Non-Abelian minimal closed ideals of transitive Lie algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton, N. J.
Princeton Univ. Press [u.a.]
1981
|
Schriftenreihe: | Mathematical notes
|
Schlagworte: | |
Beschreibung: | 220 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024976306 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 100417s1981 |||| 00||| eng d | ||
035 | |a (OCoLC)251708646 | ||
035 | |a (DE-599)BVBBV024976306 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Conn, Jack F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-Abelian minimal closed ideals of transitive Lie algebras |c by Jack F. Conn |
264 | 1 | |a Princeton, N. J. |b Princeton Univ. Press [u.a.] |c 1981 | |
300 | |a 220 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Mathematical notes | |
650 | 0 | 7 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
655 | 7 | |a Transitive Lie-Algebra |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Transitive Lie-Algebra |A f |
689 | 0 | 1 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 2 | 1 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |D s |
689 | 2 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-019643683 |
Datensatz im Suchindex
_version_ | 1804142006200434688 |
---|---|
any_adam_object | |
author | Conn, Jack F. |
author_facet | Conn, Jack F. |
author_role | aut |
author_sort | Conn, Jack F. |
author_variant | j f c jf jfc |
building | Verbundindex |
bvnumber | BV024976306 |
classification_rvk | SK 340 |
ctrlnum | (OCoLC)251708646 (DE-599)BVBBV024976306 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01277nam a2200397 c 4500</leader><controlfield tag="001">BV024976306</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s1981 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)251708646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV024976306</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conn, Jack F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Abelian minimal closed ideals of transitive Lie algebras</subfield><subfield code="c">by Jack F. Conn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N. J.</subfield><subfield code="b">Princeton Univ. Press [u.a.]</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">220 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical notes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Transitive Lie-Algebra</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Transitive Lie-Algebra</subfield><subfield code="A">f</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019643683</subfield></datafield></record></collection> |
genre | Transitive Lie-Algebra gnd |
genre_facet | Transitive Lie-Algebra |
id | DE-604.BV024976306 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:24:54Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-019643683 |
oclc_num | 251708646 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | 220 S. |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Princeton Univ. Press [u.a.] |
record_format | marc |
series2 | Mathematical notes |
spelling | Conn, Jack F. Verfasser aut Non-Abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn Princeton, N. J. Princeton Univ. Press [u.a.] 1981 220 S. txt rdacontent n rdamedia nc rdacarrier Mathematical notes Ideal Mathematik (DE-588)4161198-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Transitive Lie-Algebra gnd rswk-swf Transitive Lie-Algebra f Ideal Mathematik (DE-588)4161198-6 s DE-604 Lie-Algebra (DE-588)4130355-6 s |
spellingShingle | Conn, Jack F. Non-Abelian minimal closed ideals of transitive Lie algebras Ideal Mathematik (DE-588)4161198-6 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4161198-6 (DE-588)4130355-6 |
title | Non-Abelian minimal closed ideals of transitive Lie algebras |
title_auth | Non-Abelian minimal closed ideals of transitive Lie algebras |
title_exact_search | Non-Abelian minimal closed ideals of transitive Lie algebras |
title_full | Non-Abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_fullStr | Non-Abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_full_unstemmed | Non-Abelian minimal closed ideals of transitive Lie algebras by Jack F. Conn |
title_short | Non-Abelian minimal closed ideals of transitive Lie algebras |
title_sort | non abelian minimal closed ideals of transitive lie algebras |
topic | Ideal Mathematik (DE-588)4161198-6 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Ideal Mathematik Lie-Algebra Transitive Lie-Algebra |
work_keys_str_mv | AT connjackf nonabelianminimalclosedidealsoftransitiveliealgebras |