Quantitative EEG, event-related potentials and neurotherapy:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier, Acad. Press
2009
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | LVIII, 542 S. Ill., graph. Darst. |
ISBN: | 9780123745125 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025596927 | ||
003 | DE-604 | ||
005 | 20100927 | ||
007 | t | ||
008 | 100417s2009 ad|| |||| 00||| eng d | ||
020 | |a 9780123745125 |9 978-0-12-374512-5 | ||
035 | |a (OCoLC)705356560 | ||
035 | |a (DE-599)BVBBV025596927 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-355 |a DE-20 |a DE-19 | ||
084 | |a YG 2400 |0 (DE-625)153482:12905 |2 rvk | ||
100 | 1 | |a Kropotov, Jurij D. |e Verfasser |0 (DE-588)136614744 |4 aut | |
245 | 1 | 0 | |a Quantitative EEG, event-related potentials and neurotherapy |c Juri D. Kropotov |
246 | 1 | |a Quantitative EEG, event related potentials and neurotherapy | |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier, Acad. Press |c 2009 | |
300 | |a LVIII, 542 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Elektroencephalographie |0 (DE-588)4014254-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evoziertes Potenzial |0 (DE-588)4138397-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektroencephalographie |0 (DE-588)4014254-1 |D s |
689 | 0 | 1 | |a Evoziertes Potenzial |0 (DE-588)4138397-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020192782&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020192782 |
Datensatz im Suchindex
_version_ | 1804142779730755584 |
---|---|
adam_text | Contents
Preface xxiii
Acknowledgments xxvii
Introduction: Basic Concepts ofQEEG and Neurotherapy
I. Glossary xxxii
II. The Place of EEG in Neuroscience and Medicine xxxiv
A. Goals of Neuroscience xxxiv
B. Goals of Psychiatry and Neurology xxxv
C. Phenotype and Genotype xxxvi
D. MEG as a Complementary Method to EEG xxxvii
E. MRI xxxvii
E PET xxxix
G. Functional MRI xxxix
H. Polarographic Recording of Brain Oxygen xl
III. From Neuronal Spikes Through Local Field Potentials
to Scalp EEG xli
A. Impulse Activity of Neurons xli
B. Profiles of Neuronal Reactions xliii
C. Local Field Potentials xliii
D. Association of Local Field Potentials with Scalp EEG xlv
E. Modern Renaissance of EEG xlvii
IV. Endophenotypes and Individual Differences xlvii
A. Biological Markers of Disease xlvii
B. Association with Functioning of Brain Systems xlvii
C. Inverted U-Law xlix
D. Pavlov s, Eysenk s and Current Theories of Personality
Differentiation 1
V. Pharmaco-QEEG liii
A. Goals liii
B. Limitations liii
C. New Horizons liv
vii
viii Contents
VI. Prerequisites for Neurotherapy liv
A. Neurofeedback liv
B. Brain-Computer interface lvii
C. Transcranial Direct Current Stimulation lvii
D. TMS, DBS, and Other Stimulation Procedures lviii
PART I
EEG Rhythms
1 Slow, Infra-Slow Potentials, and Delta Rhythms
I. Origin of Scalp Potentials 11
A. Intracortical Organization 11
B. Membrane Potentials 14
C. Synaptic Transmission 16
D. Pyramidal Cells as Elemental Electrical Dipoles 17
II. Infra-Slow Oscillations 19
A. Spontaneous Activity 19
B. Preparatory Activities 21
III. Slow Waves of Deep Sleep 22
A. Up and Down States 22
B. Transcranial Induction of Slow Waves 23
IV Delta Oscillations 23
A. Delta Rhythm of Sleep 25
B. Low Threshold Burst Mode of Thalamic Neurons 27
C. Pathological Delta Rhythms 27
V. Summary 28
2 Alpha Rhythms
I. Types of Alpha Rhythms 29
A. Mu-Rhythms 30
B. Occipital Alpha Rhythms 32
C. Parietal Alpha Rhythm 35
II. Neuronal Mechanisms 36
A. Association with Cortical Deactivation 36
B. Thalamo-Cortical Circuits 38
C. Sleep Spindles 40
D. Alpha Rhythms ofWakefulness 42
E. High Threshold Burst Mode of Thalamic Neurons 43
Contents ix
III. Responses to Tasks 46
A. Event-Related Desynchronization of Mu-Rhythms to Motor Actions 46
B. ERD of Occipital Rhythms to Visual Stimuli 49
IV. Functional Meaning 50
A. Alpha Rhythms as Idling EEG Activity 50
B. Lateral Inhibition in Activation of Alpha Rhythms 50
V. Abnormality of Alpha Rhythms 52
A. Complete Absence of Alpha Rhythms 52
B. Alpha Rhythms in Unusual Sites 52
C. Alpha Asymmetry 55
VI. Summary 57
3 Beta Rhythms
I. Types of Beta Rhythms 59
A. Rolandic Beta Rhythms 60
B. Desynchronization/Synchronization Pattern to Motor Actions 60
C. Frontal Beta Rhythms 63
D. Desynchronization/Synchronization Pattern to
Cognitive Tasks 63
II. Neuronal Mechanisms 67
A. Association with Cortical Activation 67
B. Sensitivity to GABA Agonists 68
C. Inhibition in Cortical Circuits 69
III. Gamma Activity 70
A. Temporal Binding 71
IV. Functional Meaning 72
A. Beta Rhythms as Postactivation Traces 73
B. Reset of Information Processing 75
V. Abnormal Beta Rhythms 75
A. Need for Normative Databases 75
B. Cortical Irritability 76
VI. Summary 76
4 Frontal Midline Theta Rhythm
I. Characteristics 77
A. Spatial Distribution 77
B. Personality Traits of People Generating the Rhythm 79
II. Neuronal Mechanisms 81
A. Association with Cortical Activation 81
B. Association with Hippocampal Theta Rhythms 82
C. Limbic System of Hippocampal Theta Rhythms 82
D. Classic Model of Hippocampal Theta Rhythms Generation 83
E. Involvement in Memory Operations 84
F. Theta Quantum 85
G. Hippocampus as a Map of Episodes 86
H. Theta Rhythm and Memory Consolidation 86
x Contents
III. Responses to Tasks 88
A. Increasing with Memory Load 88
B. Two Types of Theta Responses 88
C. Appearance in Hypnosis 91
IV. Functional Meaning 91
A. Associating Two Types of Human Theta Responses with
Two Types of Theta in Animals 91
V. Abnormal Theta Rhythms 93
A. Frontal Midline Theta Subtype of ADHD 93
B. Theta Rhythms in Non-frontal Areas 93
VI. Summary 95
5 Paroxysmal Events
I. Spikes 96
A. Spatial-Temporal Characteristics 97
B. Automated Spike Detection 98
C. Intracranially Recorded Spikes 99
II. Neuronal Mechanisms 100
A. A Lack of Inhibition 100
B. Neurofeedback 101
C. Epileptology 102
III. Summary 102
6 QEEG Endophenotypes
I. Test-Retest Reliability 103
II. Reflection of Functioning Brain Systems 105
III. Heritability 105
IV. Summary 108
7 QEEG During Sleep
I. Anatomical Basis 109
A. Sleep and Wakefulness Promoting Nuclei 109
II. EEG Correlates of Sleep 110
A. REM and NREM Sleep 110
B. Stages of NREM Sleep 111
III. Functional Meaning of Sleep 112
A. Memory Consolidation 112
B. Immune System 112
C. Psychiatric Disorders 113
IV. Bispectral Index 113
A. Association with Anesthetic Depth 113
V. Summary 115
Contents xi
8 Methods of Analysis of Background EEG
I. Anatomical Locations 116
II. Brodmann s Areas 116
III. 10-20 International System of Electrode Placement 118
IV. Electrodes 118
V. Amplifiers 121
VI. EEG Digitizing 121
VII. Montages 122
A. Linked Ears Reference 122
B. Common Average Montage 123
C. Local Average Montage 123
VIII. Fourier Analysis 125
A. Spectra 125
B. Spectra Dynamics and Averaged Spectra 127
C. Relative Spectra 128
IX. EEG Mapping 129
X. Filtering 129
A. Low and Highpass Filters 129
B. FIR and IIR Filters 130
XI. Bispectrum 131
XII. Coherence 131
A. Physiological Meaning 131
B. Representations of Deviations from Normality 132
XIII. Event-related Desynchronization 133
XIV. Wavelet Transformation 135
XV. Blind Source Separation and ICA 136
A. Mathematical Formulation 136
B. Spatial Filters for Decomposing Independent Components 137
C. Independent Component Analysis Versus Principle
Component Analysis 139
XVI. Artifact Correction by Spatial Filtration 142
A. Eye Movements 142
B. Correcting Eye Movement Artifacts 143
XVII. Other Types of Artifacts 143
A. Muscle Artifact 143
B. ECG Artifact 143
C. Cardio-Ballistic Artifact 145
XVIII. Forward Solution and Dipole Approximation 146
XIX. LORETA 148
A. Ambiguity of Inverse Problem 148
B. Matrix for Solution of the Inverse Problem 149
C. Minimizing the Functional 149
D. s-LORETA - Zero Localization Error 151
XX. BoldfMRI 152
A. Transform Model of fMRI response 153
XXI. Cordance 154
xii Contents
XXII. Normal Distributions and Deviation from Normality 154
A. Normative Database 154
B. Normal and Log-Normal Distributions 155
C. Z-Scores 155
XXIII. Currently Available Databases 156
A. NxLink 156
B. Neuroguide 157
C. SKIL 157
D. Neurorep 158
E. Novatech LORETA Database 158
F. BRC Database 159
G. HBI Database 159
9 Practice
I. Introduction 161
A. Categories of EEG Processing 162
B. EEG Data Formats 162
C. Data Management 164
D. Editing and Compiling QEEG Reports 164
II. Ed-EEG Software 165
A. Installation 165
B. Folders for Data Processing 165
III. Exercises 178
PART II
Event-Related Potentials
10 Sensory Systems
I. Anatomy 192
A. Brodmann Areas and Thalamic Nuclei 192
B. Topographical Organization 192
C. Parallel Pathways 192
D. Pulvinar Nucleus as Coordinator of Information Flow 195
II. Visual Information Flow 195
A. ON and OFF Receptive Fields 195
B. Spatial Filtration at Thalamic and Cortical Levels 196
C. Ventral and Dorsal Streams 198
D. Hierarchical Organization 199
E. Computational Maps 199
Contents xiii
F. Schemata 200
G. Face Recognition 200
H. Multiple ERPs Components 201
I. Cortical Topography 201
J. Enhancement of N170 ERPs Component in Response to Faces 202
III. Decomposition of Single Trial Evoked Potentials into
Independent Components 203
IV. Decomposition of Averaged ERPS into
Single Components 205
A. ERP Component as a Sequence of Excitatory-Inhibitory
Events (Model) 207
V. Auditory Information Flow 210
A. What and Where Streams 210
B. Cortical Tonotopy 211
C. Speech Processing 211
D. ICA of ERPs (HBI Database) 212
VI. Somato-Sensory Modality 214
A. Somato-Sensory and Insular Cortical Areas 214
VII. Change Detection 214
A. Functions of Change Detection 214
B. Mechanisms of Change Detection (Model) 215
C. MMN in Oddball Paradigm 217
D. Intracranial Correlates of MMN 218
E. Change Detection in Two Stimulus Discrimination Tasks 221
F. Modality Specificity 222
G. Physical and Semantic Change Detection 224
H. Change Detection and Motor Suppression 224
VIII. Types of Sensory Systems 225
A. U-Shape Curve of the System Reactivity 225
B. Augmenting and Reducing Sensory Systems 227
C. Auditory P2 in Augmenters and Reducers 228
IX. Diagnostic Values of Sensory-related ERPS Components 228
A. MMN 228
B. Comparison Component 229
X. Summary 230
11 Attention Networks
I. Psychology 221
A. Attention as Selection Operation 231
B. Sensory Selection Versus Motor Selection 232
C. Preparatory Sets 232
D. Processing Multiple Objects 233
E. Engagement, Disengagement and Shift Operations 235
F. Bottom-Up and Top-Down Factors 235
II. Anatomy 236
A. Sensory Systems 236
B. Executive System 236
xiv Contents
III. Modulation of Sensory Information Flow 237
A. Mutual Inhibition in Animal Experiments 237
B. Involvement of Subcortical Structures 239
C. Attention-Related Negativities in Human ERPs 239
D. Parietal-Frontal Network in PET and MRI Studies 240
IV. Neuropsychology 241
A. Sensory Neglect and Right Parietal Lesions 241
B. Balint s Syndrome 241
V. Neuronal Networks 242
A. Recurrent Depolarization of Apical Dendrites 242
B. Attention and Arousal 243
C. Tonic and Phasic Reactions of Locus Coeruleus 244
D. Norepinephrine as Modulator of Attention 245
VI. Late Positive Components in ERPS 245
A. P3b Component 247
13. P3a Component 249
C. Diagnostic Values of P3a and P3b Components 252
VII. Summary 252
12 Executive System
I. Psychology 253
A. Need for Executive Control 253
B. Types of Executive Operations 253
C. Association with Selection of Actions 254
II. Basal Ganglia as Dark Basements of the Brain 255
A. Anatomy 255
B. Direct Pathway 256
C. Intracranial Recordings in Patients 257
D. The Model of Action Selection 258
E. Dopamine as Modulator in the Basal Ganglia 260
F. Dysinhibition of Thalamic Neurons 261
G. Indirect and Hyperdirect Pathways 262
H. Output to the Brain Stem 262
I. Parallel Circuits 263
J. EEG in Basal Ganglia Dysfunction 266
III. Prefrontal Cortex and Executive Control 267
A. Anatomy 267
B. Complexity ofWiring 268
C. Representation of Complex Actions 269
D. Hyperfrontality 269
E. EEG Peculiarity 270
IV. Engagement/Disengagement Operations 270
A. P3b Component as Index of Engagement Operation 270
B. Sensory Comparison 270
C. Motor Inhibition 271
D. Action Suppression 272
E. [ntracranial Recordings 273
F. N200 Motor Inhibition Component 275
Contents xv
V. Monitoring Operation 276
A. P400 Monitoring Component in GO/NOGO Paradigm 276
B. Function of ACC 278
C. Akinetic Mutism 279
D. Concept of Monitoring 280
E. Error-Related Negativities 281
VI. Working Memory 283
A. Active Manipulation on Memory Trace 283
B. Reciprocal Anatomical Pathways 284
C. Three Working Memory Systems 284
D. CNV as Correlate of Working Memory 284
VII. Dopamine as a Mediator of the Executive
System 287
A. Cortical and Subcortical Distribution 287
B. Dopaminergic Systems 287
C. Dl and O2 Dopamine Receptors 288
D. Functions of Dopaminergic Systems 288
VIII. Summary 290
13 Affective System
I. Psychology 292
A. Emotions Versus Reasoning 292
B. Punishers and Rewards 293
C. Drives and Motivations 293
II. Anatomy 294
A. Limbic System 294
B. Papez Circuit 295
C. Cortical and Subcortical Elements 295
III. Physiology 297
A. Orbito-frontal Cortex as a Map of Rewards and Punishers 297
B. Positive Affect, Negative Affect, and Monitoring 299
C. Asymmetry in Maps of Emotions? 301
D. Amygdala 302
E. Medial and Anterior Nuclei of the Thalamus 303
F. Hypothalamus 303
G. Ventral Part of the Anterior Cingulate Cortex 304
H. Neuroimaging Patterns of Emotions 304
I. Frontal Midline Theta Rhythm and Emotions 305
IV Stages of Reactions of Affective System 305
A. Sensation 306
B. Emotional Reaction 307
C. Feeling Stage 307
D. Monitoring Stage 307
V. Serotonin as Mediator of Affective System 307
A. Functioning and Dysfunctioning of
Serotoninergic System 308
VI. Summary 309
xvi Contents
14 Memory Systems
I. Psychology 310
A. Types of Memory 310
II. Declarative Memory 312
A. Anatomy 312
B. Encoding and Retrieval Operations 314
C. Neuronal Model 315
III. Acetylcholine as Mediator of Declarative Memory 315
A. Septum as an Extension of Cholinergic Ascending System 315
B. Hippocampal Theta Rhythm and Long-Term Potentiation 317
IV. ERP Indexes of Episodic Memory 317
A. Old-New Effect in Recalling Stage 317
B. Remembered-Forgotten Effect in Encoding Stage 318
V Procedural Memory System 318
A. Action-Related Memory Versus Sensory-Related Memory 318
B. Anatomy of Procedural Memory 319
C. Basal Ganglia and Language 321
D. Gradual Memorization 321
E. ERP Correlates of Recalling from Procedural Memory 322
VI. Mediators of Procedural Memory 322
VII. Summary 322
15 Methods: Neuronal Networks and Event-Related
Potentials
I. Information Processing in Neuronal Networks 325
A. Analytic Approach 325
B. Networks with Lateral Inhibition 326
C. Spatial Filtration in Neuronal Networks 327
D. Enhancing Higher Spatial Frequencies in Visual System 328
E. Canonical Cortical Circuit 330
F. Inhibition as Cause of High Frequency Oscillations 331
G. Synaptic Depression as Source of Low Frequency Oscillations 331
H. Canonical Cortical Module 332
I. Gabor Filtration in the Canonical Cortical Model 335
J. Texture Encoding by the Canonical Cortical Module 337
K. Hierarchical Organization 337
L. Feedforward and Feedback Connections 338
M. Reflection of Recurrent Connections in ERPs 339
II. Neurotransmitters and Neuromodulators 341
A. Fast Transmitters 341
B. Slow Modulators 342
C. Modulator Systems 343
III. Methods of Analyzing ERPS 345
A. Averaging Technique 345
B. Number of Trials 347
C. Single Trial Representations of Independent Components 349
Contents xvii
D. Alpha Ringing 351
E. ICA Decomposition of Grand Average ERPs 351
IV. Pharmaco-ERP 356
V. Behavioral Paradigms 357
A. Classification of Paradigms 357
B. Sensory and Attention Systems 357
C. Executive Functions 362
D. Affective System 364
E. Episodic Memory 365
16 Practice: ERP analysis
I. Introduction 366
II. Designing Task 367
III. EdEEG Software 372
IV. Exercises 381
PART III
Disorders of the Brain Systems
17 Attention Deficit Hyperactivity Disorder
I. Description of Behavior 393
A. Executive Operations and ERP Components 393
B. Symptoms of ADHD in DSM-IV and ICD-10 393
II. Genetic and Environmental Factors 395
A. Complex Genetic Disorder 395
B. Environmental Risk Factors 396
C. Co-morbidity 396
III. Imaging Correlates 396
A. PET and MRI 396
B. QEEG 398
C. Theta Beta Ratio as Inattention Index 399
IV. ERP Correlates 400
A. Selective Attention 400
B. Working Memory 401
C. Engagement Operation 404
D. Response Inhibition 404
E. Monitoring Operation 406
xviii Contents
V. Dopamine Hypothesis of ADHD 406
A. Increased Level of DAT 407
B. Noradrenalin Transporter 408
VI. Treatment 408
A. Psychostimulants 408
B. Neurofeedback 409
C. Beta Enhancement/Theta Suppression Protocol 411
D. Relative Beta Training Protocol 411
E. Normalization of Executive ERP Components 412
E Transcranial Direct Current Stimulation 415
VII. Summary 418
18 Schizophrenia
I. Description of Behavior 420
A. Involvement ofThree Brain Systems 420
B. Dysfunction of Executive System 421
II. Genetics and Environmental Factors 421
A. Multiple Genes are Involved 421
B. Environmental Risk Factors 422
III. Imaging Correlates 422
A. Magnetic Resonance Imaging 422
B. Quantitative Electroencephalogram 423
C. Mismatch Negativity 423
D. Contingent Negative Variation 423
E. Engagement Operation 424
F. Monitoring Operation 425
IV Dopamine Hypothesis of Schizophrenia 426
A. Excess of Striatal Dopamine Receptors 426
B. Neural Net Model 426
V. Treatment 428
A. Antipsychotic Agents 428
B. Electroconvulsive Therapy 428
C. Psychosurgery 429
D. Neurofeedback 430
VI. Summary 431
19 Addiction
I. Description of Behavior 431
A. Symptoms 432
B. Substances of Abuse 433
C. Tolerance, Dependence, and Withdrawal 433
II. Imaging Correlates 434
A. PET and MRI 434
B. Increased Level of Dopamine in Nucleus Accumbens 434
Contents xix
III. Stages of Addiction 435
A. Expectation Stage 435
B. Consolidation Stage 436
C. Habituation/Sensitization Stage 436
D. Neural Net Model 437
IV. Treatment 438
A. Stereotactic Anterior Cingulotomy in Heroin Addicts 438
B. Neurofeedback 439
V. Summary 440
20 Obsessive-Compulsive Disorder
I. Description of Behavior 442
A. Symptoms 442
II. Genetics and Co-morbidity 443
A. Poor Heritability 443
B. Co-morbid Disorders 443
III. Imaging Correlates 443
A. PET.MRI 443
B. QEEG 445
C. Monitoring Component of ERPs 445
IV. Mediators 446
V. Treatment 446
A. Stereotactic Anterior Cingulotomy 446
B. QEEG/ERPs Assessment in an OCD Patient 446
C. Neurofeedback 448
VI. Summary 449
21 Depression
I. Description of Behavior 450
A. History 450
B. Symptoms 450
C. Subtyping Depression 451
D. Heritability 451
E. Need for Objective Diagnostic System 452
II. Imaging Correlates 452
A. PET, MRI 452
B. QEEG Asymmetry 453
C. ERP Asymmetry 454
D. QEEG/ERPs Assessment in a Depressed Patient 454
E. QEEG Predictors of Response to Antidepressants 456
III. Neuronal Model 456
A. Monoamine Hypothesis of Depression 456
B. Brain Circuitry of Depressed Mood 457
IV. Treatment 459
A. Cognitive Behavioral Therapy 459
B. ECT and Psychosurgery 459
xx Contents
C. Antidepressants 460
D. TMS 461
E. Neurofeedback 461
V. Summary 462
22 Alzheimer s Disease
I. Description of Behavior 463
A. Symptoms 463
II. Mediators 463
A. Association with Cholinergic/GABA Septal-Hippocampal Circuits 463
B. Cholinergic Hypothesis of Alzheimer s Disease 464
III. Neural Net Model 464
A. Theta Bursts in Healthy Brain 464
B. Increase of Spontaneous Theta Activity in Diseased Brain 464
IV. Imaging Correlates 465
A. QEEG 465
B. ERPs 466
C. Principle Component Analysis of ERPs 466
V. Treatment 467
A. Acetylcholinesterase Inhibitors 467
B. Neurofeedback 467
VI. Summary 467
23 Methods of Neurothempy
I. Placebo 469
A. Placebo as Expectation of Results 469
B. Neuronal Basis of Placebo 470
C. Need for Double-Blind Placebo-Controlled Studies 471
II. Neurofeedback 472
A. History 472
B. Bulldozer Principle of Neurofeedback 475
C. Comparison with the Database 476
D. Defining Electrodes Position 476
E. Defining Neurofeedback Parameter 478
F. Training Procedure 478
G. Computing Neurofeedback Parameters 480
H. Training Curve 482
I. Learning Curve 482
J. Techniques for Computing Neurofeedback Parameter 483
K. Types of Neurofeedback Protocols 485
L. Neurofeedback and Neurotherapy 487
M. Eastern Self-Regulation Techniques 487
N. Sham Effect 488
O. Minimizing Side Effects 488
P. Stability of Effect 489
Q. Limitations of Neurofeedback 489
R. MedicalVersus Non-medical Application 490
Contents xxi
S. Types of Neurofeedback 491
T. BCI 494
III. Deep Brain Stimulation 495
A. Psychosurgery 495
B. Stereotactic Neurosurgery 495
C. Deep Brain Stimulation as Reversible Destruction 496
IV. Transcranial Magnetic Stimulation 496
A. Physics ofTMS 496
B. Diagnostic and Therapeutic Applications 498
V. Transcranial Direct Current Stimulation 498
A. History 498
B. Procedure 499
C. Neurophysiological Mechanisms of Membrane Polarization 500
D. Physiological Evidence 501
E. Behavioral Effects 503
F. Clinical Applications 503
Conclusion
I. General Principles of EEG Assessment and Neurotherapy 506
II. Topics of Further Research 512
References 517
Index 531
|
any_adam_object | 1 |
author | Kropotov, Jurij D. |
author_GND | (DE-588)136614744 |
author_facet | Kropotov, Jurij D. |
author_role | aut |
author_sort | Kropotov, Jurij D. |
author_variant | j d k jd jdk |
building | Verbundindex |
bvnumber | BV025596927 |
classification_rvk | YG 2400 |
ctrlnum | (OCoLC)705356560 (DE-599)BVBBV025596927 |
discipline | Medizin |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01490nam a2200361 c 4500</leader><controlfield tag="001">BV025596927</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100927 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123745125</subfield><subfield code="9">978-0-12-374512-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705356560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025596927</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">YG 2400</subfield><subfield code="0">(DE-625)153482:12905</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kropotov, Jurij D.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136614744</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative EEG, event-related potentials and neurotherapy</subfield><subfield code="c">Juri D. Kropotov</subfield></datafield><datafield tag="246" ind1="1" ind2=" "><subfield code="a">Quantitative EEG, event related potentials and neurotherapy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, Acad. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LVIII, 542 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektroencephalographie</subfield><subfield code="0">(DE-588)4014254-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evoziertes Potenzial</subfield><subfield code="0">(DE-588)4138397-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektroencephalographie</subfield><subfield code="0">(DE-588)4014254-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Evoziertes Potenzial</subfield><subfield code="0">(DE-588)4138397-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020192782&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020192782</subfield></datafield></record></collection> |
id | DE-604.BV025596927 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:37:12Z |
institution | BVB |
isbn | 9780123745125 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020192782 |
oclc_num | 705356560 |
open_access_boolean | |
owner | DE-11 DE-355 DE-BY-UBR DE-20 DE-19 DE-BY-UBM |
owner_facet | DE-11 DE-355 DE-BY-UBR DE-20 DE-19 DE-BY-UBM |
physical | LVIII, 542 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Elsevier, Acad. Press |
record_format | marc |
spelling | Kropotov, Jurij D. Verfasser (DE-588)136614744 aut Quantitative EEG, event-related potentials and neurotherapy Juri D. Kropotov Quantitative EEG, event related potentials and neurotherapy 1. ed. Amsterdam [u.a.] Elsevier, Acad. Press 2009 LVIII, 542 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Elektroencephalographie (DE-588)4014254-1 gnd rswk-swf Evoziertes Potenzial (DE-588)4138397-7 gnd rswk-swf Elektroencephalographie (DE-588)4014254-1 s Evoziertes Potenzial (DE-588)4138397-7 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020192782&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kropotov, Jurij D. Quantitative EEG, event-related potentials and neurotherapy Elektroencephalographie (DE-588)4014254-1 gnd Evoziertes Potenzial (DE-588)4138397-7 gnd |
subject_GND | (DE-588)4014254-1 (DE-588)4138397-7 |
title | Quantitative EEG, event-related potentials and neurotherapy |
title_alt | Quantitative EEG, event related potentials and neurotherapy |
title_auth | Quantitative EEG, event-related potentials and neurotherapy |
title_exact_search | Quantitative EEG, event-related potentials and neurotherapy |
title_full | Quantitative EEG, event-related potentials and neurotherapy Juri D. Kropotov |
title_fullStr | Quantitative EEG, event-related potentials and neurotherapy Juri D. Kropotov |
title_full_unstemmed | Quantitative EEG, event-related potentials and neurotherapy Juri D. Kropotov |
title_short | Quantitative EEG, event-related potentials and neurotherapy |
title_sort | quantitative eeg event related potentials and neurotherapy |
topic | Elektroencephalographie (DE-588)4014254-1 gnd Evoziertes Potenzial (DE-588)4138397-7 gnd |
topic_facet | Elektroencephalographie Evoziertes Potenzial |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020192782&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kropotovjurijd quantitativeeegeventrelatedpotentialsandneurotherapy |