An introduction to mathematical logic and type theory: to truth through proof
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer
2002
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Applied logic series
27 |
Schlagworte: | |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XVIII, 390 S. |
ISBN: | 1402007639 9789048160792 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV025289440 | ||
003 | DE-604 | ||
005 | 20221206 | ||
007 | t | ||
008 | 100417s2002 |||| 00||| eng d | ||
020 | |a 1402007639 |9 1-4020-0763-9 | ||
020 | |a 9789048160792 |c Print |9 978-90-481-6079-2 | ||
035 | |a (OCoLC)845525079 | ||
035 | |a (DE-599)BVBBV025289440 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-19 |a DE-573 |a DE-473 | ||
082 | 0 | |a 511.3 | |
084 | |a CC 2400 |0 (DE-625)17608: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Andrews, Peter Bruce |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to mathematical logic and type theory |b to truth through proof |c by Peter B. Andrews |
250 | |a 2. ed. | ||
264 | 1 | |a Dordrecht [u.a.] |b Kluwer |c 2002 | |
300 | |a XVIII, 390 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Applied logic series |v 27 | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Dualität |0 (DE-588)4013161-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpolation |0 (DE-588)4162121-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Typentheorie |0 (DE-588)4121795-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vollständigkeit |0 (DE-588)4284513-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deduktion |0 (DE-588)4011271-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Normalform |0 (DE-588)4172025-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Herbrand-Satz |0 (DE-588)4159585-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweisbarkeit |0 (DE-588)7578966-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | 1 | |a Beweisbarkeit |0 (DE-588)7578966-8 |D s |
689 | 0 | 2 | |a Typentheorie |0 (DE-588)4121795-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Normalform |0 (DE-588)4172025-8 |D s |
689 | 1 | 1 | |a Vollständigkeit |0 (DE-588)4284513-0 |D s |
689 | 1 | 2 | |a Deduktion |0 (DE-588)4011271-8 |D s |
689 | 1 | 3 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 1 | 4 | |a Herbrand-Satz |0 (DE-588)4159585-3 |D s |
689 | 1 | 5 | |a Dualität |0 (DE-588)4013161-0 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Applied logic series |v 27 |w (DE-604)BV011076498 |9 27 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-019922792 |
Datensatz im Suchindex
_version_ | 1804142357070741504 |
---|---|
any_adam_object | |
author | Andrews, Peter Bruce |
author_facet | Andrews, Peter Bruce |
author_role | aut |
author_sort | Andrews, Peter Bruce |
author_variant | p b a pb pba |
building | Verbundindex |
bvnumber | BV025289440 |
classification_rvk | CC 2400 SK 130 |
ctrlnum | (OCoLC)845525079 (DE-599)BVBBV025289440 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02226nam a2200589 cb4500</leader><controlfield tag="001">BV025289440</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2002 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402007639</subfield><subfield code="9">1-4020-0763-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048160792</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6079-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845525079</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025289440</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2400</subfield><subfield code="0">(DE-625)17608:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andrews, Peter Bruce</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to mathematical logic and type theory</subfield><subfield code="b">to truth through proof</subfield><subfield code="c">by Peter B. Andrews</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 390 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied logic series</subfield><subfield code="v">27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dualität</subfield><subfield code="0">(DE-588)4013161-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Typentheorie</subfield><subfield code="0">(DE-588)4121795-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vollständigkeit</subfield><subfield code="0">(DE-588)4284513-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deduktion</subfield><subfield code="0">(DE-588)4011271-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Normalform</subfield><subfield code="0">(DE-588)4172025-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Herbrand-Satz</subfield><subfield code="0">(DE-588)4159585-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweisbarkeit</subfield><subfield code="0">(DE-588)7578966-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Beweisbarkeit</subfield><subfield code="0">(DE-588)7578966-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Typentheorie</subfield><subfield code="0">(DE-588)4121795-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Normalform</subfield><subfield code="0">(DE-588)4172025-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Vollständigkeit</subfield><subfield code="0">(DE-588)4284513-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Deduktion</subfield><subfield code="0">(DE-588)4011271-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Herbrand-Satz</subfield><subfield code="0">(DE-588)4159585-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">Dualität</subfield><subfield code="0">(DE-588)4013161-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied logic series</subfield><subfield code="v">27</subfield><subfield code="w">(DE-604)BV011076498</subfield><subfield code="9">27</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019922792</subfield></datafield></record></collection> |
id | DE-604.BV025289440 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:30:29Z |
institution | BVB |
isbn | 1402007639 9789048160792 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-019922792 |
oclc_num | 845525079 |
open_access_boolean | |
owner | DE-11 DE-19 DE-BY-UBM DE-573 DE-473 DE-BY-UBG |
owner_facet | DE-11 DE-19 DE-BY-UBM DE-573 DE-473 DE-BY-UBG |
physical | XVIII, 390 S. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Kluwer |
record_format | marc |
series | Applied logic series |
series2 | Applied logic series |
spelling | Andrews, Peter Bruce Verfasser aut An introduction to mathematical logic and type theory to truth through proof by Peter B. Andrews 2. ed. Dordrecht [u.a.] Kluwer 2002 XVIII, 390 S. txt rdacontent n rdamedia nc rdacarrier Applied logic series 27 Hier auch später erschienene, unveränderte Nachdrucke Dualität (DE-588)4013161-0 gnd rswk-swf Interpolation (DE-588)4162121-9 gnd rswk-swf Typentheorie (DE-588)4121795-0 gnd rswk-swf Vollständigkeit (DE-588)4284513-0 gnd rswk-swf Deduktion (DE-588)4011271-8 gnd rswk-swf Normalform (DE-588)4172025-8 gnd rswk-swf Herbrand-Satz (DE-588)4159585-3 gnd rswk-swf Beweisbarkeit (DE-588)7578966-8 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 s Beweisbarkeit (DE-588)7578966-8 s Typentheorie (DE-588)4121795-0 s DE-604 Normalform (DE-588)4172025-8 s Vollständigkeit (DE-588)4284513-0 s Deduktion (DE-588)4011271-8 s Interpolation (DE-588)4162121-9 s Herbrand-Satz (DE-588)4159585-3 s Dualität (DE-588)4013161-0 s Applied logic series 27 (DE-604)BV011076498 27 |
spellingShingle | Andrews, Peter Bruce An introduction to mathematical logic and type theory to truth through proof Applied logic series Dualität (DE-588)4013161-0 gnd Interpolation (DE-588)4162121-9 gnd Typentheorie (DE-588)4121795-0 gnd Vollständigkeit (DE-588)4284513-0 gnd Deduktion (DE-588)4011271-8 gnd Normalform (DE-588)4172025-8 gnd Herbrand-Satz (DE-588)4159585-3 gnd Beweisbarkeit (DE-588)7578966-8 gnd Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4013161-0 (DE-588)4162121-9 (DE-588)4121795-0 (DE-588)4284513-0 (DE-588)4011271-8 (DE-588)4172025-8 (DE-588)4159585-3 (DE-588)7578966-8 (DE-588)4037951-6 |
title | An introduction to mathematical logic and type theory to truth through proof |
title_auth | An introduction to mathematical logic and type theory to truth through proof |
title_exact_search | An introduction to mathematical logic and type theory to truth through proof |
title_full | An introduction to mathematical logic and type theory to truth through proof by Peter B. Andrews |
title_fullStr | An introduction to mathematical logic and type theory to truth through proof by Peter B. Andrews |
title_full_unstemmed | An introduction to mathematical logic and type theory to truth through proof by Peter B. Andrews |
title_short | An introduction to mathematical logic and type theory |
title_sort | an introduction to mathematical logic and type theory to truth through proof |
title_sub | to truth through proof |
topic | Dualität (DE-588)4013161-0 gnd Interpolation (DE-588)4162121-9 gnd Typentheorie (DE-588)4121795-0 gnd Vollständigkeit (DE-588)4284513-0 gnd Deduktion (DE-588)4011271-8 gnd Normalform (DE-588)4172025-8 gnd Herbrand-Satz (DE-588)4159585-3 gnd Beweisbarkeit (DE-588)7578966-8 gnd Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Dualität Interpolation Typentheorie Vollständigkeit Deduktion Normalform Herbrand-Satz Beweisbarkeit Mathematische Logik |
volume_link | (DE-604)BV011076498 |
work_keys_str_mv | AT andrewspeterbruce anintroductiontomathematicallogicandtypetheorytotruththroughproof |