Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
Am. Math. Soc.
2004
|
Schriftenreihe: | Memoirs of the American Mathematical Society
812 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | "Volume 172, number 812 (first of 4 numbers)." Includes bibliographical references and index |
Beschreibung: | XI, 218 S. graph. Darst. |
ISBN: | 0821835491 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV025348438 | ||
003 | DE-604 | ||
005 | 20150407 | ||
007 | t | ||
008 | 100417s2004 xxud||| |||| 00||| eng d | ||
020 | |a 0821835491 |9 0-8218-3549-1 | ||
035 | |a (OCoLC)265631921 | ||
035 | |a (DE-599)BVBBV025348438 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-11 |a DE-355 |a DE-29T |a DE-91G |a DE-188 |a DE-19 |a DE-83 | ||
050 | 0 | |a QA3 | |
050 | 0 | |a QA612.14 | |
082 | 0 | |a 510 | |
082 | 0 | |a 514/.3 |2 22 | |
082 | 0 | |a 510 |2 22 | |
082 | 0 | |a 514.3 | |
084 | |a 20F34 |2 msc | ||
084 | |a 30F40 |2 msc | ||
084 | |a 57M99 |2 msc | ||
084 | |a MAT 203f |2 stub | ||
084 | |a 57M50 |2 msc | ||
084 | |a MAT 572f |2 stub | ||
100 | 1 | |a Canary, Richard Douglas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups |c Richard D. Canary ; Darryl McCullough |
264 | 1 | |a Providence, RI |b Am. Math. Soc. |c 2004 | |
300 | |a XI, 218 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v 812 | |
500 | |a "Volume 172, number 812 (first of 4 numbers)." | ||
500 | |a Includes bibliographical references and index | ||
650 | 7 | |a Funções de uma variável complexa |2 larpcal | |
650 | 7 | |a Grupos finitos |2 larpcal | |
650 | 7 | |a Homotopie |2 gtt | |
650 | 7 | |a Klein-groepen |2 gtt | |
650 | 7 | |a Manifolds |2 gtt | |
650 | 7 | |a Topologia de dimensão baixa |2 larpcal | |
650 | 4 | |a aThree-manifolds (Topology) | |
650 | 4 | |a aHomotopy equivalences | |
650 | 4 | |a aLow-dimensional topology | |
650 | 4 | |a aKleinian groups | |
700 | 1 | |a McCullough, Darryl |d 1951- |e Verfasser |0 (DE-588)172243947 |4 aut | |
810 | 2 | |a American Mathematical Society |t Memoirs of the American Mathematical Society |v 812 |w (DE-604)BV008000141 |9 812 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019976150&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-019976150 |
Datensatz im Suchindex
_version_ | 1804142428323577856 |
---|---|
adam_text | Contents
Preface ix
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. The main theorems for Haken 3 manifolds 3
1.3. The main theorems for reducible 3 manifolds 8
1.4. Examples 9
Chapter 2. Johannson s Characteristic Submanifold Theory 15
2.1. Fibered 3 manifolds 16
2.2. Boundary patterns 20
2.3. Admissible maps and mapping class groups 23
2.4. Essential maps and useful boundary patterns 28
2.5. The classical theorems 35
2.6. Exceptional fibered 3 manifolds 38
2.7. Vertical and horizontal surfaces and maps 40
2.8. Fiber preserving maps 41
2.9. The characteristic submanifold 48
2.10. Examples of characteristic submanifolds 51
2.11. The Classification Theorem 57
2.12. Miscellaneous topological results 60
Chapter 3. Relative Compression Bodies and Cores 65
3.1. Relative compression bodies 66
3.2. Minimally imbedded relative compression bodies 69
3.3. The maximal incompressible core 71
3.4. Normally imbedded relative compression bodies 73
3.5. The normal core and the useful core 74
Chapter 4. Homotopy Types 77
4.1. Homotopy equivalences preserve usefulness 77
4.2. Finiteness of homotopy types 83
Chapter 5. Pared 3 Manifolds 87
5.1. Definitions and basic properties 87
5.2. The topology of pared manifolds 89
5.3. The characteristic submanifold of a pared manifold 92
Chapter 6. Small 3 Manifolds 97
6.1. Small manifolds and small pared manifolds 97
6.2. Small pared homotopy types 101
V
vi CONTENTS
Chapter 7. Geometrically Finite Hyperbolic 3 Manifolds 105
7.1. Basic definitions 105
7.2. Quasiconformal deformation theory: a review 107
7.3. The Parameterization Theorem 114
Chapter 8. Statements of Main Theorems 117
8.1. Statements of Main Topological Theorems 117
8.2. Statements of Main Hyperbolic Theorem and Corollary 118
8.3. Derivation of hyperbolic results 119
Chapter 9. The Case When There Is a Compressible Free Side 121
9.1. Algebraic lemmas 122
9.2. The finite index cases 124
9.3. The infinite index cases 132
Chapter 10. The Case When the Boundary Pattern Is Useful 139
10.1. The homomorphism *P 141
10.2. Realizing homotopy equivalences of I bundles 153
10.3. Realizing homotopy equivalences of Seifert fibered manifolds 161
10.4. Proof of Main Topological Theorem 2 171
Chapter 11. Dehn Flips 175
Chapter 12. Finite Index Realization For Reducible 3 Manifolds 179
12.1. Homeomorphisms of connected sums 180
12.2. Reducible 3 manifolds with compressible boundary 190
12.3. Reducible 3 manifolds with incompressible boundary 191
Chapter 13. Epilogue 195
13.1. More topology 195
13.2. More geometry 197
Bibliography 207
Index 213
|
any_adam_object | 1 |
author | Canary, Richard Douglas McCullough, Darryl 1951- |
author_GND | (DE-588)172243947 |
author_facet | Canary, Richard Douglas McCullough, Darryl 1951- |
author_role | aut aut |
author_sort | Canary, Richard Douglas |
author_variant | r d c rd rdc d m dm |
building | Verbundindex |
bvnumber | BV025348438 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 QA612.14 |
callnumber-search | QA3 QA612.14 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_tum | MAT 203f MAT 572f |
ctrlnum | (OCoLC)265631921 (DE-599)BVBBV025348438 |
dewey-full | 510 514/.3 514.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 514 - Topology |
dewey-raw | 510 514/.3 514.3 |
dewey-search | 510 514/.3 514.3 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02209nam a2200601 cb4500</leader><controlfield tag="001">BV025348438</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150407 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2004 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821835491</subfield><subfield code="9">0-8218-3549-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)265631921</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025348438</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.14</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20F34</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30F40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 203f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 572f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Canary, Richard Douglas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups</subfield><subfield code="c">Richard D. Canary ; Darryl McCullough</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">Am. Math. Soc.</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 218 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">812</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Volume 172, number 812 (first of 4 numbers)."</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Funções de uma variável complexa</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos finitos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Klein-groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologia de dimensão baixa</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aThree-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aHomotopy equivalences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aLow-dimensional topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aKleinian groups</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCullough, Darryl</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172243947</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">American Mathematical Society</subfield><subfield code="t">Memoirs of the American Mathematical Society</subfield><subfield code="v">812</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">812</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019976150&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019976150</subfield></datafield></record></collection> |
id | DE-604.BV025348438 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:31:36Z |
institution | BVB |
isbn | 0821835491 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-019976150 |
oclc_num | 265631921 |
open_access_boolean | |
owner | DE-11 DE-355 DE-BY-UBR DE-29T DE-91G DE-BY-TUM DE-188 DE-19 DE-BY-UBM DE-83 |
owner_facet | DE-11 DE-355 DE-BY-UBR DE-29T DE-91G DE-BY-TUM DE-188 DE-19 DE-BY-UBM DE-83 |
physical | XI, 218 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Am. Math. Soc. |
record_format | marc |
series2 | Memoirs of the American Mathematical Society |
spelling | Canary, Richard Douglas Verfasser aut Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups Richard D. Canary ; Darryl McCullough Providence, RI Am. Math. Soc. 2004 XI, 218 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society 812 "Volume 172, number 812 (first of 4 numbers)." Includes bibliographical references and index Funções de uma variável complexa larpcal Grupos finitos larpcal Homotopie gtt Klein-groepen gtt Manifolds gtt Topologia de dimensão baixa larpcal aThree-manifolds (Topology) aHomotopy equivalences aLow-dimensional topology aKleinian groups McCullough, Darryl 1951- Verfasser (DE-588)172243947 aut American Mathematical Society Memoirs of the American Mathematical Society 812 (DE-604)BV008000141 812 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019976150&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Canary, Richard Douglas McCullough, Darryl 1951- Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups Funções de uma variável complexa larpcal Grupos finitos larpcal Homotopie gtt Klein-groepen gtt Manifolds gtt Topologia de dimensão baixa larpcal aThree-manifolds (Topology) aHomotopy equivalences aLow-dimensional topology aKleinian groups |
title | Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups |
title_auth | Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups |
title_exact_search | Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups |
title_full | Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups Richard D. Canary ; Darryl McCullough |
title_fullStr | Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups Richard D. Canary ; Darryl McCullough |
title_full_unstemmed | Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups Richard D. Canary ; Darryl McCullough |
title_short | Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups |
title_sort | homotopy equivalences of 3 manifolds and deformation theory of kleinian groups |
topic | Funções de uma variável complexa larpcal Grupos finitos larpcal Homotopie gtt Klein-groepen gtt Manifolds gtt Topologia de dimensão baixa larpcal aThree-manifolds (Topology) aHomotopy equivalences aLow-dimensional topology aKleinian groups |
topic_facet | Funções de uma variável complexa Grupos finitos Homotopie Klein-groepen Manifolds Topologia de dimensão baixa aThree-manifolds (Topology) aHomotopy equivalences aLow-dimensional topology aKleinian groups |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019976150&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT canaryricharddouglas homotopyequivalencesof3manifoldsanddeformationtheoryofkleiniangroups AT mcculloughdarryl homotopyequivalencesof3manifoldsanddeformationtheoryofkleiniangroups |