nam a2200589 cb4500</leader><controlfield tag="001">BV025883938</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s1993 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387979719</subfield><subfield code="9">0-387-97971-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540979719</subfield><subfield code="9">3-540-97971-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246649877</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025883938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.24</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Becker, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gröbner bases</subfield><subfield code="b">a computational approach to commutative algebra</subfield><subfield code="c">Thomas Becker; Volker Weispfennig</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u. a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 574 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">141</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gröbner-Basis</subfield><subfield code="0">(DE-588)4276378-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gröbner-Basis</subfield><subfield code="0">(DE-588)4276378-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weispfennig, Volker</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">141</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">141</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019130709</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV025883938 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:14:22Z |
institution | BVB |
isbn | 0387979719 3540979719 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-019130709 |
oclc_num | 246649877 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XXII, 574 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Becker, Thomas Verfasser aut Gröbner bases a computational approach to commutative algebra Thomas Becker; Volker Weispfennig New York [u. a.] Springer 1993 XXII, 574 S. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 141 Polynom (DE-588)4046711-9 gnd rswk-swf Gröbner-Basis (DE-588)4276378-2 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Ideal Mathematik (DE-588)4161198-6 gnd rswk-swf Computeralgebra (DE-588)4010449-7 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Gröbner-Basis (DE-588)4276378-2 s DE-604 Kommutative Algebra (DE-588)4164821-3 s Computeralgebra (DE-588)4010449-7 s Ideal Mathematik (DE-588)4161198-6 s 1\p DE-604 Polynom (DE-588)4046711-9 s 2\p DE-604 Algebra (DE-588)4001156-2 s 3\p DE-604 Weispfennig, Volker Verfasser aut Graduate texts in mathematics 141 (DE-604)BV000000067 141 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Becker, Thomas Weispfennig, Volker Gröbner bases a computational approach to commutative algebra Graduate texts in mathematics Polynom (DE-588)4046711-9 gnd Gröbner-Basis (DE-588)4276378-2 gnd Kommutative Algebra (DE-588)4164821-3 gnd Ideal Mathematik (DE-588)4161198-6 gnd Computeralgebra (DE-588)4010449-7 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4046711-9 (DE-588)4276378-2 (DE-588)4164821-3 (DE-588)4161198-6 (DE-588)4010449-7 (DE-588)4001156-2 |
title | Gröbner bases a computational approach to commutative algebra |
title_auth | Gröbner bases a computational approach to commutative algebra |
title_exact_search | Gröbner bases a computational approach to commutative algebra |
title_full | Gröbner bases a computational approach to commutative algebra Thomas Becker; Volker Weispfennig |
title_fullStr | Gröbner bases a computational approach to commutative algebra Thomas Becker; Volker Weispfennig |
title_full_unstemmed | Gröbner bases a computational approach to commutative algebra Thomas Becker; Volker Weispfennig |
title_short | Gröbner bases |
title_sort | grobner bases a computational approach to commutative algebra |
title_sub | a computational approach to commutative algebra |
topic | Polynom (DE-588)4046711-9 gnd Gröbner-Basis (DE-588)4276378-2 gnd Kommutative Algebra (DE-588)4164821-3 gnd Ideal Mathematik (DE-588)4161198-6 gnd Computeralgebra (DE-588)4010449-7 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Polynom Gröbner-Basis Kommutative Algebra Ideal Mathematik Computeralgebra Algebra |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT beckerthomas grobnerbasesacomputationalapproachtocommutativealgebra AT weispfennigvolker grobnerbasesacomputationalapproachtocommutativealgebra |