Fundamentals and applications of complex analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Kluwer
2003
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 418 S. graph. Darst. |
ISBN: | 0306477483 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025310659 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 100417s2003 d||| |||| 00||| eng d | ||
020 | |a 0306477483 |9 0-306-47748-3 | ||
035 | |a (OCoLC)248810465 | ||
035 | |a (DE-599)BVBBV025310659 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
082 | 0 | |a 515.9 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Cohen, Harold |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals and applications of complex analysis |c Harold Cohen |
264 | 1 | |a New York [u.a.] |b Kluwer |c 2003 | |
300 | |a XIV, 418 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konforme Abbildung |0 (DE-588)4164968-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | 1 | |a Konforme Abbildung |0 (DE-588)4164968-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019941702&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-019941702 |
Datensatz im Suchindex
_version_ | 1804142382961131520 |
---|---|
adam_text | Titel: Fundamentals and applications of complex analysis
Autor: Cohen, Harold
Jahr: 2003
Contents
1 INTRODUCTION................................................................................1
1.1 A BRIEF HISTORY......................................................................1
2 COMPLEX NUMBERS.......................................................................5
2.1 CONJUGATION, MODULUS, ARGUMENT AND
ARITHEMTIC...............................................................................5
2.2 CARTESIAN, TRIGONOMETRIC AND POLAR FORMS.........11
2.3 ROOTS OF UNITY.....................................................................19
2.4 COMPLEX NUMBERS AND AC CIRCUITS ............................23
PROBLEMS.......................................................................................33
3 COMPLEX VARIABLES...................................................................39
3.1 DERIVATIVES, CAUCHY-RIEMANN CONDITIONS AND
ANALYTICITY...........................................................................39
3.2 INTEGRALS OF ANALYTIC FUNCTION.................................50
3.3 POLE SINGULARITIES.............................................................54
3.4 CAUCHY S RESIDUE THEOREM............................................59
PROBLEMS.......................................................................................74
4 SERIES, LIMITS AND RESIDUES....................................................79
4.1 TAYLOR SERIES FOR ANALYTIC FUNCTIONS...................79
4.2 LAURENT SERIES FOR A SINGULAR FUNCTION...............84
4.3 ARITHMETIC COMBINATIONS OF POWER SERIES............91
4.4 LIMITS AND L HOSPITAL S RULE.........................................97
4.5 RESIDUES ...............................................................................101
PROBLEMS.....................................................................................Ill
Contents
xiv
5 EVALUATION OF INTEGRALS...............................................
5 I INTEGRALS ALONG THE ENTIRE REAL AXIS.............
5.2 INTEGRALS OF FUNCTIONS OF SIN0 AND COS0......
5.3 CAUCHY S PRINCIPAL VALUE INTEGRAL AND THE
DIRAC 5 SYMBOL........................................................
5.4 MISCELLANEOUS INTEGRALS.................................
PROBLEMS..........................................................................
6 MULTIVALUED FUNCTIONS, BRANCH POINTS AND
CUTS....................................................................................
6.1 NON-INTEGER POWER, LOGARITHM FUNCTIONS
6.2 RIEMANN SHEETS, BRANCH POINTS AND CUTS..
6.3 BRANCH STRUCTURE.................................................
6.4 MULTIPLE BRANCH POINTS......................................
6.5 EVALUATION OF INTEGRALS...................................
PROBLEMS..........................................................................
7 SINGULARITIES OF FUNCTIONS DEFINED BY INTEGRALS...215
7.1 THE INTEGRAND IS ANALYTIC...........................................215
7.2 THE INTEGRAND IS SINGULAR...........................................216
7.3 LIMITS OF THE INTEGRAL ARE VARIABLE.......................231
PROBLEMS.....................................................................................235
8 CONFORMAL MAPPING ...............................................................239
8.1 PROPERTIES OF A MAPPING................................................239
8.2 LINEAR AND BILINEAR TRANSFORMATIONS..................261
8.3 SCHWARZ-CHRISTOFFEL TRANSFORMATION.................272
8.4 APPLICATIONS.......................................................................301
PROBLEMS.....................................................................................336
9 DISPERSION RELATIONS.............................................................357
9.1 KRAMERS-KRONIG DISPERSION RELATIONS OVER THE
ENTIRE REAL AXIS.................................................................358
9.2 KRAMERS-KRONIG DISPERSION RELATIONS OVER HALF
THE REAL AXIS.......................................................................362
9.3 DISPERSION RELATIONS FOR A FUNCTION WITH BRANCH
STRUCTURE............................................................................366
9.4 SUBTRACTED DISPERSION RELATIONS............................371
9.5 DISPERSION RELATIONS AND A REPRESENTATION OF
THE DIRAC 5-SYMBOL..........................................................380
PROBLEMS..............................
119
119
129
130
141
150
157
.158
162
167
178
191
209
Contents xv
APPENDIX 1 DERIVATION OF GREEN S THEOREM......................389
APPENDIX 2 DERIVATION OF THE GEOMETRIC SERIES..............395
APPENDIX 3 EVALUATION OF AN INTEGRAL...............................397
APPENDIX 4 TRANSFORMATION OF LAPLACE S EQUATION.....401
APPENDIX 5 TRANSFORMATION OF BOUNDARY CONDITIONS.405
REFERENCES.......................................................................................411
INDEX...................................................................................................413
|
any_adam_object | 1 |
author | Cohen, Harold |
author_facet | Cohen, Harold |
author_role | aut |
author_sort | Cohen, Harold |
author_variant | h c hc |
building | Verbundindex |
bvnumber | BV025310659 |
classification_rvk | SK 700 |
ctrlnum | (OCoLC)248810465 (DE-599)BVBBV025310659 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01300nam a2200349 c 4500</leader><controlfield tag="001">BV025310659</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2003 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0306477483</subfield><subfield code="9">0-306-47748-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248810465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025310659</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Harold</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals and applications of complex analysis</subfield><subfield code="c">Harold Cohen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 418 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konforme Abbildung</subfield><subfield code="0">(DE-588)4164968-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konforme Abbildung</subfield><subfield code="0">(DE-588)4164968-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019941702&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019941702</subfield></datafield></record></collection> |
id | DE-604.BV025310659 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:30:53Z |
institution | BVB |
isbn | 0306477483 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-019941702 |
oclc_num | 248810465 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XIV, 418 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Kluwer |
record_format | marc |
spelling | Cohen, Harold Verfasser aut Fundamentals and applications of complex analysis Harold Cohen New York [u.a.] Kluwer 2003 XIV, 418 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Konforme Abbildung (DE-588)4164968-0 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 s Konforme Abbildung (DE-588)4164968-0 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019941702&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cohen, Harold Fundamentals and applications of complex analysis Funktionentheorie (DE-588)4018935-1 gnd Konforme Abbildung (DE-588)4164968-0 gnd |
subject_GND | (DE-588)4018935-1 (DE-588)4164968-0 |
title | Fundamentals and applications of complex analysis |
title_auth | Fundamentals and applications of complex analysis |
title_exact_search | Fundamentals and applications of complex analysis |
title_full | Fundamentals and applications of complex analysis Harold Cohen |
title_fullStr | Fundamentals and applications of complex analysis Harold Cohen |
title_full_unstemmed | Fundamentals and applications of complex analysis Harold Cohen |
title_short | Fundamentals and applications of complex analysis |
title_sort | fundamentals and applications of complex analysis |
topic | Funktionentheorie (DE-588)4018935-1 gnd Konforme Abbildung (DE-588)4164968-0 gnd |
topic_facet | Funktionentheorie Konforme Abbildung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019941702&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cohenharold fundamentalsandapplicationsofcomplexanalysis |