Data mining methods:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Oxford
Alpha Science
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIV, 411 S. Ill., graph. Darst. |
ISBN: | 9781842655238 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025552289 | ||
003 | DE-604 | ||
005 | 20120726 | ||
007 | t | ||
008 | 100417s2009 ad|| |||| 00||| ger d | ||
020 | |a 9781842655238 |9 978-1-84265-523-8 | ||
035 | |a (OCoLC)796181712 | ||
035 | |a (DE-599)BVBBV025552289 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
049 | |a DE-11 |a DE-355 | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Chattamvelli, Rajan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Data mining methods |c Rajan Chattamvelli |
264 | 1 | |a Oxford |b Alpha Science |c 2009 | |
300 | |a XXIV, 411 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Datenerhebung |0 (DE-588)4155272-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Information Retrieval |0 (DE-588)4072803-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Datenerhebung |0 (DE-588)4155272-6 |D s |
689 | 0 | 1 | |a Information Retrieval |0 (DE-588)4072803-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020152547&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020152547 |
Datensatz im Suchindex
_version_ | 1804142726263865344 |
---|---|
adam_text | Contents
Preface
,>
л
-,
i
/· « .
f
и
Lisí
of Figures
xxi
List of Tables
xxiii
1.
BASIC CONCEPTS IN DATA MINING
1
1.1
Introduction
......................................... 1
.1.2
Data Scales
....................................... 1
1.2.1
Data vs Information
..................■ ■ ■ ■........ 2
;; 1.2.2
Data Types
................................... 3
л
1.3
Data Categories
..................................... 3
1.3.1
Standard Scales of Measurement
....................... 4
.·:; 1.3.2
Nominal Scale
................................. 4
Coding of Nominal Variables
......................... 5
Binary Variable
................................. 6
Coding of Binary Variables
.......................... 6
Symmetric vs Asymmetric Binary Variables
................. 7
Ternary Variables
............................... 8
1.3.3
Ordinal Scale
................................... 8
1.3.4
Allowed Operations
.............................. 9
1.3.5
Interval Scale
................................... 9
.
s Allowed Operations on Interval Data
..................... 10
Interval Data Transformations
........................ 10
1.3.6
Ratio Scale
................................... 10
ą
Operations on Ratio Data
........................... 11
Nonstandard Data
............................... 11
Numeric Data Discretisation
......................... 11
Entropy Based Discretisation
......................... 12
1.4
Databases and Data Warehouses
........................... 12
l.V.l Data Warehouses
................................. 12
1.5
Data Mining
...................................... 13
1.6
Supervised and Unsupervised Learning
........................ 13
1.6.1
Steps in Data Mining
.............................. 14
1.6.2 ,
Data Mining Approaches
. . ......................... 15
1.6.3
Data Mining Query Language (DMQL)
................... 16
ix
x
CONTENTS
1.7
Some Applications
.......
ι..
.. ;.-■*.
i.
.-.· ....*. ..*.:.;:.,.. ; ...
¡ч Г .
.. ;*■ 16
1.7.1
Banks
.......... .·...>............,.,..,...._____.. . . 16
1.7.2
Communications
..... ........ . . .... . . ,. . . ......... ...... .16
1.7.3
Government
............................ . . .
Г.,.
.. 17
1.7.4
Hospitals
.... ... ...
Λ
..*ľľ. . I ľ ! . . ľ . ľ ? /? i
. . . . . . 17
1.7.5
Insurance?
...... : . . . : ... .:;;.?. . -.. -. ··.
-v
.·.,-·:·-■;·: .-..; .;;:.?:;.
vl7
1.7.6
Sports
.... . . ... . .... . . .:. .:■.-.
r..
·;.,.,..:..-..;·. . /. . . .. ■..... 18
1.7.7
Miscellaneous
....... .......... ......... .,.,.,., ... .....,/.....„...
f-
18
1.7.8
Summary.
. . . . .*.,. . . .,. . ...
,;.
. .
.J(. i
.
V
. . 7
. .
/.
ľľľľľ
18
1.8
Exercises
........................... . . .
ľ
. .... .... 18
References
............. .!. .. . .
Г.
...ľ. , ľ .
.
r
...*■. 21
2.
DATA VISUALISATION TECHNIQUES
.......
s,
.....
r
... 23
•- 2.1
What is Data Visualisation?
. . . . . . . ...... . . .. . .
ľ
.Т.
.. ...... 23
;ί
2.1.1
Visualisation Catégories
. . . .* . ......... . . . . . ......... 24
2.1.2
Tables
........: ... .
:.
: . :...;.
/i--;
. .■■■. .
;ч
y.
sr:
: 24
5 2.1.3
Graphics
... . . ; . . .......
v.
. . , . .... .
r
.
;.
-.- . . .... 25
2.2
One Variable
Diagrams
......................·■■:-■:*.-■. . -. . -.· 25
ь
2.2.1
«Line Charts
.......................... - ■.
.-ЇУ .
. .
У: -
25
2.2.2
Bar Charts
................
. ľ;;v:.::ľ
•-.■-Г .
.
v
Г.
.^V·.
. ... 26
2.2.3
Histogram.
......
л
.
.
..-..........
;
. . . . . .-.
РАЧ
. . 27
Desirable Qualities of a Histogram
. : . .·... . . :■ . . -. . ... ...·. . 28
;
2.2.4
Pictogram
. . . .·■·.- . . . .· . .·.■ : - . · : ->: .
W-:.
.
УҐХ.
. . ľ
:.
*.л
,.· :
. ■.-. 29
2.2.5
Time Charts
. . .-. . .·<.-■.·,.·.-■.-.-,-. .-..-.. . . .( .[.
: .
7 . : . ?■, ,.■.
Y.
....,-29
2.2.6
Temporal Histograms
. . .·,·.... . ;
<vW F.^v :
.■ ?
л
^:;.,.
..
,
. . ...
ЗО
2.2.7
Spatial Histograms
................ . /■. ;
. : .-.-
....... 30
2.2.8
Pareto Diagrams
..........
v :
·■:■
J
!
;Г :Л
-V
У1.1^.
....... 31
2.2.9
Pie-Charts
■■ . ...
. Vf.
л
Г . јЧ
.;V.7
:
ľ
. :
:ч:
.
i-v
.^
........-33
2.2.10
Radar
Charts
...... . ..... ........
v
:} ^У
.
y
Şj ii
............. .. . ,34
2.2.11
Frequency Polygons and Frequency Curves
. . ..
v.
Ч
;:-
;-. . ..*. . . . 35
2.2.12
Stem-and-Leaf Plots
............
-:?-~.
. .. ...
V .;.
.Г. ·.
. . 35
1 · 2.2.13
Overlay Charts :
. .<.- : ·■: ·-. ■■.;_·.-
.--.■■r.-,.^;·..-.
. .-.:. .
v.
. . ...: .■. . .
..:36
- 2.3
Multi-
variable Diagrams ¡.
:■ . .-:.,..
.. i.i
.,;..... . .-. . . . .4 . .
.;
. .... 37
2.3.1
Scatterplot,,
, . .,. ... . . . .
,. :Г
v^v^S .·
. . ;
л
. .
v
.
v
....... 37
2.3:2
Bubble Chart
....................
.-.:: ;
:
ζ
. . ·.
ý.- J. .
. 38
1 2.3.3
Contour Plots
.............
:y:. V. : } -:
í
·
■■ ■ . . -. ;-. -■- . ....... 38
2.4
Hierarchical Charts
..................
; .^L .
: . .... . . . . .... 39
2.4.1
Polar Trees
............
!ľ:ľ .
;:/v .^
:
V v
:
:. V
.:;....... 39
2.4.2
Cause-and-Effect Diagrams
. . .
.:;.:.
ν
;t:. v.;.
. ...... :-....... 39
2.4:3
Q-Q Plots
...............
<-г-.:>~::::~. :
■ . . .
ч
·, · · ·.· · · ■ ■ · ·
40
2.4.4
Chernoff Plots
................: .
:.
. -. . ; : . ..._.· -: /. ..... 42
2.4.5
Box and Whisker Plots
.................. .
V .
..... .■ . 42
2.4.6
Stem Plots
...........
.■ г.- .
... .. . .:.. . . ... . . . . ; 42
2.4.7
Miscellaneous Plots and Charts
..... · . .
ν
.... .· . .....: .... 43
2.4.8
Visualisation in Data Mining·
. . . . .
.r.
: . . ;. . . . .·.......... 44
2.5
Software for Data Visualisation
..-.. .--.
ν
. ·. : . .-...........:.... 44
2.6
Exercises
........................................ 44
References
..................................... 46
CONTENTS xi
3.
PROBABILITY AND STATISTICS
49
3.1
Introduction
. .
.T.*
. .................................. 49
3.2
Probability
.: !
ľ , ľ. .:
................................ 51
3.2.1
Different Ways to
Express
Probability
.................... 51
3.2.2
A Notation for Probability
.......................... 53
3.2.3
,.;MethooVof
Counting
......................
¿
....... 54
^[
Independence of Events
............................ 54
3.2.4
Rules of Probability
.............................. 54
;
£
Probability Model
...:. .......................... 56
Entropy* vs Probability
............................. 56
3.3
Venn Diagrams
................■..................... 57
3.3.1
De Morgan s Laws
............................... 57
3.4
Bayes
Theorem
........
о
. -............................. 58
3.4.1
Bayes
Theorem for Conditional Probability
................. 59
,
t,
- ■■·
Odds-Likelihood Ratio Form of
Bayes
Theorem
............... 60
■> !.. .
Product Rule for Conditional Probability
.................. 60
^.4.2,
і
Bayes
Classification Rule
........................... 60
Rule of Expected Utility
. . . .
:.
.....
-. . .
Ґ.
..... ....... 61
3.5;
Mathematical Expectation
..................■............. 61
3.6
Statistics:
.....................■■ . . .................... 62
3.6.1
Population vs Sample
.....;....................... 62
,, 3.6.2--
¿Parameter vs Statistic
.......-...................... 63
3.7
i Measures of Location
.................................. 63
3.7.1
Mean, Median and Mode
........................... 63
Weighted Mean
................................. 65
Advantages of Mean
.............................. 65
3.7.2
Median
...................................... 66
Advantages of Median
............................. 67
3.7.3
Mode
. ..................................... 67
;
■ ·
Advantages of Mode
.............................. 67
3.7.4
Geometric Mean
................................ 68
3.7.5 ■
Harmonic Mean
.-............................... 69
3.8
Measures of Dispersion
................................. 69
3.8.1 ·
Range·..-.
■.··.·................................... 69
3.8.2
Inter-Quartile Range
...............-............... 70
■ -. 3.8.3
Mean Absolute Deviation
........................... 70
• 3.8.4
Variance.
.;,.-................................... 70
3.9
Outliers in Data
........................
r
............ 71
■ 3.9.1
Spatial vs Temporal Outliers
......................... 71
·_ 3.9.2
Graphical Detection of Outliers .
....................... 72
3.10
Data Transformations
. . . . .
.Г:.
■. ........................ 72
3.10.1
Change of Origin
................................ 73
3.10.2
Change of Scale.
................................ 73
3.10.3
Change of Origin and Scale
.......................... 73
3.10.4
Min-max
Transformation
........................... 74
3.10.5
Standard Normalisation
.......... :................. 75
3.10.6
Nonlinear Transformations
.......................... 75
xii CONTENTS
* ; 3.11 Regression Basics.................. . >] ] . .....
V
.......... 75
3.11.1 Scatterplots and Regression.................·.-.: . . : ... . . . 76
Advantages of Scatter Plots
.......................... 76
3.11.2
Simple Linear Regression
.... .... . ..::<. ; .. ;-._... .
f.V.
. . -78
3.11.3
Ordinary Least Squares (OLS)
., . .... ..:... ....;.;.. .?.{*.. . . 78
3.11.4
Weighted
Least;Squares
(WLS)
.·...,·. . . . .:......
.γ
Y.
. ?.
... 83
3.11.5
Correlation Coefficient
.·.·. . ..-. .... . ... . ... .. .... . ... .. .·. 84
3.11.6
From Scatterplot to Correlation
. ...... . . .-.. . . ... .. . . . .;.?. ... 84
Interpretation of Correlation Coefficient
. .
л
. . . . . .*. ......... 84
3.11.7·
Multivariate Data
.............;;. ... .............. 85
3.12
Multiple Linear Regression (MLR)
......................:... 85
3.13
Monte Carlo Methods
. ... . . . . . .......;..::. ...;. .:... .?.;.. . . 86
Components of Monte Carlo Simulation
........;.;. . ...%. . . . ; 87
3.14
Contingency Tables
v
: . ?
::
.■. .;...·..;.:.:.;.:.:. . . ·■:;; . . . . .-.-, : . . 87
v
3.15
Exercises
■■ . -
:::
■ . : .
Γ.Γ.* .
. . ...
Y.-
. . :.;;; :
Y:
.;. .:. .
Γ
....... 88
References.
.....
.-„.ΎνΥ.
....
Y.
.7. . .,. .
Y.
. ......... 91
4.
DATAWAREHOUSING AND OLAP Y;
j í
îv
íľ^a
93
4.1
The Datawarehouse
.................-.·.....;;..... .;.-:;.
.г.^ 93
4.1.1
Goals of Data Warehousing
...................
r.·.:···. .·.:..·
-Γ·
95
4.1.2
Advantages of Data Warehousing
.....·.;..-.. ..,·_..;... .
ι.χ.,τ·
· · 96
4.1.3
Datawarehouses vs Databases
........-.··
■■í·.·
·:■:.·;:·■·
ľ·
-ć-r-C-
· · 98
4.1.4
Operational Data Stores
(ODS)
......... ._■-. ..,.;..;./.-...* .;.
.-,.;Y98
4.1.5
Metadata Catalogs
..........
.-.y.-.:.-....—.
... . .;. ·:> . · 99
4.1.6
The Datawarehousing Team
...........-. : .............. 99
4.1.7
Datawarehouse Architecture
..........
.y;
..,..-...-..........100
4.1.8
Building a Datawarehouse
................
..t.,.,.
. .
.j.
. . 102
4.2
Data Marts
ł
....................;.;.>;.:.,,..;.,.-..-,.......104
Advantages of Datamarts
..................■:·:·
-с-л-
: · . · 105
4.3
ETL
. . . .·. . ..·:.; ; .<. . . ■ . . . ·. . ..;.,. ;.:.·. .;.;.:.].. ...... 106
4.3.1
ETL Tools
. *....................-.:... .-..;. .;.-·.;;. . . 106
.. ■. 4.4
Data Staging
. . .
V
..................
.:.
: ..;.;... ;-.
-C- -ľ-
· ·
Ю6
4.4.1
Data Extraction
................... . .
r. .
..;..:·.
.. :106
4.4.2
Data Cleansing
.......................;·■·;· ·;·;· · ■ ·
Ю7
4.4.3
Replacing Missing Values
...........-.-:. ...;:;...;. .;.;:. . . 108
4.4.4
Data Transformation
........... ... ;... ..-. .... .... . . 108
4.5
Spatial Datawarehouses (SDW)
.................... . . . .;. . . . 110
4.6
Distributed Datawarehouses
.................... *...-. . .
.
. . 110
Advantages of DDW;.
;.·■.....,..
г. .Л
■·::■;■ ··:·-·:·;·?· · ■ · · · · 112
4.6.1
Virtual Data Warehouses (VDW)
.. ...,..;.;.../.
;.
;.,.-.
Г.
.... . . 113
4.6.2
Web-based Data Warehouses (WDW)
.............. . .... .;. 113
4.7
DW Indexing Y .
.;■.;■.·. .;
γ
.r
..............
;. ..f.:.
..... :/ . ·. . . 114
4.8
Security inDatawarehousing
............... . ... . . ..... ... 114
- 4.9
What is
OLAP?
u
.
.Υ. γ
.-/.
ľ
;-.,-:·,. .
.γ
. :
Y.
. . : ..... . . .... ... 115
-
4.10,OLAPysOLTP;. v
.·:...;.... ....... .....: ....... ....:... 116
4.10.1
Advantages of
OLAP:,
...........,....:. ..... .... . .
Y.
. . 118
CONTENTS, xiii
4.11; Data
Cubes and Cuboids
........................:....... 119
;
,
4.11.1
Dimensional Modeling
................;.·.--. ., . . .*. ...... 120
;. 4.11.2
Concept Hierarchy.
.,.._...............,.,. . ... ........... . 120
Fact Table.
.............................·.···....... 120
Additive Facts,.
............................. .... 121
, -
Dimension Table
................................. 121
• 4:12 OLAP Schemas
χ....
............................... ... 121
■ - 4.12.1
Star Schema,
............................. ./. . ..... 122
4.12.2
Snowflake Schema
............................... 123
4.12.3
Fact Constellation Schema
..............,.:./.:.;.... .... 124
4.13 OLAP
Operations
.......... ....................;. . .
.;
...... 125
4Л3.1
Roll-Up r.
.......... .,. . ...;,.,.... ... .;.;,;.,. .·,.,....... 125
:
4Л3.2
Drill-Down
................... . . -.>■ . . ... ......: 125
.: 4.13.3
Slicing.
·.-.................■,.-,.:. . . . ...... ........ 126
- 413.4
Dicing 1?·
.................. : :.:■. ;;...;:.:...... 127
-:
4.13.5
Pivoting
.·. ... ;.............
-v-. .- y·.
.-..:■
:r:
....... 127
^4.14 OLAP
Security
....................! ? . . .·. : . . . . . . .... 128
,;4.15
OLAP
Software
. . . . .................
v.
. ?. . .
í
. .
Г.
. . ... 128
Λ ,
4.16
Exercises
V , ľ
...... .................. .....;..
;
..... 128
References
......... . . ......................... 130
5.
DECISION
TREES
133
,
. ,5.1
Graph Theory .
..................................... 133
5.1.1,
Drawing Graphs
................................ 135
~.
5.1.2
Bipartite Graphs
.............................. .... 137
- ·.
Constructing Bipartite Graphs
......·.....,.............. 139
,
í5.2
Trees
. ....... ......................................... 139
: : ■
κ, ι
DrawingTrees
................................. 140
r.;5.3 Decision Trees
..............................
;
....... 140
.Iі. Chance and Terminal Nodes
.............>......;.. ... . . 141
- . /. 5.3.1
Advantages of Decision Trees
!................. ....... 141
:
■-■ * 5.3.2
Disadvantages of Decision Trees
........·................ 144
:e
5.3.3
Classification
. .
ľ-V^-V. ·1?:1.
......... . .............. 144
::;ί 5.3Λ
Production Rules
■-■. . :: .
ľ
: /........ :........ .... . . 146
; 5.4
Induction Algorithms
.................... . . . . . . . ... . . . . 149
.-.;;.
5Λ.1
ID3 Algorithm
..... . ....................: ...... 149
.;; 5.4.2
Building a DT
......................
ľ
/. . . . . .... 150
.
ľ:
5.4^3
C4.5 Algorithm
........................... ! . ....... 150
5.5;
Measures for Node Splitting
........................ ......... 150
- 5.5:1
Gini s Index Measure
............ ..,................. 151
■■--- 5.5.2
Shannon s Entropy Measure
............................ 151
■ 5.5.3
Minimum Classification Error Measure
...................... 151
Gain and Impurity w.
.
r.
.
. ........................ 152
5.5.4
CHi-squared Automatic Interaction Detector (CHAID)
........... 153
515.5
Classification arid Regression Tree (CART)
................. 154
xiv CONTENTS
5.6
Pruning Decision Trees
................: .
.. ...ν. .
. ... . . . . 155
5.7 Fiizzy
Decision Trees
....................,. . . ......... . . . 156
■ ■■
Decision Tables V.
. . . .-. . ........ . . . . ..· -. ...... . . · · ·. ■ 157
■ ■ 5.8
Applications.
.-._... . .........·......................... .157
Fraud Detection,
■.,.·.·.................. . ■/. - ■ ·. . ... ...... 157
5.9
Software for Decision .Trees
.·. . . . :■.·.......... · · · · · ·.......... 159
^ 5.10
Exercises,
......<.....;... ................ .. . ......
V:;..·
. · ■
159
References.
.,.. ...... ... .......... ...... . . .
: .
. . . . 161
6.
ASSOCIATION RULES
-■ 165
^
6.1
Association Rules
. ...-..-.-.·..................
Y
. . .... . ... . . 165
6.1.1;
Antecedent and Consequent
..............,.„. : ... . . . .·. . . . 167
6.2
Association Rule Measures
......- ·............:;... . . . . ?? . . . .»168
6.2.1
Confidence and Support
__.......,..........»· · · · ■ ; ..·. . · .168
6.2.2
Cross-purchase Analysis
.. . . . .,. . . . ............ : . . ..· ·· · · 170
6.2.3
Categorical Variables
... . ..........,._. . ... .-. . . . . .; . · . · . 171
,,. 6.2.4
Sequence-purchase Analysis
.................... . .--..-:·. . . 171
-6.3
Association Rule Mining
z . . .
. . . . .............
r.
. ... .... . . 172
6.3.1
Activity Indicators
........................ .
У.
. . .
ľ
. 173
6.3.2
Computational Complexity of ARM
.......... . . . .. . ... . . 174
6.3.3
Sparse Association Rules
..;.■..·........... . . .
V
. .......175
(,
6.3.4
Rare Associations
................................ .... . . .177
6.4
Temporal Association Rules
...
.Л:.
............ ··.._· . . . · ·,-· · -177
6.4.1
Pareto Analysis
.,...................... ...
. v. ľ ..*.
. . 178
6.4.2
Paired Comparisons Analysis
.......... .
.
.< . ; . . . . .
. . 178
6.4.3
Negative Associations.^
. .·. . . . . . ... . .. . . . . . . . . . . . . . . . . 179
6.4.4,
Fuzzy Association Rules
:■.■.■. . . . .-... ;.. .--.·
■. ■ ■У .
:- .
·■*.
v
. .......179
6.4.5
Plan Mining.
..............................
.-ГУ:
.
v
179
6.5
Generalisations of Association Rules
. . ........ .- . ■
.-.ГГ У.-
.-.......180
6.6
Extended Association Rules
.................... . .
I.e.
.- . . . . 180
6.6.1
Multi-Level Association Rules (MLAR)
.:. . ... ..
r . r .ľ. .
......181
і.
. 6.6.2
Multi-Dimensional Association Rules
(MDAR). :..;...;.. . . .. . . . 181
(ч·
6.6.3
t
Constrained Association Rules
..... .........;:. . . . ; ; :. . . . -182
f:
6.6.4-
Rule Constraints in Association Rule Mining
. .
.-.-..j
.. . . ..... . ·. 182
r,
. 6.6.5,
Weighted Association Rule Mining (WARM)
.·.-.. .·■......... . . . . 182
6.7
Algorithms for Association Rules
.................... . . .-. . . . 183
6.8
Applications
...,..-...:................,.-. .............184
6.8.1-
Purchase Domain Application
...........—„·.. ·.· ■......· · · 184
6.8.2
Diagnosis
..,.-;;.;. ...............· · · · ...... · · · · · · · 184
6.8.3
Inventory Arrangement
. .{. ............ . ...,. .. . . . . . . ■ ■ 185
6.8.4
j
Fraud Detection
..
...;. ..■. ._.]. . ■.
...і
.
/
.f-.
........ 185
6.9
Software for Association Rules,
............: . .-. . ... . . .·. .■. . . 186
6.10
Exercises
,.. .-. . ..;.-.. .............-. ....- ■ . . . . . . . . . . . .... 186
- ■
t
References
.......-. ............................ 188
. . ■
Î
CONTENTS xv
7.
CLUSTER
ANALYSIS ;
г.,,
,.,.„ - :: 191
7.1
Meaning of Clustering-
..,.<.>. . . . ..;:.■..■....;.■
:^. r.
............ 191
7.1.1
Geometric Interpretation
......... :■ . ;.■;::. .... . . ..... . . 192
. ;:<>
¿ Cluster Display
..,./.,................. . ..... . .:.. 192
0
¿
С·
Cluster Formation
......................: : . . . . .:. . .■ . . . 193
7.1.2
Cluster Analysis Step-by-Step
.........-■.;: ... ..... . .... . . 194
7.2
Similarity Metrics;
-.................
..г....
: .·..-. .... ... . . 194
. 7.2.1
Euclidean Distance Metric (I<2 Metric)
......·..... .... . . . .:. 195
7.2.2 :
с
Manhattan Metric (Li Metric)
............·.: . . . ...... . ./ 195
. 7.2.3
Minkowski Metric
,. ......................... . . . .!.. . . . . 196
7.2.4
Mahalanobis Distance Metric
.......................... 196
7.2.5
Chebychev Metric (Loo Metric))
........
r.
. .;... . . ...■..: . . . 196
• 7.2.6
Other Metrics
■.-.■■.................... . . ;. . . . / ... . · .· 196
7.3
Clustering Algorithms.
...■.._................. . . .:.:.. ... ...... 197
7.3.1
Hierarchical Clustering Algorithms (HC A):.1:
.··.; . . . . . ■. ... . . . 197
Agglomerative Algorithm
............. . .... . . . . ; .1 . .198
Divisive Algorithm, j.
.;.................... ..... . .
199
7.3.2-
Partitioning Algorithms
.....................· ....... 200
K-means Clustering Algorithm
........: : .... .......... 201
7.3.3
Density-based Methods
......; ·. ·. ■:■ .- .■:/.. :.
Л
. :........ 202
7.4
Cluster Validation Techniques (CVT)
............. . -. .... ... . ■. 203
7.5
Applications-.
............................... . .. . . . . 203
1
^.P-Marketing
........................:.· .......... 203
7.5.2
Insurance
.................................... 204
7.5.3
Medical Sciences
................ .■.■.. ..... ....
V
. . 205
7.5.4
WebMining
....................
V.::
.;;■..■
ľ ..;ľl .
■ . 205
7.5.5
Aviation
v/.
............:...... .;: :: . . : . .,. ...... 206
7.5.6
Miscellaneous Applications
..; ..........
ľ.
. . . . ■. .. .:. .206
7.6
Software for Clustering
............. . . . . . ; .* .;. . . . . . . ■
.:
. . /. 207
7.7
Exercises
-: . -. . . . . ................. . . ■ƒ· ··: ■■ ■ ■ ■ ■ ■ ■ ■ ■ 207
References.-
.....> . .
: ; 7ι:::
. . . . . .
. і
.
.:;.
. . .......... 209
8.
GENETIC ALGORITHMS
- 213
8.1
Introduction:-.
...-.:.-:.■. ............... . . :
Λ .1 : ν.
: . . .
Λ
. . 213
■ 8.1:1 ·
Searching for
Optimálny
............. .: .■.■:.
v
;....... 214
8.2
Genetic Learning Model
..................: . ■.;.......... 215
8.2.1
Advantages of Genetic Algorithms
........*. . . ..-.
ľ
. ...... 220
8.2.2
Disadvantages.
д.:
...................
í/, v
. : .;. ; .
ľ
. . .222
«8.2.3
Steps in
GA
.....................
.V
:
,v
......... 223
8.2.4
A Notation for
GA
........,... . ...
Л . ;
} ... : . .
I V.
. . 224
8.3
Genetic Operators
. .:.:. .::..... .
f
......
.Vi v;
.
V
:....... 224
8.3.1
Selection
. ....-:-.......
. ...,.. .-. . ..-. ;; ■■;■ :....... 225
Roulette Wheel Selection
..... . . . . . . . . . . ■. . .......... 225
. - .:
Гл<;
·
і
Advantages of Roulette Wheel Selection
. . .*... . ... . .._ ....... 226
->
^Disadvantages of Roulette Wheel, Selection
. .
V. V.
.. . ........ 227
I
·
Tournament Selection
■„■ ...... .. . . . .. . . . . ../. ..... .>. . 227
5 8.3.2
Simple Crossover
(SX)
......
,;rľ?: f .;. V .
. : ... . ........ 227
xvi CONTENTS
s:.
8.3.3 Uniform
Crossover (UX)
............................ 228
·>
Advantages of
Uniform
Crossover
........................... 229
■ι
■ 8.3.4
Multi-Crossover (MX)
.....,....... . . . . ... /......... . . . . 229
8.3.5-
Mutation
.................................. . . ............. 229
■ .-; · 8.3.6
Inversion
... .....................,........ . . . . ... ....... 230
;
ι
8:3.7 ,
Advanced Operators
.................. . . . . . . . . : . . . . 231
r:·.
8.3.8
.Arithmetic Crossover (AX)
...... ............... . ;. . . . . . ...·■· .../232
■: ¡8.4
General· Alphabet Set
.......·. .............. .... . . . .
V.
. . 232
i.
-8.5
Schema Theorem
. ... ............. ...... . . . .
ľ
. ...... .. .* ... 238
îi
-8.5.1
-¿Elitism
: . .
ľ
. . . . .......
.
. ____.... . . . . . . . ... . .
У.
. . . 240
.M
8.5.2
Epistasis.
................; . ....... . .... . ; : . . . : . .;.. 240
¡8.6
Implementation of GA;
... ;..... . . . . . . . : . . . . :. . . . . . . . . . . . 240
.::: 8.7
Parallel GA (PGA).
..;.. ...... ....... ... ... . .... . .·;./. . . . . .
y
:. .... 241
8.7.1
Multi-Stage GA
...................... .,·. ....... . . ... . .242
8.7.2
Neuro-Genetic Models (NGM)
. . ...... . . . . .·. . . . . .. . . : : . . 242
■ <·.: 8.8
Genetic Programming
.·..;................. .................. 243
■> 8.9
Applications
............ :-. . . ..... . .......: . . : . . . . . ....... 243
Insurance
. .,·. .·... . ....... .... . . .
. ......... . .
і
:/:.... 243
Fraud Detection
-............ . . . . . .
.Γ.
..... ...... 244
Miscellaneous Applications
... ■.. . . .. . ... .-...... . . ..·■ · · 246
,8.10
Software for GA
„.,.,...,........; ..
V.
. . . .·. .
.v.1
.;:>..:.;; ..;
.;. 247
■8.11
Exercises,:.
.,.,.......· ...-,.......................-.-.■.-·.--.·;.;.;. .
. 248
,i ^References
.,...;.....,...................-...;.;. . ....;. . . . 249
9.
NEURAL NETWORKS ,jV
/í
253
((
9.1
Introduction to Neural Networks
................... .,. . . .·,.;■ · ■ 253
,..,.
Neural Network Inspiration
............. . .,...■_____ . .-.-.· · ■ 255
,.., 9.1.1
Advantages of Neural Networks
. . ... ....-.,. ...____. ... . . ·
r·
· .· · · 256
M
9.2
Components of Neural Networks
.............. ........ . . ... .-. 258
9.2.1
Layering Concept,.
.................. ............. 258
,...,
Data Transformation and Communication
. . ................. 259
Training Phase
... . . . . ..... .... . . . . . . . . . ......... 260
- .-;·_
Training Algorithms
. . ... . ... . . . . .... ...
г
. . ..: . .... . 260
L
9.2.2
Actuation Functions-.
. .......... .......... ..-.....-. . . 261
f Sigmoid Function
.. . . . ... . ..... .... . . .
~.
... ...... . . . . 262
.
ч
Running Phase
..... .... . . .......... .·.............. 262
,,ι^
Pruning Phase
. ..... . . . .-. ......... . . . . . . -. . . . . . . . 263
Г
9.3
Network
Topologies
. ..... ................ . . . . . . : . . . . . . 263
,,/
FFN vs FBN
. : ................. . ... ..- . .■.... . ; . . 264
E/r
9.3.1
Special Types of ANNs
. . ............. ... ... . . . . . . . 265
Single Layer Perceptron (SLP)
. . ..... . . . ..... . . . . /. . . . 265
/
Multi-Layer Perceptron
(MLP) . . . ............ .-. . . .■. -. . . 266
(-
;·■;
Knowledge-based Networks
.............................. 266
Kohonen Networks
..... ............ ...... -.· ....... 266
с-
Self Organising Map
(SOM)
. . ... . . . . . . . . . . . . . .
j
...... 267
ρ,/
Fuzzy-Neural Networks (FNN)
..............· ■ ■ -,......
269
-;;
Stochastic Neural Networks
...... .-. . . . . . . . ..... . . .... 269
Radial Basis Function (RBF) Networks
................... 269
CONTENTS xvii
Ϋ
^
г
w
Probabilistic
Neural
Networks (PNN)............. ·. . . .·■..; .... ; 270
·
í
Vi Hopfield Networks
(ΗΝ)
............:.:;.
/ν;
:.;■..: .:. ....... 271
Miscellaneous Types
. . .............:.·. .;. . ... .... .
ι.
... 272
9.3.2 :
Neural Networks vs MLR
................... ........... 273
:!
У
9.3.3 ;
í
Back-propagation Learning
......,.:. ... ..:*.:.....: . .·.·.;. . . - 273
Ì
■
i C c
- T Backpropagation
Algorithm
(ВРА)
.■ .■ . .:.-...; .- .,: . ... .. . . . ..;. . . 274
Ill-Conditioning
....... . . .
г.:: .;
. ..;:;;.;■; . . ; :■..·. . ..: ..... . . 276
Implementation Issues
..........,.■>> . .-.·: . . . .... . . ·. . . . 276
9.4
Applications.
.
.Ч-..
. :■ :
. ľ
.-: . ......................
.ι
. ..,276
.-·:
Advertising and Media Planning
. . . .-....;: . . . . .-. . . . ... : . . . 277
<·
Pattern Recognition
.............■·■;·.· .· ....... ... ...·. . . 278
í
!
<
Classification
............, ,................ . . .■;.-...... 279
£
·»
Data Compression
Z .
........ .
.„Γ.
.>.... ...... .·,.·;.·;. . . 280
:
--- -Speaker Identification
............................. . > 280
■
Web Minings
.................,·.;.; .-.■..■.;: .;.;. ... ........ 280
- - -
BiometricsV-.
:
.;.·
.* /......................:...... 281
■ ·■
Miscellaneous Applications
................. ... ...... 282
9.5
Software for Neural Networks
..........;... · . . . . .. ......... 282
9.6
Exercises
Ч
..■/··:
r: «;1.-;
......, ...,;.;.;.:. /... . . . : . . .:...... 283
References
.
.ľ
. . . .................-......... ....
.ι
. 285
10.
WEB MINING
> 295
10.1
Web Sites
-r-.
■/. ..............·-;··;: .- : . .
r
. . . ; . ..;:.. . . 295
10.1.1
Web Pages-
; . . . ;,. . . : .................,...;....... ... 295
s.;
f
10.1.2
Search Engines
..... .·..;. . ..... . . .·,.. ..-. ■..·.. ...-.;....... 297
-: 10.1.3 Indexers........... . . ...........·..;....-............. 298
10.1.4
Information Extraction
.............,.,............ . . . 298
10.1.5
Linguistic Search Engines
........... .. . .* .■■ .
¡.
. .._____ . ...... 298
10.2
Web
Mining ·:
!r? r:rť ť*:
/ :
;:!
.;■.■. . ........ .;....·.·..·....... 299
10.2.1
Advantages of Web Mining
................ . ..:·....:........ 299
L
10.2.2
implementing Web Mining
.........../;./.. .;. .....;. . . . . . . 300
10.3
Web Content Mining (WCM)
...... . . . .,..,. . ..,;....,.. ....·...... 301
10.3.1
Web Usage Mining (WUM)
.... . . ,,...,.,
.;
.·.;.
.:
. . .,: ....... . . 301
10.3.2
Web User Quality Mining
.... . . . ..-./...,.;.,... .......... 302
10.4
Web Structure Mining (WSM)
............;.- .·■. ... ..,..;... . . . . 303
10.4.1
Link Mining
................. .,:./. . ..· -. . . . . ... . . . . .. 303
10.4.2
Measures for Web Structure Mining
,.,. ...... .:. .... . . . . ... . . . 304
10.4.3
Link Categorisation
........-.-■.,. . . .- . . ... . . . . .;. ... . . . 305
10.4.4
Link Stepping,
...............
¡.
. . ·.-. .,. . . . . .... . . .; 306
10.4.5
Links Analysis
. . . : .·.·;.,..;. ..·.;. ............... ...... 307
10.4.6
Web Query Mining (WQM)
................
.:
.·........... 307
10.4.7
Query Performance
;
Measures
......................... 307
F-score
....................................;.._.; .
.ι
308
10.5
Semantic Web Mining
.................
.:
. ..... . . ... .:.-·.,. . . 309
10.5.1
Metadata Mining
.................... : : . . ... . .-. . . . 309
10.5.2
Multilingual Web Mining
....... . . . ../..-!. ........ . . .,. 310
10.5.3
Web Personalisers
................... . . ...............·.;.- . . 310
xviii CONTENTS
- 10.6
Texť Minirig
Y.
:
v
.. .; ........ .
Y
. . . . .
Y.
. . .
і
. . . .■: : .· .■ . . 311
10.6.1
Text Mining
Workflow......·. . . . . . . . . . . . . . . . ..... ... 311
* r- 10.6.2
Pre-processing
Text.............·.....·..............313
10.6.3 Text
Categorisation
. .............. ....
Y.
.......... 313
10.6.4
Mining
Texţified
Documents .
. . :................
.-Λ.
. . 314
- > - 10.6.5 Temporal Text Mining
(ТТМ)
. . . .
Y
. . . ....... ....... . 314
10.6.6
Distributed
Text Mining (DTM)....................... 315
v 10,6.7
Metrics for
Text Mining ...·. . . ........ 1 ...
Y
......... 316
10.7 Image Mining.........·........ ....■..... .... . . . . . . . . 319
*v- 10.7
Л
Issues
in Image Mining............................. 319
10.7.2 Multimedia Mining ...... . . . . . .- ................... 319
<■■ ■ 10.7.3
Table
Mining .::...;,....... ; .,-................ 320
· 10.7.4 Data
Stream
Mining
(DSM)
: . . .... . . . . .....YY . . ...... 320
10.8
Applications /
. .Λ
... .....:....... . . :
Y.
. . . . ... ....... 321
! - Spam-Mail
Classification.
......:....:............... 321
• Web-pageClustering .........:..::......... ....... 322
Web Marketing ....:.:.... ... ................... 323
Miscellaneous
Applications......... . -. . . . . . ....... . .■-. . 323
ř
10.9 Software:for Web and Text Mining . ·. . . . . . ■: . ; : : : . . -. -. -. . . . . . . . . 323
^ lO.lOExercises/ : . . .
V
. ... ... ........ : .....::... . .......; 324
References
.................................... 325
C- -h, ·-■■ ■-■ ._ . _j ..
1Γ.1
SUPPORT
VECTOR
MACHINES :r: 331
v ll.l
Introduction.
.... . ·...-. ...................
. .ľ.Tť.V
. -.-. ■ ■ . . 331
- 11.1.1
Structural Risk Minimisation Principle
. .... . ■ . ... .
:.
. . ..·. . . . 332
- - 11.1.2
Linear Separability r.
. . . . . ............ ... . .
ľ
. .-. . . : 333
1 ■ 11.1.3
Solution Techniques
..
.V.
. .... . . ■ :■
:~:~- .~- S.
.^ ,
. . .
ľ
.
.-л;
. . 333
11.1.4 Hyperplane
Classifiers
. . ;
V
. ... :
. .. . - j .V
. . . . . . :
ľ .¿. -P .
. . 333
■■^
11.1.5
svm
Classifier
. :
.:. :. .
......-. -......·. . ., -.:. . . . ; : . . . 334
11.1.6
Overlapping Classes .
........:
ľ-.
. .-.
.-ľ
: . :
ľ
: . . . . : . .335
:)
11.1.7
Simple
SVM (SSVM):
-.4
-.vr^ľv ľ VT
.
. . . . . . .
ľ
.
ľ
/ΥΥΪ-
. . 335
■ * 11.1.8
Lagrangiân Formulation
. .... . . . . . . ■ . .
í
... . . .·. . ■ . ... . . 338
;ι
11.1.9
Dual SVM Formulation
......
!:.Г.
■ .
Γ
. .·.. .
ľ
. . .
. .Ύ-Γ
. . 338
::
Properties of Dual SVM .
......../.-.... . ..... .
.ΎΥ .
. . 339
ίι;11.2
WeightedSVM (W-SVM)
-. ........... .[. ; .
Y.
. .
Y;
. . . .
ľ-
.Y
. . . 340
;
^11.3
Multi-class
SVM (MC-SVM)
.-.,...-.■......,....:.. . . :
Γ.
.
V
340
:
■ 11.3.1,
Pair-wise
SSVM (One-versus-One
[OVO])
Y. Y.
.
Y.
.....
Y Y.
. . . 340
;i?
11.3.2
One-versus-All
(OVA)
SVM
. . ........... ... . ■ . . . .
Y. Y.
. . 341
11.4
Soft-Margin
SVM (SM-SVM)
.,-....,,......... . . . .
.Y
. . . . . . . 342
• 11.4.1
Weighted Soft Margin
SVM (WSM-SVM)
. . .
Y.
.
Y
. . ......... 344
■ - 11.4.2
I/-ŞVM·
.
Y, . -.
. . ... -/ -. ....... . . ■ . . . . . . .
Y.
ľ
. . .
Y Y
. . 344
:
11.4.3
Pruning
YvY.y Y.
. ·:■-. .... . . . . .
V.
. . . .
.Y:,.
........ 345
:
11.5
Kernels Y.
.
Y.
■ _. _-._-.. . ..:.■..:.....: . -. :
:
—Y.
;. ........... 345
11.5.1
^Properties of
Kernels
. . ..-.*.. . ·. . . . =. . . . .............. 346
:::
11.5.2
Mercer s Theorem
.
Y
....:. :
;
.
¡.
·. · ·. . . . . . ......... . . 346
— 11.6
Nonlinear
SVM
(ГЉ
-SVM)
-.
;.
. . ·.
Y
. ■. ■. .
Y
.....:......
Y.
.
Y
... 347
c;i
11.6.1
iOther Kernel
Algorithms
. ■. . -. ■..·.-,.
. .
.
Y
....
Y Y.
......
Y.
349
CONTENTS xix
11.7 Support
Vector
Regression (SVR)...........................349
11.8 Applications
of
SVM..................................351
11.8.1
Medical
Application.............................. 351
11.8.2 Text
Categorisation
.............................. 352
11.9 SVM Software...................................... 355
11. lOExercises........................................ 355
References
.:.·.·................................357
12. LATENT
SEMANTIC INDEXING
361
12.1
Vector
Space Models.................................. 361
12.1.1 Term-by-Document Matrix.......................... 362
12.1.2
Textual
IR
-....- ..:. :■,-.:.
,-.--.-.-;.--.·
......................... 362
12.1.3 Geometrie Interpretation -.
vr
. . ...................... 363
12.2 Latent
Semantic Analysis...............................
365
12.2.1..Steps in LSA................................... 365
12.2.2
Characteristics of LSA
............................. 366
12.2.3
-Advantages of
LSA -;: . . . . . . . ..................... 366
. ■ 12.2.4:
Disadvantages of
LSA: ..- . . -......................... 367
12.3 Singular
Value Decomposition
. .■:■■.....··..................... 369
ľ-. The
SVD
Algorithm
7. .: ............................. 370
12.4
LSIQuery^:-;;.
-^.
<·--.-.:.■;. . : :........................... 370
:, 12.4.1
Query
Processing
................................ 370
12.5: Applications of LSI
................................... 373
, ; 12.5.1
.LSI in Information Retrieval
......................... 373
12.6
Software for LSI
·. .,: .:.,.:■.-............................. 375
12.7
Exercises.,
. .,. .-....■.................................... 376
References..
................................... 378
Appendix-A: The Backpropagation Algorithm
381
Solution to Selected Exercises
383
Indexé
гл
-
r ^ 399
|
any_adam_object | 1 |
author | Chattamvelli, Rajan |
author_facet | Chattamvelli, Rajan |
author_role | aut |
author_sort | Chattamvelli, Rajan |
author_variant | r c rc |
building | Verbundindex |
bvnumber | BV025552289 |
classification_rvk | ST 530 |
ctrlnum | (OCoLC)796181712 (DE-599)BVBBV025552289 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01289nam a2200337 c 4500</leader><controlfield tag="001">BV025552289</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120726 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2009 ad|| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781842655238</subfield><subfield code="9">978-1-84265-523-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)796181712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025552289</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chattamvelli, Rajan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining methods</subfield><subfield code="c">Rajan Chattamvelli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Alpha Science</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 411 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenerhebung</subfield><subfield code="0">(DE-588)4155272-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Information Retrieval</subfield><subfield code="0">(DE-588)4072803-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenerhebung</subfield><subfield code="0">(DE-588)4155272-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Information Retrieval</subfield><subfield code="0">(DE-588)4072803-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020152547&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020152547</subfield></datafield></record></collection> |
id | DE-604.BV025552289 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:36:21Z |
institution | BVB |
isbn | 9781842655238 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020152547 |
oclc_num | 796181712 |
open_access_boolean | |
owner | DE-11 DE-355 DE-BY-UBR |
owner_facet | DE-11 DE-355 DE-BY-UBR |
physical | XXIV, 411 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Alpha Science |
record_format | marc |
spelling | Chattamvelli, Rajan Verfasser aut Data mining methods Rajan Chattamvelli Oxford Alpha Science 2009 XXIV, 411 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Datenerhebung (DE-588)4155272-6 gnd rswk-swf Information Retrieval (DE-588)4072803-1 gnd rswk-swf Datenerhebung (DE-588)4155272-6 s Information Retrieval (DE-588)4072803-1 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020152547&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Chattamvelli, Rajan Data mining methods Datenerhebung (DE-588)4155272-6 gnd Information Retrieval (DE-588)4072803-1 gnd |
subject_GND | (DE-588)4155272-6 (DE-588)4072803-1 |
title | Data mining methods |
title_auth | Data mining methods |
title_exact_search | Data mining methods |
title_full | Data mining methods Rajan Chattamvelli |
title_fullStr | Data mining methods Rajan Chattamvelli |
title_full_unstemmed | Data mining methods Rajan Chattamvelli |
title_short | Data mining methods |
title_sort | data mining methods |
topic | Datenerhebung (DE-588)4155272-6 gnd Information Retrieval (DE-588)4072803-1 gnd |
topic_facet | Datenerhebung Information Retrieval |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020152547&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT chattamvellirajan dataminingmethods |