Quantum theory: a wide spectrum
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherland
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XIX, 1011 S. graph. Darst. |
ISBN: | 1402041896 9781402041891 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025524355 | ||
003 | DE-604 | ||
005 | 20100712 | ||
007 | t | ||
008 | 100417s2006 d||| |||| 00||| eng d | ||
016 | 7 | |a 977642100 |2 DE-101 | |
020 | |a 1402041896 |9 1-402-04189-6 | ||
020 | |a 9781402041891 |9 978-1-402-04189-1 | ||
035 | |a (OCoLC)255854455 | ||
035 | |a (DE-599)BVBBV025524355 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-355 | ||
082 | 0 | |a 530.12 | |
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
100 | 1 | |a Manoukian, E. B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum theory |b a wide spectrum |c E. B. Manoukian |
264 | 1 | |a Dordrecht |b Springer Netherland |c 2006 | |
300 | |a XIX, 1011 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2743519&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132158&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020132158 |
Datensatz im Suchindex
_version_ | 1804142700830654464 |
---|---|
adam_text | Contents
Acknowledgments
............................................
XV
Preface
.....................................................
XVII
1
Fundamentals
............................................. 1
1.1
Selective Measurements
................................. 2
1.2
А, В, С
to Probabilities
................................. 8
1.3
Expectation Values and Matrix Representations
............ 10
1.3.1
Probabilities and Expectation Values
............... 10
1.3.2
Representations of Simple Machines
................ 13
1.4
Generation of States, Inner-Product Spaces, Hermitian
Operators and the Eigenvalue Problem
.................... 15
1.4.1
Generation of States and Vector Spaces
............. 16
1.4.2
Transformation Functions and Wavefunctions in
Different Descriptions
............................. 18
1.4.3
An Illustration
................................... 19
1.4.4
Generation of Inner Product Spaces
................ 23
1.4.5
Hermitian Operators and the Eigenvalue Problem
.... 24
1.5
Pure Ensembles and Mixtures
............................ 25
1.6
Polarization of Light: An Interlude
....................... 29
1.7
The
Hubert
Space; Rigged Hubert Space
.................. 33
1.8
Self-Adjoint Operators and Their Spectra
.................. 39
1.9
Wigner s Theorem on Symmetry Transformations
.......... 55
1.10
Probability, Conditional Probability and Measurement
...... 65
1.10.1
Correlation of a Physical System and an Apparatus
... 66
1.10.2
Probability and Conditional Probability
............. 68
1.10.3
An Exactly Solvable Model
........................ 70
Problems
.................................................. 79
VI
Contents
2
Symmetries and Transformations
......................... 81
2.1
Galilean Space-Time Coordinate Transformations
........... 81
2.2
Successive Galilean Transformations and the Closed Path
----- 86
2.3
Quantum Galilean Transformations and Their Generators
... 89
2.4
The Transformation Function (xlp)
....................... 98
2.5
Quantum Dynamics and Construction of Hamiltonians
...... 100
2.5.1
The Time Evolution:
Schrödinger
Equation
.......... 100
2.5.2
Time as an Operator?
............................. 101
2.5.3
Construction of Hamiltonians
...................... 102
2.5.4
Multi-Particle Hamiltonians
....................... 104
2.5.5
Two-Particle Systems and Relative Motion
.......... 104
2.5.6
Multi-Electron Atoms with Positions of the Electrons
Defined Relative to the Nucleus
.................... 105
2.5.7
Decompositions into Clusters of Particles
............106
Appendix to
§2.5:
Time-Evolution for Time-Dependent
Hamiltonians
..........................................109
2.6
Discrete Transformations: Parity and Time Reversal
........112
2.7
Orbital Angular Momentum and Spin
.....................116
2.8
Spinors and Arbitrary Spins
.............................121
2.8.1
Spinors and Generation of Arbitrary Spins
...........121
2.8.2
Rotation of a Spinor by
2π
Radians
.................129
2.8.3
Time Reversal and Parity Transformation
...........130
2.8.4
Kramers Degeneracy
..............................132
Appendix to
§2.8:
Transformation Rule of a Spinor of Rank One
Under a Coordinate Rotation
............................133
2.9
Supersymmetry
........................................136
Problems
..................................................139
3
Uncertainties, Localization, Stability and Decay of
Quantum Systems
........................................143
3.1
Uncertainties, Localization and Stability
...................143
3.1.1
A Basic Inequality
................................143
3.1.2
Uncertainties
....................................144
3.1.3
Localization and Stability
.........................145
3.1.4
Localization, Stability and Multi-Particle Systems
___148
3.2
Boundedness of the Spectra of Hamiltonians Prom Below
___151
3.3
Boundedness of Hamiltonians Prom Below: General Classes
of Interactions
......................................
3.4
Boundedness of Hamiltonian From Below: Multi-Particle
Systems
............................................
3.4.1
Multi-Particle Systems with Two-Body Potentials
___164
3.4.2
Multi-Particle Systems and Other Potentials
.........166
3.4.3
Multi-Particle Systems with Coulomb Interactions
___167
3.5
Decay of Quantum Systems
..............................168
Appendix to
§3.5:
The Paley-Wiener Theorem.
................. 174
Contents
VII
Problems..................................................178
Spectra of Hamiltonians
..................................181
4.1
Hamiltonians with Potentials Vanishing at Infinity
..........182
4.2
On Bound-States
.......................................187
4.2.1
A Potential Well
.................................187
4.2.2
Limit of the Potential Well
........................190
4.2.3
The Dirac Delta Potential
.........................190
4.2.4
Sufficiency Conditions for the Existence of a
Bound-State for
v
= 1 ............................192
4.2.5
Sufficiency Conditions for the Existence of a
Bound-State for
v
= 2 ............................194
4.2.6
Sufficiency Conditions for the Existence of a
Bound-State for
v
= 3 ............................195
4.2.7
No-Binding Theorems
.............................197
4.3
Hamiltonians with Potentials Approaching Finite Constants
at Infinity
.............................................199
4.4
Hamiltonians with Potentials Increasing with No Bound at
Infinity
................................................200
4.5
Counting the Number of Eigenvalues
......................203
4.5.1
General Treatment of the Problem
..................203
4.5.2
Counting the Number of Eigenvalues
................206
4.5.3
The Sum of the Negative Eigenvalues
...............216
Appendix to
§4.5:
Evaluation of Certain Integrals
...............219
4.6
Lower Bounds to the Expectation Value of the Kinetic
Energy: An Application of Counting Eigenvalues
...........220
4.6.1
One-Particle Systems
.............................220
4.6.2
Multi-Particle States:
Fermions
....................222
4.6.3
Multi-Particle States: Bosons
......................224
4.7
The Eigenvalue Problem and Supersymmetry
..............224
4.7.1
General Aspects
..................................224
4.7.2
Construction of Supersymmetric Hamiltonians
.......226
4.7.3
The Eigenvalue Problem
..........................230
Problems
..................................................244
Angular Momentum Gymnastics
..........................249
5.1
The Eigenvalue Problem
................................251
5.2
Matrix Elements of Finite Rotations
......................254
5.3
Orbital Angular Momentum
.............................258
5.3.1
Transformation Theory
...........................258
5.3.2
Half-Odd Integral Values?
.........................259
5.3.3
The Spherical Harmonics
..........................262
5.3.4
Addition Theorem of Spherical Harmonics
...........267
5.4
Spin
..................................................269
5.4.1
General Structure
................................269
VIII Contents
5.4.2
Spin
1/2........................................270
5.4.3
Spin
1 ..........................................272
5.4.4
Arbitrary Spins
..................................274
5.5
Addition of Angular Momenta
...........................275
5.6
Explicit Expression for the Clebsch-Gordan Coefficients
.....284
5.7
Vector Operators
.......................................290
5.8
Tensor Operators
.......................................296
5.9
Combining Several Angular Momenta: 6-j and 9-j Symbols
.. 304
5.10
Particle States and Angular Momentum;
Helicity
States
.....307
5.10.1
Single Particle States
.............................307
5.10.2
Two Particle States
...............................317
Problems
..................................................324
6
Intricacies of Harmonic Oscillators
........................329
6.1
The Harmonic Oscillator
................................329
6.2
Transition to and Between Excited States in the Presence of
a Time-Dependent Disturbance
..........................335
6.3
The Harmonic Oscillator in the Presence of a Disturbance
at Finite Temperature
..................................340
6.4
The Fermi Oscillator
....................................343
6.5
Bose-Fermi Oscillators and Supersymmetric Bose-Fermi
Transformations
........................................346
6.6
Coherent State of the Harmonic Oscillator
.................349
Problems
..................................................356
7
Intricacies of the Hydrogen Atom
.........................359
7.1
Stability of the Hydrogen Atom
..........................360
7.2
The Eigenvalue Problem
................................363
7.3
The Eigenstates
........................................366
7.4
The Hydrogen Atom Including Spin and Relativistic
Corrections
............................................370
Appendix to
§7.4:
Normalization of the Wavefunction Including
Spin and Relativistic Corrections
.........................378
7.5
The Fine-Structure of the Hydrogen Atom
.................379
Appendix to
§7.5:
Combining Spin and Angular Momentum in
the Atom
..............................................383
7.6
The Hyperfine-Structure of the Hydrogen Atom
............384
7.7
The Non-Relativistic Lamb Shift
.........................391
7.7.1
The Radiation Field
..............................391
7.7.2
Expression for the Energy Shifts
...................394
7.7.3
The Lamb Shift and Renormalization
...............398
Appendix to
§7.7:
Counter-Terms and Mass Renormalization
.....401
7.8
Decay of Excited States
___,............................
403
7.9
The Hydrogen Atom in External Electromagnetic Fields
.....406
7.9.1
The Atom in an External Magnetic Field
............406
Contents
IX
7.9.2
The Atom in an External Electric Field
.............412
Problems
..................................................414
Quantum Physics of Spin
1/2
and Two-Level Systems;
Quantum Predictions Using Such Systems
................419
8.1
General Properties of Spin
1/2
and Two-Level Systems
......420
8.1.1
General Aspects of Spin
1/2.......................420
8.1.2
Spin
1/2
in External Magnetic Fields
...............423
8.1.3
Two-Level Systems; Exponential Decay
..............427
8.2
The
Pauli Hamiltonian;
Supersymmetry
...................432
8.2.1
The
Pauli
Hamiltonian
............................432
8.2.2
Supersymmetry
..................................434
8.3
Landau Levels; Expression for the ^-Factor
................436
8.3.1
Landau Levels
...................................436
8.3.2
Expression for the ^-Factor
........................440
8.4
Spin Precession and Radiation Losses
.....................441
8.5
Anomalous Magnetic Moment of the Electron
..............444
8.5.1
Observational Aspect of the Anomalous Magnetic
Moment
.........................................445
8.5.2
Computation of the Anomalous Magnetic Moment
.... 446
8.6
Density Operators and Spin
.............................453
8.6.1
Spin in a General Time-Dependent Magnetic Field
. . . 453
8.6.2
Scattering of Spin
1/2
Particle
off a
Spin
0
Target
___454
8.6.3
Scattering of Spin
1/2
Particles off a Spin
1/2
Target
. 459
8.7
Quantum Interference and Measurement; The Role of the
Environment
...........................................462
8.7.1
Interaction with an Apparatus and Unitary Evolution
Operator
........................................463
8.7.2
Interaction with a Harmonic Oscillator in a Coherent
State
...........................................467
8.7.3
The Role of the Environment
......................469
8.8
Ramsey Oscillatory Fields Method and Spin Flip; Monitoring
the Spin
...............................................473
8.8.1
Ramsey Apparatus and Interference; Spin Flip
.......473
8.8.2
Monitoring the Spin
..............................478
8.9 Schrödinger s
Cat and Quantum Decoherence
..............482
8.10
Bell s Test
.............................................486
8.10.1
Bell s Test
.......................................486
8.10.2
Basic Processes
..................................490
Appendix to
§8.10.
Entangled States; The
C
-Н
Inequality
........499
8.11
Quantum
Teleportation
and Quantum Cryptography
........501
8.11.1
Quantum
Teleportation
...........................501
8.11.2
Quantum Cryptography
...........................503
X
Contents
8.12 Rotation
of a Spinor
....................................508
8.13
Geometric Phases
......................................513
8.13.1
The Berry Phase and the Adiabatic Regime
.........513
8.13.2
Degeneracy
......................................518
8.13.3
Aharonov-Anandan (AA) Phase
....................520
8.13.4
Samuel-Bhandari (SB) Phase
......................529
8.14
Quantum Dynamics of the Stern-Gerlach Effect
............531
8.14.1
The Quantum Dynamics
..........................531
8.14.2
The Intensity Distribution
.........................535
Appendix to
§8.14:
Time Evolution and Intensity Distribution
.... 540
Problems
..................................................544
9
Green Functions
.......................................... 547
9.1
The Free Green Functions
............................... 548
9.2
Linear and Quadratic Potentials
.......................... 555
9.3
The Dirac Delta Potential
............................... 558
9.4
Time-Dependent Forced Dynamics
........................ 561
9.5
The Law of Reflection and Reconciliation with the Classical
Law
..................................................565
9.6
Two-Dimensional Green Function in Polar Coordinates:
Application to the Aharonov-Bohm Effect
.................570
9.7
General Properties of the Full Green Functions and
Applications
...........................................580
9.7.1
A Matrix Notation
...............................580
9.7.2
Applications
.....................................582
9.7.3
An Integral Expression for the (Homogeneous) Green
Function
........................................586
9.8
The Thomas-Fermi Approximation and Deviations Thereof
.. 587
9.9
The Coulomb Green Function: The Full Spectrum
..........590
9.9.1
An Integral Equation
............................. 590
9.9.2
The Negative Spectrum p°
< 0,
λ
< 0............... 594
9.9.3
The Positive Spectrum p°
> 0...................... 596
Problems
.................................................. 598
10
Path Integrals
............................................ 601
10.1
The Free Particle
....................................... 602
10.2
Particle in a Given Potential
............................. 604
10.3
Charged Particle in External Electromagnetic Fields:
Velocity Dependent Potentials
...........................608
10.4
Constrained Dynamics
..................................614
10.4.1
Classical Notions
.................................614
10.4.2
Constrained Path Integrals
........................623
10.4.3
Second Class Constraints and the Dirac Bracket
......627
10.5
Bose
Excitations
.......................................628
Contents
XI
10.6 Grassmann Variables:
Fermi
Excitations...................
633
10.6.1 Real Grassmann Variables.........................633
10.6.2
Complex
Grassmann Variables.....................637
10.6.3
Fermi Excitations................................
640
Problems..................................................645
11 The Quantum
Dynamical Principle.......................
649
11.1 The Quantum
Dynamical Principle
.......................650
11.2
Expressions for Transformations Functions
.................656
11.3
Trace Functional
......................................665
11.4
From the Quantum Dynamical Principle to Path Integrals
. . . 669
11.5
Bose/Fermi Excitations
.................................672
11.6
Closed-Time Path and Expectation-Value Formalism
........675
Problems
..................................................681
12
Approximating Quantum Systems
........................683
12.1
Non-Degenerate Perturbation Theory
.....................684
12.2
Degenerate Perturbation Theory
.........................688
12.3
Variational Methods
....................................690
12.4
High-Order Perturbations, Divergent Series;
Padé
Approximants
..........................................695
12.5
WKB Approximation
...................................703
12.5.1
General Theory
..................................703
12.5.2
Barrier Penetration
...............................709
12.5.3
WKB Quantization Rules
.........................712
12.5.4
The Radial Equation
.............................715
12.6
Time-Dependence; Sudden Approximation and the Adiabatic
Theorem
..............................................716
12.6.1
Weak Perturbations
..............................717
12.6.2
Sudden Approximation
............................720
12.6.3
The Adiabatic Theorem
...........................724
12.7
Master Equation; Exponential Law, Coupling to the
Environment
...........................................727
12.7.1
Master Equation
.................................728
12.7.2
Exponential Law
.................................733
12.7.3
Coupling to the Environment
......................734
Problems
..................................................736
13
Multi-Electron Atoms: Beyond the Thomas-Fermi Atom
.. 739
13.1
The Thomas-Fermi Atom
................................740
Appendix A To
§13.1:
The TF Energy Gives the Leading
Contribution to E(Z) for Large
Z
........................746
Appendix
В
to
§13.1:
The TF Density Actually Gives the Smallest
Value for the Energy Density Functional in
(13.1.6).........752
13.2
Correction due to Electrons Bound Near the Nucleus
........753
XII Contents
13.3
The Exchange Term
....................................
756
13.4
Quantum Correction
....................................759
13.5
Adding Up the Various Contributions: Estimation of E{Z)
... 762
Problems
..................................................
762
14
Quantum Physics and the Stability of Matter
.............765
14.1
Lower Bound to the Multi-Particle Repulsive Coulomb
Potential Energy
.......................................767
Appendix to
§14.1:
A Thomas-Fermi-Like Energy Functional and
No Binding
............................................769
14.2
Lower and Upper Bounds for the Ground-State Energy and
the Stability of Matter
..................................774
14.2.1
A Lower Bound
..................................774
14.2.2
Upper Bounds
...................................777
14.3
Investigation of the High-Density Limit for Matter and Its
Stability
...............................................780
14.3.1
Upper Bound of the Average Kinetic Energy of
Electrons in Matter
...............................780
14.3.2
Inflation of Matter
................................781
14.4
The Collapse of Bosonic Matter
.........,................783
14.4.1
A Lower Bound
.................................. 784
14.4.2
An Upper Bound
................................. 786
Appendix to
§14.4:
Upper Bounds for <HX) in
(14.4.47).......... 793
Problems
.................................................. 796
15
Quantum Scattering
......................................799
15.1
Interacting States and Asymptotic Boundary Conditions
.... 800
15.2
Particle Detection and Connection between Configuration
and Momentum Spaces in Scattering
......................807
Appendix to
§15.2:
Some Properties of
F (u, v)
.................812
15.3
Differential Cross Sections
...............................814
15.3.1
Expression for the Differential Cross Section
.........814
15.3.2
Sufficiency Conditions for the Validity of the Born
Expansion
.......................................816
15.3.3
Two-Particle Scattering
...........................818
15.4
The Optical Theorem and Its Interpretation; Phase Shifts
... 821
15.4.1
The Optical Theorem
.............................821
15.4.2
Phase Shifts Analysis
.............................825
15.5
Coulomb Scattering
.....................................830
15.5.1
Asymptotically Free Coulomb Green Functions
.....830
15.5.2
Asymptotic Time Development of a Charged Particle
State
...........................................832
15.5.3
The Full Green Function G+ Near the Energy Shell
... 833
15.5.4
The Scattering Amplitude via Evolution Operators
... 834
Contents XIII
15.6
Functional Treatment of Scattering Theory
................838
15.7
Scattering at Small Deflection Angles at High Energies:
Eikonal Approximation
..................................842
15.7.1
Eikonal Approximation
...........................842
15.7.2
Determination of Asymptotic Free Green Function
of the Coulomb Interaction
........................845
15.8
Multi-Channel Scatterings of Clusters and Bound Systems
. .. 846
15.8.1
Channels and Channel Hamiltonians
................847
15.8.2
Interacting States Corresponding to Preparatory
Channels
........................................851
15.8.3
Transition Probabilities and the Optical Theorem
.... 853
15.8.4
Basic Processes
..................................854
15.8.5
Born Approximation, Connectedness and Faddeev
Equations
.......................................858
15.8.6
Phase Shifts Analysis
.............................865
15.9
Passage of Particles through Media; Neutron Interferometer
.. 867
15.9.1
Passage of Charged Particles through Hydrogen
......867
15.9.2
Neutron Interferometer
............................871
Problems
..................................................877
16
Quantum Description of Relativistic Particles
............881
16.1
The Dirac Equation and Pauli s Fundamental Theorem
......884
Appendix to
§16.1:
Pauli s Fundamental Theorem
...............889
16.2
Lorentz Covariance,
Boosts and Spatial Rotations
..........892
16.2.1
Lorentz
Transformations
..........................892
16.2.2
Lorentz Covariance,
Boosts and Spatial Rotations
.... 894
16.2.3
Lorentz
Invariant Scalar Products of Spinors,
Lorentz
Scalars and
Lorentz
Vectors
.......................898
16.3
Spin,
Helicity
and
V, C, T
Transformations
................900
16.3.1
Spin
к
Helicity..................................
900
16.3.2
V, C, T
Transformations
..........................902
16.4
General Solution of the Dirac Equation
....................903
16.5
Massless Dirac Particles
.................................912
16.6
Physical Interpretation, Localization and Particle Content
... 916
16.6.1
Probability, Probability Current and the Initial Value
Problem
.........................................917
16.6.2
Diagonalization of the Hamiltonian and Definitions
of Position Operators
.............................919
16.6.3
Origin of Relativistic Corrections in the Hydrogen
Atom
...........................................926
16.6.4
The Positron and Emergence of a Many-Particle
Theory
..........................................931
Appendix to
§16.6:
Exact Treatment of the Dirac Equation in the
Bound Coulomb Problem
................................933
XIV Contents
16.7
The Klein-Gordon Equation
.............................9.47
16.7.1
Setting Up Spin
0
Equations
.......................937
16.7.2
A Continuity Equation
............................9
Ш
16.7.3
General Solution of the Free Feshbach-
Villars
Equation
........................................9
J1
16.7.4
Diagonalization of the Hamiltonian and
Definit
ion tit
Position Operators
...............................912
16.7.5
The External Field Problem
.......................911
16.8
Relativistic Wave Equations for Any Mass and Any Spin
.... 917
16.8.1
M
> 0:..........................................917
16.8.2
M
= 0:..........................................
9Г)()
16.9
Spin
&
Statistics
.......................................953
16.9.1
Quantum Fields
..................................951
16.9.2
Lagrangian for Spin
0
Particles
.....................
9ПГ)
16.9.3
Lagrangian for Spin
1/2
Particles
...................957
16.9.4
Schwinger s Constructive Approach
.................958
16.9.5
The Spin and Statistics Connection
.................962
Appendix to
§16.9:
The Action Integral
........................965
Problems
..................................................968
Mathematical Appendices
....................................971
I Variations of the Baker-Campbell-Hausdorff Formula
.....973
1.
Integral Expression for the Product of the Exponentials of
Operators
.............................................973
2.
Derivative of the Exponential of Operator-Valued Functions
. 973
3.
The Classic Baker-Campbell-Hausdorff Formula
............975
4.
A Modification of the Baker-Campbell-Hausdorff Formula
. .. 975
II Convexity and Basic Inequalities
.........................977
1.
General Convexity Theorem
............................. 977
2.
Minkowski s Inequality for Integrals
....................... 978
3.
Holder s Inequality for Integrals
.......................... 979
4.
Young s Inequality for Integrals
.......................... 980
III The
Poisson
Equation in 4D
..............................981
1.
The
Poisson
Equation
...................................982
2.
Generating Function
....................................983
3.
Expansion Theorem
....................................984
4.
Generalized Orthogonality Relation
.......................985
References
.
987
Index
.........................................................999
|
any_adam_object | 1 |
author | Manoukian, E. B. |
author_facet | Manoukian, E. B. |
author_role | aut |
author_sort | Manoukian, E. B. |
author_variant | e b m eb ebm |
building | Verbundindex |
bvnumber | BV025524355 |
classification_rvk | UK 1000 |
ctrlnum | (OCoLC)255854455 (DE-599)BVBBV025524355 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01443nam a2200373 c 4500</leader><controlfield tag="001">BV025524355</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100712 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2006 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977642100</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402041896</subfield><subfield code="9">1-402-04189-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402041891</subfield><subfield code="9">978-1-402-04189-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255854455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025524355</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manoukian, E. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum theory</subfield><subfield code="b">a wide spectrum</subfield><subfield code="c">E. B. Manoukian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherland</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 1011 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2743519&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132158&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020132158</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV025524355 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:35:56Z |
institution | BVB |
isbn | 1402041896 9781402041891 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020132158 |
oclc_num | 255854455 |
open_access_boolean | |
owner | DE-11 DE-355 DE-BY-UBR |
owner_facet | DE-11 DE-355 DE-BY-UBR |
physical | XIX, 1011 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer Netherland |
record_format | marc |
spelling | Manoukian, E. B. Verfasser aut Quantum theory a wide spectrum E. B. Manoukian Dordrecht Springer Netherland 2006 XIX, 1011 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Quantentheorie (DE-588)4047992-4 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Quantentheorie (DE-588)4047992-4 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2743519&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132158&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Manoukian, E. B. Quantum theory a wide spectrum Quantentheorie (DE-588)4047992-4 gnd |
subject_GND | (DE-588)4047992-4 (DE-588)4123623-3 |
title | Quantum theory a wide spectrum |
title_auth | Quantum theory a wide spectrum |
title_exact_search | Quantum theory a wide spectrum |
title_full | Quantum theory a wide spectrum E. B. Manoukian |
title_fullStr | Quantum theory a wide spectrum E. B. Manoukian |
title_full_unstemmed | Quantum theory a wide spectrum E. B. Manoukian |
title_short | Quantum theory |
title_sort | quantum theory a wide spectrum |
title_sub | a wide spectrum |
topic | Quantentheorie (DE-588)4047992-4 gnd |
topic_facet | Quantentheorie Lehrbuch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2743519&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020132158&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT manoukianeb quantumtheoryawidespectrum |