The hybrid multiscale simulation technology: an introduction with application to astrophysical and laboratory plasmas
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2002
|
Schriftenreihe: | Scientific computation
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 403 S. Ill., graph. Darst. |
ISBN: | 3540417346 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025295257 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 100417s2002 ad|| |||| 00||| eng d | ||
020 | |a 3540417346 |9 3-540-41734-6 | ||
035 | |a (OCoLC)248451196 | ||
035 | |a (DE-599)BVBBV025295257 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
082 | 0 | |a 530.44 | |
084 | |a SK 955 |0 (DE-625)143274: |2 rvk | ||
100 | 1 | |a Lipatov, Alexander S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The hybrid multiscale simulation technology |b an introduction with application to astrophysical and laboratory plasmas |c Alexander S. Lipatov |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2002 | |
300 | |a XVIII, 403 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Scientific computation | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019927978&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-019927978 |
Datensatz im Suchindex
_version_ | 1804142364374073344 |
---|---|
adam_text | CONTENTS PART I. COMPUTATIONAL MODELS AND NUMERICAL METHODS 1. PHYSICAL
SYSTEMS AND COMPUTATIONAL MODELS ............. 3 1.1 INTRODUCTION . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 3 1.2 THE BASIC STEPS OF COMPUTATIONAL EXPERIMENTS . . . . . . .
. . . . . 3 1.3 CLASSIFICATION OF THE PLASMA SYSTEMS. SPACE AND TIME
SCALES . 6 1.3.1 SOLAR WIND . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 6 1.3.2 SOLAR-WIND*EARTH INTERACTION . . .
. . . . . . . . . . . . . . . . . . 7 1.3.3 SOLAR-WIND*MOON INTERACTION
. . . . . . . . . . . . . . . . . . . . . 8 1.3.4 SOLAR-WIND*VENUS AND
SOLAR-WIND*MARS INTERACTION . 8 1.3.5 SOLAR-WIND*COMET INTERACTION . . .
. . . . . . . . . . . . . . . . . 10 1.3.6 SOLAR-WIND*HELIOSPHERE
INTERACTION . . . . . . . . . . . . . . . . 12 1.3.7 COLLISIONLESS
SHOCKS AND NEUTRAL CURRENT LAYERS . . . . . 12 1.3.8 BEAMS AND PLASMA
CLOUDS . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.9 FUSION
PLASMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 14 1.4 CLASSIFICATION OF THE COMPUTATIONAL MODELS . . . . . . . . . .
. . . . . 16 1.4.1 DIRECT SOLUTION OF THE VLASOV*MAXWELL EQUATIONS . . .
. 17 1.4.2 WATER-BAG METHODS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 20 1.4.3 VLASOV HYBRID SIMULATION (VHS) METHOD . . . . .
. . . . . . 21 1.4.4 CONVENTIONAL PARTICLE MODELS . . . . . . . . . . .
. . . . . . . . . . 22 SUMMARY . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.
PARTICLE-MESH MODELS .................................... 25 2.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 25 2.2 HYBRID QUASINEUTRAL MODELS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 25 2.2.1 ELECTROSTATIC MODEL .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2
AMPERE MAGNETOINDUCTIVE MODEL . . . . . . . . . . . . . . . . . . 27
2.2.3 PARTICLE-ION*FLUID-ELECTRON MODEL . . . . . . . . . . . . . . . .
. 29 2.2.4 PARTICLE-ION*FLUID-ION*FLUID-ELECTRON MODEL . . . . . . . .
36 2.2.5 PARTICLE-ION-ELEMENT*FLUID-ELECTRON MODEL . . . . . . . . . 37
2.2.6 GYROKINETIC-ION*FLUID-ION*FLUID-ELECTRON MODELS. *F METHOD . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.7 GUIDING-CENTER-ION*FLUID-ELECTRON MODEL . . . . . . . . . . 45
2.2.8 PARTICLE-ELECTRON*FLUID-ION MODEL . . . . . . . . . . . . . . . .
. 48 2.3 PARTICLE NONNEUTRAL MODELS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 49 XIV CONTENTS 2.3.1 FULL PARTICLE MODELS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.2
PARTICLE-ION*GUIDING-CENTER-ELECTRON MODEL . . . . . . . . 53 2.3.3
GUIDING-CENTER-ION*GUIDING-CENTER-ELECTRON (DRIFT-KINETIC) MODEL . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.4
PARTICLE-ELECTRON*IMMOBILE-ION MODEL . . . . . . . . . . . . . . 56 2.4
PHOTO-IONIZATION AND CHARGE EXCHANGE PROCESSES . . . . . . . . . . 56
2.4.1 HYBRID PARTICLE-NEUTRAL-COMPONENT*FLUID- PLASMA MODELS . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4.2
HYBRID PARTICLE-NEUTRAL-COMPONENT*KINETIC- PLASMA MODELS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 62 SUMMARY . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 64 EXERCISE . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3. TIME
INTEGRATION OF THE PARTICLE MOTION EQUATIONS ....... 67 3.1 INTRODUCTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 67 3.2 EXPLICIT LEAPFROG METHOD . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 71 3.3 IMPLICIT METHOD . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4
OPERATOR SPLITTING METHOD . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 73 3.4.1 SPLITTING OF THE PARTICLE MOTION EQUATIONS.
BORIS*S SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 73 3.4.2 ANALYTICAL TIME INTEGRATION. BUNEMAN*S SCHEME . . .
. . 74 3.4.3 TIME INTEGRATION WITH * * T 1 . . . . . . . . . . . . .
. . . . . 75 3.5 STABILITY AND ACCURACY OF THE LEAPFROG SCHEMES . . . .
. . . . . . . 76 3.6 IMPLICIT TIME INTEGRATION. C1 AND D1 CLASS SCHEMES
. . . . . . . . 78 3.6.1 C1 CLASS SCHEME . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 78 3.6.2 D1 CLASS SCHEME . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.7 RUNGE*KUTTA
SCHEMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 80 3.8 RELATIVISTIC PARTICLE MOTION EQUATIONS . . . . . . . . . . .
. . . . . . . . . 81 SUMMARY . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 EXERCISES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 82 4. DENSITY AND CURRENT ASSIGNMENT. FORCE
INTERPOLATION. CONSERVATION LAWS
........................................ 83 4.1 INTRODUCTION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 83 4.2 CLOUD AND ASSIGNMENT FUNCTION SHAPES . . . . . . . . . . . . .
. . . . . 83 4.3 NGP, CIC AND TSC WEIGHTING . . . . . . . . . . . . . .
. . . . . . . . . . . . 85 4.3.1 CLOUD ( S ) AND ASSIGNMENT ( W )
FUNCTION HIERARCHY . . . 85 4.3.2 WEIGHTING IN TWO- AND
THREE-DIMENSIONAL SPACE . . . . . 87 4.4 FORCE INTERPOLATION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5
MASS,MOMENTUM AND ENERGY CONSERVATION . . . . . . . . . . . . . . . 92
4.5.1 MASS CONSERVATION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 92 4.5.2 MOMENTUM CONSERVATION . . . . . . . . . . . . . .
. . . . . . . . . . . 94 4.5.3 ENERGY CONSERVATION . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 98 4.6 PERIODIC SYSTEMS. MULTIPOLE
EXPANSION METHOD . . . . . . . . . . . . 102 SUMMARY . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 103 CONTENTS XV 5. TIME INTEGRATION OF THE FIELD AND ELECTRON
PRESSURE EQUATIONS ......................... 105 5.1 INTRODUCTION . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 105 5.2 PREDICTOR*CORRECTOR METHODS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 107 5.2.1 THE UPWIND METHOD . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 108 5.2.2 THE LEAPFROG SCHEME .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2.3
LAX*WENDROFF SCHEME. EXPLICIT CALCULATION OF THE ELECTRIC FIELD . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.4 IMPLICIT
CALCULATION OF THE ELECTRIC FIELD . . . . . . . . . . . . 114 5.3
OPERATOR SPLITTING METHODS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 119 5.3.1 SPLITTING SCHEMES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 119 5.3.2 PREDICTOR*CORRECTOR/OPERATOR
SPLITTING SCHEME . . . . . 120 5.4 THE TRANSPORTIVE PROPERTY . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 121 5.5 HIGH-ORDER
SCHEMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 124 5.5.1 MULTIPOINT STENCIL SCHEMES . . . . . . . . . . . . . . .
. . . . . . . . 124 5.5.2 DIFFERENTIAL CONSEQUENCES FROM THE GOVERNING
EQUATIONS . . . . . . . . . . . . . . . . . . . . . 125 5.5.3 COMPACT
SCHEMES WITH SPECTRAL-LIKE RESOLUTION . . . . . 125 5.5.4 ADVECTION AND
DIFFUSION EQUATIONS . . . . . . . . . . . . . . . . . 131 5.5.5
MAXWELL*S EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 132 5.5.6 FILTERING OF SPURIOUS OSCILLATIONS . . . . . . . . . . .
. . . . . . . 134 5.6 TIME INTEGRATION OF THE EQUATIONS FOR
ELECTROMAGNETIC POTENTIALS . . . . . . . . . . . . . . . . . . . . . . .
. . . . 135 5.7 TIME INTEGRATION OF THE GENERALIZED FIELD EQUATIONS . .
. . . . . . 138 5.8 TIME INTEGRATION OF THE ELECTRON PRESSURE EQUATION .
. . . . . . . 140 SUMMARY . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 EXERCISES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 141 6. GENERAL LOOPS FOR HYBRID CODES.
MULTISCALE METHODS .... 143 6.1 INTRODUCTION . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2 EXAMPLES
OF THE CONVENTIONAL HYBRID SIMULATION LOOPS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 143 6.2.1 GENERAL PREDICTOR*CORRECTOR
LOOP . . . . . . . . . . . . . . . . . 143 6.2.2 IMPLICIT TIME
INTEGRATION OF THE ELECTROMAGNETIC EQUATIONS . . . . . . . . . . . . . .
. . . . . 144 6.2.3 THE MOMENT METHOD . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 145 6.2.4 THE RICHARDSON EXTRAPOLATION METHOD . .
. . . . . . . . . . . 147 6.3 MULTIPLE-TIME-SCALE METHODS . . . . . . .
. . . . . . . . . . . . . . . . . . . . 147 6.3.1 ELECTROMAGNETIC FIELD
SUBCYCLING. CURRENT ADVANCED METHODS AND CYCLIC LEAPFROG SCHEMES . . . .
. . . . . . . . . . . . . . . . . . 148 6.3.2 LIGHT ION (ELECTRON)
SUBCYCLING . . . . . . . . . . . . . . . . . . . 151 6.3.3 ORBIT
AVERAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 154 6.4 MULTIPLE-SPACE/TIME-SCALE METHODS . . . . . . . . . . . . .
. . . . . . . . 156 6.4.1 VARIATIONAL METHODS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 157 XVI CONTENTS 6.4.2 ADAPTIVE MESH AND
PARTICLE REFINEMENT METHODS . . . . 158 SUMMARY . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 163 7. PARTICLE LOADING AND INJECTION. BOUNDARY CONDITIONS ..... 165
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 165 7.2 LOADING THE PARTICLES INSIDE THE
COMPUTATIONAL DOMAIN . . . . . 165 7.2.1 LOADING NONUNIFORM
DISTRIBUTIONS F 0 ( V ) ,N 0 ( X ) . . . . . . 165 7.2.2 LOADING A
MAXWELLIAN VELOCITY DISTRIBUTION . . . . . . . . . 166 7.2.3 LOADING A
RING VELOCITY DISTRIBUTION . . . . . . . . . . . . . . . 167 7.2.4
LOADING A SHELL VELOCITY DISTRIBUTION . . . . . . . . . . . . . . . 173
7.3 PARTICLE INJECTION AT BOUNDARIES . . . . . . . . . . . . . . . . . .
. . . . . . . 174 7.3.1 LOADING A MAXWELLIAN VELOCITY DISTRIBUTION FLUX
. . . . 174 7.3.2 LOADING A RING VELOCITY DISTRIBUTION FLUX . . . . . .
. . . . 176 7.3.3 LOADING A SHELL VELOCITY DISTRIBUTION FLUX . . . . . .
. . . . 178 7.4 CHARGE EXCHANGE PROCESSES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 180 7.5 BOUNDARY CONDITIONS FOR PARTICLES
AND THE ELECTROMAGNETIC FIELD . . . . . . . . . . . . . . . . . . . . .
. . . . . . 181 7.5.1 PLASMA*VACUUM INTERFACE . . . . . . . . . . . . .
. . . . . . . . . . . . 181 7.5.2 FIELD RADIATION AND ABSORPTION AT THE
BOUNDARIES . . . . 182 7.5.3 BOUNDARY CONDITIONS AT THE CONDUCTING WALL
. . . . . . . . 185 SUMMARY . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 PART II.
APPLICATIONS 8. COLLISIONLESS SHOCK SIMULATION
........................... 189 8.1 INTRODUCTION . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.2
COLLISIONLESS SHOCKS WITHOUT MASS LOADING . . . . . . . . . . . . . . .
192 8.2.1 QUASIPERPENDICULAR SHOCKS . . . . . . . . . . . . . . . . . .
. . . . . . 192 8.2.2 OBLIQUE SHOCKS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 198 8.2.3 QUASIPARALLEL SHOCKS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 202 8.3 COLLISIONLESS
SHOCKS WITH MASS LOADING BY HEAVY IONS . . . . . . 208 8.3.1
QUASIPERPENDICULAR SHOCKS . . . . . . . . . . . . . . . . . . . . . . .
. 210 8.3.2 OBLIQUE SHOCKS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 215 8.3.3 QUASIPARALLEL SHOCKS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 219 8.3.4 PICKUP ION ACCELERATION
AT SHOCK FRONT. SHOCK SURFING 224 SUMMARY . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
236 EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 236 9. TANGENTIAL
DISCONTINUITY SIMULATION ...................... 237 9.1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 237 9.2 FORMULATION OF THE PROBLEM AND MATHEMATICAL MODEL . . .
. . . . 238 9.3 ONE-DIMENSIONAL STRUCTURES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 239 9.4 TWO-DIMENSIONAL STRUCTURES . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 241 CONTENTS XVII 9.4.1
MAGNETIC FIELD ORIENTED PERPENDICULAR TO THE SIMULATION PLANE . . . . .
. . . . . . . . . . . . . . . . . . . . . 241 9.4.2 MAGNETIC FIELD IN
THE SIMULATION PLANE . . . . . . . . . . . . . 243 9.4.3 ANALYSIS OF THE
WAVES AT THE TD AND THE WAVE*PARTICLE CROSS-FIELD TRANSPORT . . . . . .
. . 243 9.4.4 DEPENDENCE OF THE FINAL THICKNESS OF TDS ON INITIAL
CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
9.4.5 DEPENDENCE OF THE TD WIDTH ON ANOMALOUS RESISTIVITY AND NUMERICAL
VISCOSITY . . . . . . . . . . . . . . . . . 247 9.4.6 THE
KELVIN*HELMHOLTZ INSTABILITY AT THE TD . . . . . . . . 248 10. MAGNETIC
FIELD RECONNECTION SIMULATION ................. 255 10.1 INTRODUCTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 255 10.2 ION TEARING INSTABILITY . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 256 10.2.1 FORMULATION OF THE
PROBLEM AND MATHEMATICAL MODEL 257 10.2.2 MULTIMODE REGIME . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 260 10.2.3 SINGLE-MODE
REGIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
10.2.4 EXPLOSIVE REGIME. ION ACCELERATION . . . . . . . . . . . . . . .
. 264 10.3 ELECTRON EFFECTS ON RECONNECTION . . . . . . . . . . . . . .
. . . . . . . . . . 268 10.3.1 EFFECTS OF ELECTRON INERTIA AND ELECTRON
PRESSURE ANISOTROPY . . . . . . . . . . . . . . . . . . 270 10.3.2
EFFECTS OF ANOMALOUS RESISTIVITY ON RECONNECTION . . . . 275 SUMMARY . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 280 EXERCISES . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
11. BEAM DYNAMICS SIMULATION .............................. 283 11.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 283 11.2 COLD BEAM DYNAMICS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 284 11.2.1
ONE-DIMENSIONAL MODELS . . . . . . . . . . . . . . . . . . . . . . . . .
285 11.2.2 TWO-DIMENSIONAL MODELS . . . . . . . . . . . . . . . . . . .
. . . . . . 288 11.3 MASS LOADING OF THE SUPERSONIC FLOW BY HEAVY IONS .
. . . . . . . 291 11.3.1 ONE-DIMENSIONAL MODELS . . . . . . . . . . . .
. . . . . . . . . . . . . 291 11.3.2 TWO-DIMENSIONAL MODELS . . . . . .
. . . . . . . . . . . . . . . . . . . 295 11.4 FINITE SIZE BEAM (PLASMA
CLOUD) DYNAMICS . . . . . . . . . . . . . . . 301 11.4.1 GENERATION OF
LOW-FREQUENCY WAVES BY THREE-DIMENSIONAL AND 2.5-DIMENSIONAL BEAMS IN A
HOMOGENEOUS BACKGROUND . . . . . . . . . . . . . . . . . . . . . 301
11.4.2 INTERACTION OF THE 2.5-DIMENSIONAL BEAM WITH TANGENTIAL
DISCONTINUITIES . . . . . . . . . . . . . . . . . . . . . 302 SUMMARY .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 306 12. INTERACTION OF THE SOLAR WIND WITH
ASTROPHYSICAL OBJECTS 309 12.1 INTRODUCTION . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 12.2
INTERACTION OF THE SOLAR WIND WITH STRONG COMETS . . . . . . . . . 309
12.2.1 FORMULATION OF THE PROBLEM AND MATHEMATICAL MODEL 310 XVIII
CONTENTS 12.2.2 STRUCTURE OF THE REGION OF MASS LOADING BY COMETARY IONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.2.3 INDUCED MAGNETOSPHERE,BOW WAVE AND MAGNETIC BARRIER . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 316 12.3 INTERACTION OF THE
SOLAR WIND WITH WEAK COMETS AND RELATED OBJECTS . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 320 12.3.1 FORMULATION
OF THE PROBLEM AND MATHEMATICAL MODEL 320 12.3.2 INTERACTION OF THE
SOLAR WIND WITH VERY WEAK COMETS 321 12.3.3 INTERACTION OF THE SOLAR
WIND WITH WEAK COMETS . . . . 329 12.3.4 INTERACTION OF THE SOLAR WIND
WITH PLUTO . . . . . . . . . . . 329 12.4 INTERACTION OF THE SOLAR WIND
WITH VENUS . . . . . . . . . . . . . . . . . 333 12.4.1 FORMULATION OF
THE PROBLEM AND MATHEMATICAL MODEL 333 12.4.2 RESULTS AND CONCLUSIONS .
. . . . . . . . . . . . . . . . . . . . . . . . . 334 12.5 INTERACTION
OF THE SOLAR WIND WITH THE MOON . . . . . . . . . . . . . . 337 12.5.1
FORMULATION OF THE PROBLEM AND MATHEMATICAL MODEL 338 12.5.2 METHOD OF
SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
340 12.5.3 RESULTS AND CONCLUSIONS . . . . . . . . . . . . . . . . . . .
. . . . . . . 342 12.6 INTERACTION OF NEUTRAL INTERSTELLAR ATOMS WITH
THE HELIOSPHERE 344 12.6.1 FORMULATION OF THE PROBLEM AND MATHEMATICAL
MODEL . 344 12.6.2 RESULTS AND CONCLUSIONS . . . . . . . . . . . . . . .
. . . . . . . . . . . 346 SUMMARY . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
EXERCISES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 353 13. APPENDIX
................................................. 355 13.1 COORDINATE
FORM OF MAXWELL*S EQUATIONS AND THE ELECTRON PRESSURE EQUATIONS . . . .
. . . . . . . . . . . . . . . . . 355 13.1.1 CARTESIAN COORDINATES . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 355 13.1.2 CYLINDRICAL
COORDINATES . . . . . . . . . . . . . . . . . . . . . . . . . . 357
13.1.3 SPHERICAL COORDINATES . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 358 13.2 SOLVING ONE-DIMENSIONAL DIFFERENCE EQUATIONS . . .
. . . . . . . . . . 361 13.2.1 THREE-POINT DIFFERENCE EQUATION WITH
NONPERIODIC BOUNDARY CONDITIONS:
FORWARD-ELIMINATION*BACKWARD-SUBSTITUTION METHOD . 361 13.2.2
THREE-POINT DIFFERENCE EQUATION WITH PERIODIC BOUNDARY CONDITIONS:
FORWARD-ELIMINATION*BACKWARD-SUBSTITUTION METHOD . 362 13.2.3 FIVE-POINT
DIFFERENCE EQUATION: FORWARD-ELIMINATION*BACKWARD-SUBSTITUTION METHOD .
363 14. SOLUTIONS ................................................. 365
REFERENCES .................................................... 380
INDEX ......................................................... 401
|
any_adam_object | 1 |
author | Lipatov, Alexander S. |
author_facet | Lipatov, Alexander S. |
author_role | aut |
author_sort | Lipatov, Alexander S. |
author_variant | a s l as asl |
building | Verbundindex |
bvnumber | BV025295257 |
classification_rvk | SK 955 |
ctrlnum | (OCoLC)248451196 (DE-599)BVBBV025295257 |
dewey-full | 530.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.44 |
dewey-search | 530.44 |
dewey-sort | 3530.44 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01163nam a2200301 c 4500</leader><controlfield tag="001">BV025295257</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2002 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540417346</subfield><subfield code="9">3-540-41734-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248451196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025295257</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.44</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 955</subfield><subfield code="0">(DE-625)143274:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lipatov, Alexander S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The hybrid multiscale simulation technology</subfield><subfield code="b">an introduction with application to astrophysical and laboratory plasmas</subfield><subfield code="c">Alexander S. Lipatov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 403 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Scientific computation</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019927978&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019927978</subfield></datafield></record></collection> |
id | DE-604.BV025295257 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:30:36Z |
institution | BVB |
isbn | 3540417346 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-019927978 |
oclc_num | 248451196 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XVIII, 403 S. Ill., graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer |
record_format | marc |
series2 | Scientific computation |
spelling | Lipatov, Alexander S. Verfasser aut The hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas Alexander S. Lipatov Berlin [u.a.] Springer 2002 XVIII, 403 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Scientific computation SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019927978&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lipatov, Alexander S. The hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas |
title | The hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas |
title_auth | The hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas |
title_exact_search | The hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas |
title_full | The hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas Alexander S. Lipatov |
title_fullStr | The hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas Alexander S. Lipatov |
title_full_unstemmed | The hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas Alexander S. Lipatov |
title_short | The hybrid multiscale simulation technology |
title_sort | the hybrid multiscale simulation technology an introduction with application to astrophysical and laboratory plasmas |
title_sub | an introduction with application to astrophysical and laboratory plasmas |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019927978&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lipatovalexanders thehybridmultiscalesimulationtechnologyanintroductionwithapplicationtoastrophysicalandlaboratoryplasmas |