Group representation theory:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Lausanne
EPFL-Pr. [u.a.]
2007
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Fundamental science : Mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 454 S. |
ISBN: | 9782940222124 9780849392436 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025531842 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 100417s2007 |||| 00||| eng d | ||
020 | |a 9782940222124 |9 978-2-940222-12-4 | ||
020 | |a 9780849392436 |9 978-0-8493-9243-6 | ||
035 | |a (OCoLC)255556282 | ||
035 | |a (DE-599)BVBBV025531842 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
245 | 1 | 0 | |a Group representation theory |c Meinolf Geck ..., eds. |
250 | |a 1. ed. | ||
264 | 1 | |a Lausanne |b EPFL-Pr. [u.a.] |c 2007 | |
300 | |a X, 454 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Fundamental science : Mathematics | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Geck, Meinolf |d ca. 20./21. Jh. |0 (DE-588)1018524649 |4 edt | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020134908&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020134908 |
Datensatz im Suchindex
_version_ | 1804142703778201600 |
---|---|
adam_text | FUNDAMENTAL SCIENCES MATHEMATICS GROUP REPRESENTATION THEORY MEINOLF
GEEK, DONNA TESTERMAN AND JACQUES THEVENAZ, EDITORS EPFL PRESS A SWISS
ACADEMIC PUBLISHER DISTRIBUTED BY CRC PRESS CONTENTS PREFACE V
REPRESENTATIONS, FUNCTORS AND COHOMOLOGY 1 COHOMOLOGY AND REPRESENTATION
THEORY JON F. CARLSON 3 1. INTRODUCTION . . 3 2. MODULES OVER P-GROUPS 5
3. GROUP COHOMOLOGY 8 4. SUPPORT VARIETIES 15 5. THE COHOMOLOGY RING OF
A DIHEDRAL GROUP 22 6. ELEMENTARY ABELIAN SUBGROUPS IN COHOMOLOGY AND
REPRESENTATIONS ... 25 7. QUILLEN S DIMENSION THEOREM 33 8. PROPERTIES
OF SUPPORT VARIETIES 37 9. THE RANK OF THE GROUP OF ENDOTRIVIAL MODULES
41 INTRODUCTION TO BLOCK THEORY RADHA KESSAR 47 1. INTRODUCTION 49 2.
BRAUER PAIRS 53 3. B-BRAUER PAIRS 56 4. SOME STRUCTURE THEORY 62 5.
ALPERIN S WEIGHT CONJECTURE 67 6. BLOCKS IN CHARACTERISTIC 0 70 7.
EXAMPLES OF FUSION SYSTEMS 73 INTRODUCTION TO FUSION SYSTEMS MARKUS
LINCKELMANN 79 1. LOCAL STRUCTURE OF FINITE GROUPS 79 2. FUSION SYSTEMS
82 3. NORMALISERS AND CENTRALISERS 87 VIII . CONTENTS 4. CENTRIC
SUBGROUPS 93 5. ALPERIN S FUSION THEOREM 96 6. QUOTIENTS OF FUSION
SYSTEMS . . . .- 101 7. NORMAL FUSION SYSTEMS 103 8. SIMPLE FUSION
SYSTEMS 105 9. NORMAL SUBSYSTEMS AND CONTROL OF FUSION 108
ENDO-PERMUTATION MODULES, A GUIDED TOUR JACQUES THEVENAZ 115 1.
INTRODUCTION 115 2. ENDO-PERMUTATION MODULES 116 3. THE DADE GROUP 119
4. EXAMPLES 121 5. THE ABELIAN CASE 124 6. SOME SMALL GROUPS 125 7.
DETECTION OF ENDO-TRIVIAL MODULES 127 8. CLASSIFICATION OF ENDO-TRIVIAL
MODULES 130 9. DETECTION OF ENDO-PERMUTATION MODULES . 132 10.
FUNCTORIAL APPROACH 133 11. THE DUAL BURNSIDE RING 137 12. RATIONAL
REPRESENTATIONS AND AN INDUCTION THEOREM . 138 13. CLASSIFICATION OF
ENDO-PERMUTATION MODULES 140 14. CONSEQUENCES OF THE CLASSIFICATION 143
AN INTRODUCTION TO THE REPRESENTATIONS AND COHOMOLOGY OF CATEGORIES
PETER WEBB 149 1. INTRODUCTION 149 2. THE CATEGORY ALGEBRA AND SOME
PRELIMINARIES 151 3. RESTRICTION AND INDUCTION OF REPRESENTATIONS 154 4.
PARAMETRIZATION OF SIMPLE AND PROJECTIVE REPRESENTATIONS 156 5. THE
CONSTANT FUNCTOR AND LIMITS 159 6. AUGMENTATION IDEALS, DERIVATIONS AND
H 1 164 7. EXTENSIONS OF CATEGORIES AND H 2 : 165 CONTENTS IX ALGEBRAIC
GROUPS AND FINITE REDUCTIVE GROUPS 175 AN ALGEBRAIC INTRODUCTION TO
COMPLEX REFLECTION GROUPS MICHEL BROUE 177 PART I. COMMUTATIVE ALGEBRA:
A CRASH COURSE 177 1. NOTATIONS, CONVENTIONS, AND PREREQUISITES 177 2.
GRADED ALGEBRAS AND MODULES 186 3. FILTRATIONS: ASSOCIATED GRADED
ALGEBRAS, COMPLETION 193 4. FINITE RING EXTENSIONS 198 5. LOCAL OR
GRADED FC-RINGS 203 6. FREE RESOLUTIONS AND HOMOLOGICAL DIMENSION 213 7.
REGULAR SEQUENCES, KOSZUL COMPLEX, DEPTH 219 PART II. REFLECTION GROUPS
233 8. REFLECTIONS AND ROOTS 233 9. FINITE GROUP ACTIONS ON REGULAR
RINGS 241 10. RAMIFICATION AND REFLECTING PAIRS 250 11. CHARACTERIZATION
OF REFLECTION GROUPS 253 12. GENERALIZED CHARACTERISTIC DEGREES AND
STEINBERG THEOREM 259 13. ON THE CO-INVARIANT ALGEBRA 263 14. ISOTYPIC
COMPONENTS OF THE SYMMETRIC ALGEBRA 266 15. DIFFERENTIAL OPERATORS,
HARMONIC POLYNOMIALS 273 16. ORLIK-SOLOMON THEOREM AND FIRST
APPLICATIONS 277 * 17. EIGENSPACES 282 REPRESENTATIONS OF ALGEBRAIC
GROUPS STEPHEN DONKIN 289 1. ALGEBRAIC GROUPS AND REPRESENTATIONS 289 2.
REPRESENTATIONS OF SEMISIMPLE GROUPS 295 3. TRUNCATION TO A LEVI
SUBGROUP 298 MODULAR REPRESENTATIONS OF HECKE ALGEBRAS MEINOLFGECK 301
1. INTRODUCTION 301 2. HARISH-CHANDRA SERIES AND HECKE ALGEBRAS 302 3.
UNIPOTENT BLOCKS 308 4. GENERIC IWAHORI-HECKE ALGEBRAS AND
SPECIALIZATIONS 314 5. THE KAZHDAN-LUSZTIG BASIS AND THE A-FUNCTION 323
6. CANONICAL BASIC SETS AND LUSZTIG S RING J 330 X CONTENTS 7. THE FOCK
SPACE AND CANONICAL BASES 337 8. THE THEOREMS OF ARIKI AND JACON 345
TOPICS IN THE THEORY OF ALGEBRAIC GROUPS GARY M. SEITZ 355 1.
INTRODUCTION 355 2. ALGEBRAIC GROUPS: INTRODUCTION 355 3. MORPHISMS OF
ALGEBRAIC GROUPS 364 4. MAXIMAL SUBGROUPS OF CLASSICAL ALGEBRAIC GROUPS
371 5. MAXIMAL SUBGROUPS OF EXCEPTIONAL ALGEBRAIC GROUPS 377 6. ON THE
FINITENESS OF DOUBLE COSET SPACES 383 7. UNIPOTENT ELEMENTS IN CLASSICAL
GROUPS 390 8. UNIPOTENT CLASSES IN EXCEPTIONAL GROUPS 396 BOUNDS FOR THE
ORDERS OF THE FINITE SUBGROUPS OF G(K) JEAN-PIERRE SERRE 405 LECTURE I.
HISTORY: MINKOWSKI, SCHUR 406 1. MINKOWSKI 406 2. SCHUR 411 3.
BLICHFELDT AND OTHERS 414 LECTURE II. UPPER BOUNDS 417 4. THE INVARIANTS
T AND M 417 5. THE S-BOUND 419 6. THE M-BOUND 424 LECTURE III.
CONSTRUCTION OF LARGE SUBGROUPS 432 7. STATEMENTS 432 8. ARITHMETIC
METHODS (FC = Q) 434 9. PROOF OF THEOREM 9 FOR CLASSICAL GROUPS 435 10.
GALOIS TWISTS 437 11. A GENERAL CONSTRUCTION 438 12. PROOF OF THEOREM 9
FOR EXCEPTIONAL GROUPS 442 13. PROOF OF THEOREMS 10 AND 11 443 14. THE
CASE M = OO 446 INDEX 451
|
any_adam_object | 1 |
author2 | Geck, Meinolf ca. 20./21. Jh |
author2_role | edt |
author2_variant | m g mg |
author_GND | (DE-588)1018524649 |
author_facet | Geck, Meinolf ca. 20./21. Jh |
building | Verbundindex |
bvnumber | BV025531842 |
classification_rvk | SK 260 |
ctrlnum | (OCoLC)255556282 (DE-599)BVBBV025531842 |
discipline | Mathematik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01410nam a2200373 c 4500</leader><controlfield tag="001">BV025531842</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2007 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782940222124</subfield><subfield code="9">978-2-940222-12-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780849392436</subfield><subfield code="9">978-0-8493-9243-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255556282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025531842</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group representation theory</subfield><subfield code="c">Meinolf Geck ..., eds.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Lausanne</subfield><subfield code="b">EPFL-Pr. [u.a.]</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 454 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fundamental science : Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geck, Meinolf</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1018524649</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020134908&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020134908</subfield></datafield></record></collection> |
id | DE-604.BV025531842 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:35:59Z |
institution | BVB |
isbn | 9782940222124 9780849392436 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020134908 |
oclc_num | 255556282 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | X, 454 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | EPFL-Pr. [u.a.] |
record_format | marc |
series2 | Fundamental science : Mathematics |
spelling | Group representation theory Meinolf Geck ..., eds. 1. ed. Lausanne EPFL-Pr. [u.a.] 2007 X, 454 S. txt rdacontent n rdamedia nc rdacarrier Fundamental science : Mathematics Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Gruppe Mathematik (DE-588)4022379-6 gnd rswk-swf Gruppe Mathematik (DE-588)4022379-6 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Geck, Meinolf ca. 20./21. Jh. (DE-588)1018524649 edt GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020134908&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Group representation theory Darstellungstheorie (DE-588)4148816-7 gnd Gruppe Mathematik (DE-588)4022379-6 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4022379-6 |
title | Group representation theory |
title_auth | Group representation theory |
title_exact_search | Group representation theory |
title_full | Group representation theory Meinolf Geck ..., eds. |
title_fullStr | Group representation theory Meinolf Geck ..., eds. |
title_full_unstemmed | Group representation theory Meinolf Geck ..., eds. |
title_short | Group representation theory |
title_sort | group representation theory |
topic | Darstellungstheorie (DE-588)4148816-7 gnd Gruppe Mathematik (DE-588)4022379-6 gnd |
topic_facet | Darstellungstheorie Gruppe Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020134908&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT geckmeinolf grouprepresentationtheory |