Digital communications: fundamentals and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Upper Saddle River, NJ
Prentice-Hall
2008
|
Ausgabe: | 2. ed., 16. print. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIV, 1079 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
ISBN: | 0130847887 9780130847881 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024628621 | ||
003 | DE-604 | ||
005 | 20090910 | ||
007 | t | ||
008 | 090924s2008 xxuad|| |||| 00||| eng d | ||
020 | |a 0130847887 |9 0-13-084788-7 | ||
020 | |a 9780130847881 |9 978-0-13-084788-1 | ||
035 | |a (OCoLC)552213658 | ||
035 | |a (DE-599)GBV593339142 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-83 | ||
082 | 0 | |a 621.382 | |
084 | |a ZN 6040 |0 (DE-625)157496: |2 rvk | ||
100 | 1 | |a Sklar, Bernard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Digital communications |b fundamentals and applications |c Bernard Sklar |
250 | |a 2. ed., 16. print. | ||
264 | 1 | |a Upper Saddle River, NJ |b Prentice-Hall |c 2008 | |
300 | |a XXIV, 1079 S. |b Ill., graph. Darst. |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitale Nachrichtentechnik |0 (DE-588)4224275-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Digitale Nachrichtentechnik |0 (DE-588)4224275-7 |D s |
689 | 0 | 1 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018600276&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018600276 |
Datensatz im Suchindex
_version_ | 1804140651580751872 |
---|---|
adam_text | IMAGE 1
JL/XVTJL L I I LI
COMMUNICATIONS
FUNDAMENTALS AND APPLICATIONS SECOND EDITION
BERNARD SKLAR
COMMUNICATIONS ENGINEERING SERVICES, TARZANA, CALIFORNIA AND UNIVERSITY
OF CALIFORNIA, LOS ANGELES
PH PTR
PRENTICE HALL P TR UPPER SADDLE RIVER, NEW JERSEY 07458 WWW.PHPTR.COM
ISBN D-13-0FL4?FIFL-7
IMAGE 2
CONTENTS
PREFACE XVUE
1 SIGNALS AND SPECTRA 1
1.1 DIGITAL COMMUNICATION SIGNAL PROCESSING, 3 1.1.1 WHY DIGITAL?, 3
1.1.2 TYPICAL BLOCK DIAGRAM AND TRANSFORMATIONS, 4 1.1.3 BASIC DIGITAL
COMMUNICATION NOMENCLATURE, 11 1.1.4 DIGITAL VERSUS ANALOG PERFORMANCE
CRITERIA, 13 1.2 CLASSIFICATION OF SIGNALS, 14
1.2.1 DETERMINISTIC AND RANDOM SIGNALS, 14 1.2.2 PERIODIC AND
NONPERIODIC SIGNALS, 14 1.2.3 ANALOG AND DISCRETE SIGNALS, 14
1.2.4 ENERGY AND POWER SIGNALS, 14 1.2.5 THE UNIT IMPULSE FUNCTION, 16
1.3 SPECTRAL DENSITY, 16
1.3.1 ENERGY SPECTRAL DENSITY, 17 1.3.2 POWER SPECTRAL DENSITY, 17 1.4
AUTOCORRELATION, 19
1.4.1 AUTOCORRELATION OF AN ENERGY SIGNAL, 19 1.4.2 AUTOCORRELATION OF A
PERIODIC (POWER) SIGNAL, 20 1.5 RANDOM SIGNALS, 20 1.5.1 RANDOM
VARIABLES, 20
1.5.2 RANDOM PROCESSES, 22 1.5.3 TIME AVERAGING AND ERGODICITY, 25 1.5.4
POWER SPECTRAL DENSITY OF A RANDOM PROCESS, 26 1.5.5 NOISE IN
COMMUNICATION SYSTEMS, 30
V
IMAGE 3
1.6 SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS, 33
1.6.1 IMPULSE RESPONSE, 34 1.6.2 FREQUENCY TRANSFER FUNCTION, 35 1.6.3
DISTORTIONLESS TRANSMISSION, 36 1.6.4 SIGNALS, CIRCUITS, AND SPECTRA, 42
1.7 BANDWIDTH OF DIGITAL DATA, 45
1.7.1 BASEBAND VERSUS BANDPASS, 45 1.7.2 THE BANDWIDTH DILEMMA, 47 1.8
CONCLUSION, 51
FORMATTING AND BASEBAND MODULATION
2.1 BASEBAND SYSTEMS, 56 2.2 FORMATTING TEXTUAL DATA (CHARACTER CODING),
58 2.3 MESSAGES, CHARACTERS, AND SYMBOLS, 61 2.3.1 EXAMPLE OF MESSAGES,
CHARACTERS, AND SYMBOLS, 61
2.4 FORMATTING ANALOG INFORMATION, 62 2.4.1 THE SAMPLING THEOREM, 63
2.4.2 ALIASING, 69
2.4.3 WHY OVERSAMPLE? 72 2.4.4 SIGNAL INTERFACE FOR A DIGITAL SYSTEM, 75
2.5 SOURCES OF CORRUPTION, 76 2.5.7 SAMPLING AND QUANTIZING EFFECTS, 76
2.5.2 CHANNEL EFFECTS, 77
2.5.3 SIGNAL-TO-NOISE RATIO FOR QUANTIZED PULSES, 78 2.6 PULSE CODE
MODULATION, 79 2.7 UNIFORM AND NONUNIFORM QUANTIZATION, 81
2.7.1 STATISTICS OF SPEECH AMPLITUDES, 81 2.7.2 NONUNIFORM QUANTIZATION,
83 2.7.3 COMPANDING CHARACTERISTICS, 84 2.8 BASEBAND MODULATION, 85
2.8.1 WAVEFORM REPRESENTATION OF BINARY DIGITS, 85 2.8.2 PCM WAVEFORM
TYPES, 85 2.8.3 SPECTRAL ATTRIBUTES OF PCM WAVEFORMS, 89 2.8.4 BITS PER
PCM WORD AND BITS PER SYMBOL, 90 2.8.5 M-ARY PULSE MODULATION WAVEFORMS,
91 2.9 CORRELATIVE CODING, 94
2.9.1 DUOBINARY SIGNALING, 94 2.9.2 DUOBINARY DECODING, 95 2.9.3
PRECODING, 96
2.9.4 DUOBINARY EQUIVALENT TRANSFER FUNCTION, 97 2.9.5 COMPARISON OF
BINARY WITH DUOBINARY SIGNALING, 98 2.9.6 POLYBINARY SIGNALING, 99 2.10
CONCLUSION, 100
VI
IMAGE 4
3 BASEBAND DEMODULATION/DETECTION
104
3.1 SIGNALS AND NOISE, 106 3.1.1 ERROR-PERFORMANCE DEGRADATION IN
COMMUNICATION SYSTEMS, 106 3.1.2 DEMODULATION AND DETECTION, 107 3.1.3 A
VECTORIAL VIEW OF SIGNALS AND NOISE, 110 3.1.4 THE BASIC SNR PARAMETER
FOR DIGITAL COMMUNICATION SYSTEMS, 117
3.1.5 WHY E H /N 0 IS A NATURAL FIGURE OF MERIT, 118 3.2 DETECTION OF
BINARY SIGNALS IN GAUSSIAN NOISE, 119 3.2.1 MAXIMUM LIKELIHOOD RECEIVER
STRUCTURE, 119 3.2.2 THE MATCHED FILTER, 122
3.2.3 CORRELATION REALIZATION OF THE MATCHED FILTER, 124 3.2.4
OPTIMIZING ERROR PERFORMANCE, 127 3.2.5 ERROR PROBABILITY PERFORMANCE OF
BINARY SIGNALING, 131 3.3 INTERSYMBOL INTERFERENCE, 136
3.3.1 PULSE SHAPING TO REDUCE ISI, 138 3.3.2 TWO TYPES OF
ERROR-PERFORMANCE DEGRADATION, 142 3.3.3 DEMODULATION/DETECTION OF
SHAPED PULSES, 145 3.4 EQUALIZATION, 149
3.4.1 CHANNEL CHARACTERIZATION, 149 3.4.2 EYE PATTERN, 151
3.4.3 EQUALIZER FILTER TYPES, 152 3.4.4 PRESET AND ADAPTIVE
EQUALIZATION, 158 3.4.5 FILTER UPDATE RATE, 160 3.5 CONCLUSION, 161
4 BANDPASS MODULATION AND DEMODULATION/ DETECTION 167
4.1 WHY MODULATE? 168
4.2 DIGITAL BANDPASS MODULATION TECHNIQUES, 169 4.2.1 PHASOR
REPRESENTATION OF A SINUSOID, 171 4.2.2 PHASE SHIFT KEYING, 173 4.2.3
FREQUENCY SHIFT KEYING, 175 4.2.4 AMPLITUDE SHIFT KEYING, 175 4.2.5
AMPLITUDE PHASE KEYING, 176 4.2.6 WAVEFORM AMPLITUDE COEFFICIENT, 176
4.3 DETECTION OF SIGNALS IN GAUSSIAN NOISE, 177
4.3.1 DECISION REGIONS, 177 4.3.2 CORRELATION RECEIVER, 178 4.4 COHERENT
DETECTION, 183 4.4.1 COHERENT DETECTION OF PSK, 183
4.4.2 SAMPLED MATCHED FILTER, 184 4.4.3 COHERENT DETECTION OF MULTIPLE
PHASE SHIFT KEYING, 188 4.4.4 COHERENT DETECTION OF FSK, 191
CONTENTS VII
IMAGE 5
4.5 NONCOHERENT DETECTION, 194
4.5.1 DETECTION OF DIFFERENTIAL PSK, 194 4.5.2 BINARY DIFFERENTIAL PSK
EXAMPLE, 196 4.5.3 NONCOHERENT DETECTION OF FSK, 198 4.5.4 REQUIRED TONE
SPACING FOR NONCOHERENT ORTHOGONAL FSK, 200 4.6 COMPLEX ENVELOPE, 204
4.6.1 QUADRATURE IMPLEMENTATION OF A MODULATOR, 205 4.6.2 D8PSK
MODULATOR EXAMPLE, 206 4.6.3 D8PSK DEMODULATOR EXAMPLE, 208 4.7 ERROR
PERFORMANCE FOR BINARY SYSTEMS, 209
4.7.1 PROBABILITY OF BIT ERROR FOR COHERENTLY DETECTED BPSK, 209 4.7.2
PROBABILITY OF BIT ERROR FOR COHERENTLY DETECTED DIFFERENTIALLY ENCODED
BINARY PSK, 211 4.7.3 PROBABILITY OF BIT ERROR FOR COHERENTLY DETECTED
BINARY ORTHOGONAL FSK, 213 4.7.4 PROBABILITY OF BIT ERROR FOR
NONCOHERENTLY DETECTED BINARY ORTHOGONAL FSK, 213 4.7.5 PROBABILITY OF
BIT ERROR FOR BINARY DPSK, 216 4.7.6 COMPARISON OF BIT ERROR PERFORMANCE
FOR VARIOUS
MODULATION TYPES, 218 4.8 M-ARY SIGNALING AND PERFORMANCE, 219 4.8.1
IDEAL PROBABILITY OF BIT ERROR PERFORMANCE, 219 4.8.2 M-ARY SIGNALING,
220
4.8.3 VECTORIAL VIEW OF MPS * SIGNALING, 222 4.8.4 BPSK AND QPSK HAVE
THE SAME BIT ERROR PROBABILITY, 223 4.8.5 VECTORIAL VIEW OF MFSK
SIGNALING, 225 4.9 SYMBOL ERROR PERFORMANCE FOR M-ARY SYSTEMS (M 2),
229
4.9.1 PROBABILITY OF SYMBOL ERROR FOR MPS* , 229 4.9.2 PROBABILITY OF
SYMBOL ERROR FOR MFSK, 230 4.9.3 BIT ERROR PROBABILITY VERSUS SYMBOL
ERROR PROBABILITY FOR ORTHOGONAL SIGNALS, 232
4.9.4 BIT ERROR PROBABILITY VERSUS SYMBOL ERROR PROBABILITY FOR MULTIPLE
PHASE SIGNALING, 234 4.9.5 EFFECTS OF INTERSYMBOL INTERFERENCE, 235 4.10
CONCLUSION, 236
5 COMMUNICATIONS LINK ANALYSIS 242
5.1 WHAT THE SYSTEM LINK BUDGET TELLS THE SYSTEM ENGINEER, 243 5.2 THE
CHANNEL, 244
5.2.1 THE CONCEPT OF FREE SPACE, 244 5.2.2 ERROR-PERFORMANCE
DEGRADATION, 245 5.2.3 SOURCES OF SIGNAL LOSS AND NOISE, 245
VIII CONTENTS
IMAGE 6
5.3 RECEIVED SIGNAL POWER AND NOISE POWER, 250
5.3.1 THE RANGE EQUATION, 250 5.3.2 RECEIVED SIGNAL POWER AS A FUNCTION
OF FREQUENCY, 254 5.3.3 PATH LOSS IS FREQUENCY DEPENDENT, 256
5.3.4 THERMAL NOISE POWER, 258 5.4 LINK BUDGET ANALYSIS, 259 5.4.1 TWO E
B /N 0 VALUES OF INTEREST, 262
5.4.2 LINK BUDGETS ARE TYPICALLY CALCULATED IN DECIBELS, 263 5.4.3 HOW
MUCH LINK MARGIN IS ENOUGH? 264 5.4.4 LINK AVAILABILITY, 266
5.5 NOISE FIGURE, NOISE TEMPERATURE, AND SYSTEM TEMPERATURE, 270 5.5.1
NOISE FIGURE, 270 5.5.2 NOISE TEMPERATURE, 273 5.5.3 LINE LOSS, 274
5.5.4 COMPOSITE NOISE FIGURE AND COMPOSITE NOISE TEMPERATURE, 276 5.5.5
SYSTEM EFFECTIVE TEMPERATURE, 277 5.5.6 SKY NOISE TEMPERATURE, 282 5.6
SAMPLE LINK ANALYSIS, 286
5.6.1 LINK BUDGET DETAILS, 287 5.6.2 RECEIVER FIGURE OF MERIT, 289 5.6.3
RECEIVED ISOTROPIC POWER, 289 5.7 SATELLITE REPEATERS, 290 5.7.1
NONREGENERATIVE REPEATERS, 291 5.7.2 NONLINEAR REPEATER AMPLIFIERS, 295
5.8 SYSTEM TRADE-OFFS, 296 5.9 CONCLUSION, 297
6 CHANNEL CODING: PART 1 304
6.1 WAVEFORM CODING AND STRUCTURED SEQUENCES, 305 6.1.1 ANTIPODAL AND
ORTHOGONAL SIGNALS, 307 6.1.2 M-ARY SIGNALING, 308 6.1.3 WAVEFORM
CODING, 309 6.1.4 WAVEFORM-CODING SYSTEM EXAMPLE, 313 6.2 TYPES OF ERROR
CONTROL, 315
6.2.1 TERMINAL CONNECTIVITY, 315 6.2.2 AUTOMATIC REPEAT REQUEST, 316 6.3
STRUCTURED SEQUENCES, 317 6.3.1 CHANNEL MODELS, 318
6.3.2 CODE RATE AND REDUNDANCY, 320 6.3.3 PARITY CHECK CODES, 321 6.3.4
WHY USE ERROR-CORRECTION CODING? 323
CONTENTS IX
IMAGE 7
6.4 LINEAR BLOCK CODES, 328
6.4.1 VECTOR SPACES, 329 6.4.2 VECTOR SUB SPACES, 329 6.4.3 A (6, 3)
LINEAR BLOCK CODE EXAMPLE, 330 6.4.4 GENERATOR MATRIX, 331 6.4.5
SYSTEMATIC LINEAR BLOCK CODES, 333 6.4.6 PARITY-CHECK MATRIX, 334 6.4.7
SYNDROME TESTING, 335 6.4.8 ERROR CORRECTION, 336 6.4.9 DECODER
IMPLEMENTATION, 340 6.5 ERROR-DETECTING AND CORRECTING CAPABILITY, 342
6.5.1 WEIGHT AND DISTANCE OF BINARY VECTORS, 342 6.5.2 MINIMUM DISTANCE
OF A LINEAR CODE, 343 6.5.3 ERROR DETECTION AND CORRECTION, 343 6.5.4
VISUALIZATION OF A 6-TUPLE SPACE, 347 6.5.5 ERASURE CORRECTION, 348 6.6
USEFULNESS OF THE STANDARD ARRAY, 349
6.6.1 ESTIMATING CODE CAPABILITY, 349 6.6.2 AN (N, K) EXAMPLE, 351
6.6.3 DESIGNING THE (8, 2) CODE, 352 6.6.4 ERROR DETECTION VERSUS ERROR
CORRECTION TRADE-OFFS, 352 6.6.5 THE STANDARD ARRAY PROVIDES INSIGHT,
356 6.7 CYCLIC CODES, 356
6.7.1 ALGEBRAIC STRUCTURE OF CYCLIC CODES, 357 6.7.2 BINARY CYCLIC CODE
PROPERTIES, 358 6.7.3 ENCODING IN SYSTEMATIC FORM, 359
6.7.4 CIRCUIT FOR DIVIDING POLYNOMIALS, 360 6.7.5 SYSTEMATIC ENCODING
WITH AN (N - K)-STAGE SHIFT REGISTER, 363 6.7.6 ERROR DETECTION WITH AN
(N - K)-STAGE SHIFT REGISTER, 365 6.8 WEIL-KNOWN BLOCK CODES, 366 6.8.1
HAMMING CODES, 366 6.8.2 EXTENDED GOLAY CODE, 369 6.8.3 BCH CODES, 370
6.9 CONCLUSION, 374
7 CHANNEL CODING: PART 2 381
7.1 CONVOLUTIONAL ENCODING, 382 7.2 CONVOLUTIONAL ENCODER
REPRESENTATION, 384 7.2.1 CONNECTION REPRESENTATION, 385 7.2.2 STATE
REPRESENTATION AND THE STATE DIAGRAM, 389
7.2.3 THE TREE DIAGRAM, 391 7.2.4 THE TRELLIS DIAGRAM, 393 7.3
FORMULATION OF THE CONVOLUTIONAL DECODING PROBLEM, 395 7.3.1 MAXIMUM
LIKELIHOOD DECODING, 395
X CONTENTS
IMAGE 8
7.3.2 CHANNEL MODELS: HARD VERSUS SOFT DECISIONS, 396
7.3.3 THE VITERBI CONVOLUTIONAL DECODING ALGORITHM, 401 7.3.4 AN EXAMPLE
OF VITERBI CONVOLUTIONAL DECODING, 401 7.3.5 DECODER IMPLEMENTATION, 405
7.3.6 PATH MEMORY AND SYNCHRONIZATION, 408 7.4 PROPERTIES OF
CONVOLUTIONAL CODES, 408
7.4.1 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES, 408 7.4.2 SYSTEMATIC
AND NONSYSTEMATIC CONVOLUTIONAL CODES, 413 7.4.3 CATASTROPHIC ERROR
PROPAGATION IN CONVOLUTIONAL CODES, 414 7.4.4 PERFORMANCE BOUNDS FOR
CONVOLUTIONAL CODES, 415 7.4.5 CODING GAIN, 416 7.4.6 BEST KNOWN
CONVOLUTIONAL CODES, 418 7.4.7 CONVOLUTIONAL CODE RATE TRADE-OFF, 420
7.4.8 SOFT-DECISION VITERBI DECODING, 420 7.5 OTHER CONVOLUTIONAL
DECODING ALGORITHMS, 422
7.5.1 SEQUENTIAL DECODING, 422 7.5.2 COMPARISONS AND LIMITATIONS
OFVITERBI AND SEQUENTIAL DECODING, 425 7.5.3 FEEDBACK DECODING, 427 7.6
CONCLUSION, 429
8 CHANNEL CODING: PART 3 436
8.1 REED-SOLOMON CODES, 437 8.1.1 REED-SOLOMON ERROR PROBABILITY, 438
8.1.2 WHY R-S CODES PERFORM WELL AGAINST BURST NOISE, 441 8.1.3 R-S
PERFORMANCE AS A FUNCTION OF SIZE,
REDUNDANCY, AND CODE RATE, 441 8.1.4 FINITE FIELDS, 445 8.1.5
REED-SOLOMON ENCODING, 450 8.1.6 REED-SOLOMON DECODING, 454 8.2
INTERLEAVING AND CONCATENATED CODES, 461
8.2.1 BLOCK INTERLEAVING, 463 8.2.2 CONVOLUTIONAL INTERLEAVING, 466
8.2.3 CONCATENATED CODES, 468 8.3 CODING AND INTERLEAVING APPLIED TO THE
COMPACT DISC
DIGITAL AUDIO SYSTEM, 469 8.3.1 CIRC ENCODING, 470
8.3.2 CIRC DECODING, 472 8.3.3 INTERPOLATION AND MUTING, 474 8.4 TURBO
CODES, 475
8.4.1 TURBO CODE CONCEPTS, 477 8.4.2 LOG-LIKELIHOOD ALGEBRA, 481 8.4.3
PRODUCT CODE EXAMPLE, 482 8.4.4 ENCODING WITH RECURSIVE SYSTEMATIC
CODES, 488
8.4.5 A FEEDBACK DECODER, 493
CONTENTS XI
IMAGE 9
8.4.6 THE MAP DECODING ALGORITHM, 498
8.4.7 MAP DECODING EXAMPLE, 504 8.5 CONCLUSION, 509
APPENDIX 8A THE SUM OF LOG-LIKELIHOOD RATIOS, 510
9 MODULATION AND CODING TRADE-OFFS 520
9.1 GOALS OF THE COMMUNICATIONS SYSTEM DESIGNER, 521 9.2 ERROR
PROBABILITY PLANE, 522 9.3 NYQUIST MINIMUM BANDWIDTH, 524 9.4
SHANNON-HARTLEY CAPACITY THEOREM, 525
9.4.1 SHANNON LIMIT, 528
9.4.2 ENTROPY, 529
9.4.3 EQUIVOCATION AND EFFECTIVE TRANSMISSION RATE, 532 9.5 BANDWIDTH
EFFICIENCY PLANE, 534 9.5.1 BANDWIDTH EFFICIENCY OFMPSK AND MFSK
MODULATION, 535
9.5.2 ANALOGIES BETWEEN BANDWIDTH-EFFICIENCY AND ERROR PROBABILITY
PLANES, 536 9.6 MODULATION AND CODING TRADE-OFFS, 537 9.7 DEFINING,
DESIGNING, AND EVALUATING DIGITAL
COMMUNICATION SYSTEMS, 538 9.7.1 M-ARY SIGNALING, 539 9.7.2
BANDWIDTH-LIMITED SYSTEMS, 540 9.7.3 POWER-LIMITED SYSTEMS, 541 9.7.4
REQUIREMENTS FOR MPSK AND MFSK SIGNALING, 542
9.7.5 BANDWIDTH-LIMITED UNCODED SYSTEM EXAMPLE, 543 9.7.6 POWER-LIMITED
UNCODED SYSTEM EXAMPLE, 545 9.7.7 BANDWIDTH-LIMITED AND POWER-LIMITED
CODED SYSTEM EXAMPLE, 547
9.8 BANDWIDTH-EFFICIENT MODULATION, 555 9.8.1 QPSK AND OFFSET QPSK
SIGNALING, 555 9.8.2 MINIMUM SHIFT KEYING, 559 9.8.3 QUADRATURE
AMPLITUDE MODULATION, 563
9.9 MODULATION AND CODING FOR BANDLIMITED CHANNELS, 566 9.9.7 COMMERCIAL
TELEPHONE MODEMS, 567 9.9.2 SIGNAL CONSTELLATION BOUNDARIES, 568 9.9.3
HIGHER DIMENSIONAL SIGNAL CONSTELLATIONS, 569 9.9.4 HIGHER-DENSITY
LATTICE STRUCTURES, 572
9.9.5 COMBINED GAIN: N-SPHERE MAPPING AND DENSE LATTICE, 573 9.10
TRELLIS-CODED MODULATION, 573 9.10.1 THE IDEA BEHIND TRELLIS-CODED
MODULATION (TCM), 574 9.10.2 TCM ENCODING, 576
9.10.3 TCM DECODING, 580 9.10.4 OTHER TRELLIS CODES, 583
XII CONTENTS
IMAGE 10
9.10.5 TRELLIS-CODED MODULATION EXAMPLE, 585
9.10.6 MULTI-DIMENSIONAL TRELLIS-CODED MODULATION, 589 9.11 CONCLUSION,
590
SYNCHRONIZATION 598
10.1 INTRODUCTION, 599
10.1.1 SYNCHRONIZATION DEFINED, 599 10.1.2 COSTS VERSUS BENEFITS, 601
10.1.3 APPROACH AND ASSUMPTIONS, 602 10.2 RECEIVER SYNCHRONIZATION, 603
10.2.1 FREQUENCY AND PHASE SYNCHRONIZATION, 603 10.2.2 SYMBOL
SYNCHRONIZATION - DISCRETE SYMBOL MODULATIONS, 625 10.2.3
SYNCHRONIZATION WITH CONTINUOUS-PHASE MODULATIONS (CPM), 631
10.2.4 FRAME SYNCHRONIZATION, 639 10.3 NETWORK SYNCHRONIZATION, 643
10.3.1 OPEN-LOOP TRANSMITTER SYNCHRONIZATION, 644 10.3.2 CLOSED-LOOP
TRANSMITTER SYNCHRONIZATION, 647 10.4 CONCLUSION, 649
MULTIPLEXING AND MULTIPLE ACCESS 656
11.1 ALLOCATION OF THE COMMUNICATIONS RESOURCE, 657 11.1.1
FREQUENCY-DIVISION MULTIPLEXING/MULTIPLE ACCESS, 660 11.1.2
TIME-DIVISION MULTIPLEXING/MULTIPLE ACCESS, 665 11.1.3 COMMUNICATIONS
RESOURCE CHANNELIZATION, 668 11.1.4 PERFORMANCE COMPARISON OFFDMA AND
TDMA, 668 11.1.5 CODE-DIVISION MULTIPLE ACCESS, 672 11.1.6
SPACE-DIVISION AND POLARIZATION-DIVISION MULTIPLE ACCESS, 674
11.2 MULTIPLE ACCESS COMMUNICATIONS SYSTEM AND ARCHITECTURE, 676 11.2.1
MULTIPLE ACCESS INFORMATION FLOW, 677 11.2.2 DEMAND ASSIGNMENT MULTIPLE
ACCESS, 678
11.3 ACCESS ALGORITHMS, 678 11.3.1 ALOHA, 678
11.3.2 SLOTTED ALOHA, 682
11.3.3 RESERVATION-ALOHA, 683 11.3.4 PERFORMANCE COMPARISON OF S-ALOHA
AND R-ALOHA, 684 11.3.5 POLLING TECHNIQUES, 686 11.4 MULTIPLE ACCESS
TECHNIQUES EMPLOYED WITH INTELSAT, 689
11.4.1 PREASSIGNED FDM/FM/FDMA OR MCPC OPERATION, 690 11.4.2 MCPC MODES
OF ACCESSING AN INTELSAT SATELLITE, 690 11.4.3 SPADE OPERATION, 693
11.4.4 TDMA IN INTELSAT, 698
11.4.5 SATELLITE-SWITCHED TDMA IN INTELSAT, 704
CONTENTS XIII
IMAGE 11
11.5 MULTIPLE ACCESS TECHNIQUES FOR LOCAL AREA NETWORKS, 708
11.5.1 CARRIER-SENSE MULTIPLE ACCESS NETWORKS, 708 11.5.2 TOKEN-RING
NETWORKS, 710 11.5.3 PERFORMANCE COMPARISON OF CSMA/CD AND TOKEN-RING
NETWORKS, 711 11.6 CONCLUSION, 713
12 SPREAD-SPECTRUM TECHNIQUES 718
12.1 SPREAD-SPECTRUM OVERVIEW, 719 12.1.1 THE BENEFICIAL ATTRIBUTES OF
SPREAD-SPECTRUM SYSTEMS, 720 12.1.2 A CATALOG OF SPREADING TECHNIQUES,
724 12.1.3 MODEL FOR DIRECT-SEQUENCE SPREAD-SPECTRUM
INTERFERENCE REJECTION, 726 12.1.4 HISTORICAL BACKGROUND, 727 12.2
PSEUDONOISE SEQUENCES, 728 12.2.1 RANDOMNESS PROPERTIES, 729
12.2.2 SHIFT REGISTER SEQUENCES, 729 12.2.3 PN AUTOCORRELATION FUNCTION,
730 12.3 DIRECT-SEQUENCE SPREAD-SPECTRUM SYSTEMS, 732 12.3.1 EXAMPLE OF
DIRECT SEQUENCING, 734
12.3.2 PROCESSING GAIN AND PERFORMANCE, 735 12.4 FREQUENCY HOPPING
SYSTEMS, 738 12.4.1 FREQUENCY HOPPING EXAMPLE, 740
12.4.2 ROBUSTNESS, 741
12.4.3 FREQUENCY HOPPING WITH DIVERSITY, 741 12.4.4 FAST HOPPING VERSUS
SLOW HOPPING, 742 12.4.5 FFH/MFSK DEMODULATOR, 744 12.4.6 PROCESSING
GAIN, 745 12.5 SYNCHRONIZATION, 745
12.5.1 ACQUISITION, 746
12.5.2 TRACKING, 751
12.6 JAMMING CONSIDERATIONS, 754 12.6.1 THE JAMMING GAME, 754 12.6.2
BROADBAND NOISE JAMMING, 759 12.6.3 PARTIAL-BAND NOISE JAMMING, 760
12.6.4 MULTIPLE-TONE JAMMING, 763 12.6.5 PULSE JAMMING, 763 12.6.6
REPEAT-BACK JAMMING, 765 12.6.7 BLADES SYSTEM, 768
12.7 COMMERCIAL APPLICATIONS, 769 12.7.1 CODE-DIVISION MULTIPLE ACCESS,
769 12.7.2 MULTIPATH CHANNELS, 771 12.7.3 THE FCC PART 15 RULES FOR
SPREAD-SPECTRUM SYSTEMS, 772
12.7.4 DIRECT SEQUENCE VERSUS FREQUENCY HOPPING, 773 12.8 CELLULAR
SYSTEMS, 775 12.8.1 DIRECT SEQUENCE CDMA, 776
XIV CONTENTS
IMAGE 12
12.8.2 ANALOG FM VERSUS TDMA VERSUS CDMA, 779
12.8.3 INTERFERENCE-LIMITED VERSUS DIMENSION-LIMITED SYSTEMS, 781 12.8.4
IS-95 CDMA DIGITAL CELLULAR SYSTEM, 782 12.9 CONCLUSION, 795
13 SOURCE CODING 803
13.1 SOURCES, 804
13.1.1 DISCRETE SOURCES, 804 13.1.2 WAVEFORM SOURCES, 809 13.2 AMPLITUDE
QUANTIZING, 811 13.2.1 QUANTIZING NOISE, 813
13.2.2 UNIFORM QUANTIZING, 816 13.2.3 SATURATION, 820 13.2.4 DITHERING,
823
13.2.5 NONUNIFORM QUANTIZING, 826 13.3 DIFFERENTIAL PULSE-CODE
MODULATION, 835 13.3.1 ONE-TAP PREDICTION, 838
13.3.2 N-TAP PREDICTION, 839 13.3.3 DELTA MODULATION, 841 13.3.4
SIGMA-DELTA MODULATION, 842 13.3.5 SIGMA-DELTA A-TO-D CONVERTER (ADC),
847
13.3.6 SIGMA-DELTA D-TO-A CONVERTER (DAC), 848 13.4 ADAPTIVE PREDICTION,
850 13.4.1 FORWARD PREDICTION, 851 13.4.2 SYNTHESIS/ANALYSIS CODING, 852
13.5 BLOCK CODING, 853
13.5.1 VECTOR QUANTIZING, 854 13.6 TRANSFORM CODING, 856 13.6.1
QUANTIZATION FOR TRANSFORM CODING, 857
13.6.2 SUBBAND CODING, 857 13.7 SOURCE CODING FOR DIGITAL DATA, 859
13.7.1 PROPERTIES OF CODES, 860 13.7.2 HUFFMAN CODES, 862
13.7.3 RUN-LENGTH CODES, 866 13.8 EXAMPLES OF SOURCE CODING, 870 13.8.1
AUDIO COMPRESSION, 870
13.8.2 IMAGE COMPRESSION, 875 13.9 CONCLUSION, 884
14 ENCRYPTION AND DECRYPTION 890
14.1 MODELS, GOALS, AND EARLY CIPHER SYSTEMS, 891 14.1.1 A MODEL OF THE
ENCRYPTION AND DECRYPTION PROCESS, 893 14.1.2 SYSTEM GOALS, 893 14.1.3
CLASSIC THREATS, 893
CONTENTS XV
IMAGE 13
14.1.4 CLASSIC CIPHERS, 894
14.2 THE SECRECY OF A CIPHER SYSTEM, 897 14.2.1 PERFECT SECRECY, 897
14.2.2 ENTROPY AND EQUIVOCATION, 900 14.2.3 RATE OF A LANGUAGE AND
REDUNDANCY, 902 14.2.4 UNICITY DISTANCE AND IDEAL SECRECY, 902
14.3 PRACTICAL SECURITY, 905 14.3.1 CONFUSION AND DIFFUSION, 905 14.3.2
SUBSTITUTION, 905 14.3.3 PERMUTATION, 907
14.3.4 PRODUCT CIPHER SYSTEMS, 908 14.3.5 THE DATA ENCRYPTION STANDARD,
909 14.4 STREAM ENCRYPTION, 915 14.4.1 EXAMPLE OF KEY GENERATION USING A
LINEAR
FEEDBACK SHIFT REGISTER, 916 14.4.2 VULNERABILITIES OF LINEAR FEEDBACK
SHIFT REGISTERS, 917 14.4.3 SYNCHRONOUS AND SELF-SYNCHRONOUS STREAM
ENCRYPTION SYSTEMS, 919 14.5 PUBLIC KEY CRYPTOSYSTEMS, 920
14.5.1 SIGNATURE AUTHENTICATION USING A PUBLIC KEY CRYPTOSYSTEM, 921
14.5.2 A TRAPDOOR ONE-WAY FUNCTION, 922 14.5.3 THE RIVEST-SHAMIR-ADELMAN
SCHEME, 923 14.5.4 THE KNAPSACK PROBLEM, 925 14.5.5 A PUBLIC KEY
CRYPTOSYSTEM BASED ON A TRAPDOOR KNAPSACK, 927 14.6 PRETTY GOOD PRIVACY,
929
14.6.1 TRIPLE-DES, CAST, AND IDEA, 931 14.6.2 DIFFIE-HELLMAN (ELGAMAL
VARIATION) AND RSA, 935 14.6.3 PGP MESSAGE ENCRYPTION, 936 14.6.4 PGP
AUTHENTICATION AND SIGNATURE, 937 14.7 CONCLUSION, 940
FADING CHANNELS
15.1 THE CHALLENGE OF COMMUNICATING OVER FADING CHANNELS, 945 15.2
CHARACTERIZING MOBILE-RADIO PROPAGATION, 947 15.2.1 LARGE-SCALE FADING,
951 15.2.2 SMALL-SCALE FADING, 953
15.3 SIGNAL TIME-SPREADING, 958 15.3.1 SIGNAL TIME-SPREADING VIEWED IN
THE TIME-DELAY DOMAIN, 958 15.3.2 SIGNAL TIME-SPREADING VIEWED IN THE
FREQUENCY DOMAIN, 960 15.3.3 EXAMPLES OF FLAT FADING AND
FREQUENCY-SELECTIVE FADING, 965
15.4 TIME VARIANCE OF THE CHANNEL CAUSED BY MOTION, 966 15.4.1 TIME
VARIANCE VIEWED IN THE TIME DOMAIN, 966 15.4.2 TIME VARIANCE VIEWED IN
THE DOPPLER-SHIFT DOMAIN, 969 15.4.3 PERFORMANCE OVER A SLOW- AND
FLAT-FADING RAYLEIGH CHANNEL, 975
XVI
IMAGE 14
15.5 MITIGATING THE DEGRADATION EFFECTS OF FADING, 978
15.5.1 MITIGATION TO COMBAT FREQUENCY-SELECTIVE DISTORTION, 980 15.5.2
MITIGATION TO COMBAT FAST-FADING DISTORTION, 982 15.5.3 MITIGATION TO
COMBAT LOSS IN SNR, 983 15.5.4 DIVERSITY TECHNIQUES, 984 15.5.5
MODULATION TYPES FOR FADING CHANNELS, 987 15.5.6 THE ROLE OF AN
INTERLEAVER, 988 15.6 SUMMARY OF THE KEY PARAMETERS CHARACTERIZING
FADING CHANNELS, 992
15.6.1 FAST FADING DISTORTION: CASE 1, 992 15.6.2 FREQUENCY-SELECTIVE
FADING DISTORTION: CASE 2, 993 15.6.3 FAST-FADING AND
FREQUENCY-SELECTIVE FADING DISTORTION: CASE 3, 993 15.7 APPLICATIONS:
MITIGATING THE EFFECTS OF FREQUENCY-SELECTIVE FADING, 996
15.7.1 THE VITERBI EQUALIZER AS APPLIED TO GSM, 996 15.7.2 THE RAKE
RECEIVER AS APPLIED TO DIRECT-SEQUENCE SPREAD-SPECTRUM (DS/SS) SYSTEMS,
999 15.8 CONCLUSION, 1001
A REVIEW OF FOURIER TECHNIQUES 1012
A.L SIGNALS, SPECTRA, AND LINEAR SYSTEMS, 1012 A.2 FOURIER TECHNIQUES
FOR LINEAR SYSTEM ANALYSIS, 1012 A.2.1 FOURIER SERIES TRANSFORM, 1014
A.2.2 SPECTRUM OF A PULSE TRAIN, 1018
A.2.3 FOURIER INTEGRAL TRANSFORM, 1020 A.3 FOURIER TRANSFORM PROPERTIES,
1021 A.3.1 TIME SHIFTING PROPERTY, 1022
A.3.2 FREQUENCY SHIFTING PROPERTY, 1022 A.4 USEFUL FUNCTIONS, 1023 A.4.1
UNIT IMPULSE FUNCTION, 1023 A. 4.2 SPECTRUM OF A SINUSOID, 1023 A.5
CONVOLUTION, 1025
A.5.1 GRAPHICAL EXAMPLE OF CONVOLUTION, 1027 A.5.2 TIME CONVOLUTION
PROPERTY, 1028 A.5.3 FREQUENCY CONVOLUTION PROPERTY, 1030 A.5.4
CONVOLUTION OF A FUNCTION WITH A UNIT IMPULSE, 1030 A.5.5 DEMODULATION
APPLICATION OF CONVOLUTION, 1031 A.6 TABLES OF FOURIER TRANSFORMS AND
OPERATIONS, 1033
FUNDAMENTALS OF STATISTICAL DECISION THEORY 1035
B.L BAYES THEOREM, 1035
B.L.L DISCRETE FORM OF BAYES THEOREM, 1036 B.L.2 MIXED FORM OF
BAYES THEOREM, 1038 B.2 DECISION THEORY, 1040 B.2.1 COMPONENTS OF THE
DECISION THEORY PROBLEM, 1040
CONTENTS XVII
IMAGE 15
B.2.2 THE LIKELIHOOD RATIO TEST AND THE MAXIMUM
A POSTERIORI CRITERION, 1041 B.2.3 THE MAXIMUM LIKELIHOOD CRITERION,
1042 B.3 SIGNAL DETECTION EXAMPLE, 1042 B.3.1 THE MAXIMUM LIKELIHOOD
BINARY DECISION, 1042
B.3.2 PROBABILITY OF BIT ERROR, 1044
* RESPONSE OF A CORRELATOR TO WHITE NOISE 1047
D OFTEN-USED IDENTITIES 1049
E 5-DOMAIN, ^-DOMAIN AND DIGITAL FILTERING 1051
E.L THE LAPLACE TRANSFORM, 1051 E.L.L STANDARD LAPLACE TRANSFORMS, 1052
E.L.2 LAPLACE TRANSFORM PROPERTIES, 1053 E.1.3 USING THE LAPLACE
TRANSFORM, 1054
E.L.4 TRANSFER FUNCTION, 1055 E.L.5 RC CIRCUIT LOW PASS FILTERING, 1056
E.L.6 POLES AND ZEROES, 1056 E.L. 7 LINEAR SYSTEM STABILITY, 1057 E.2
THE Z-TRANSFORM, 1058
E.2.1 CALCULATING THE Z-TRANSFORM, 1058 E.2.2 THE INVERSE Z-TRANSFORM,
1059 E.3 DIGITAL FILTERING, 1060 E.3.1 DIGITAL FILTER TRANSFER FUNCTION,
1061
E.3.2 SINGLE POLE FILTER STABILITY, 1062 E.3.3 GENERAL DIGITAL FILTER
STABILITY, 1063 E.3.4 Z-PLANE POLE-ZERO DIAGRAM AND THE UNIT CIRCLE,
1063 E.3.5 DISCRETE FOURIER TRANSFORM OF DIGITAL FILTER IMPULSE
RESPONSE, 1064 E.4 FINITE IMPULSE RESPONSE FILTER DESIGN, 1065
E.4.1 FIR FILTER DESIGN, 1065 E.4.2 THE FIR DIFFERENTIATOR, 1067 E.5
INFINITE IMPULSE RESPONSE FILTER DESIGN, 1069 E.5.1 BACKWARD DIFFERENCE
OPERATOR, 1069
E.5.2 IIR FILTER DESIGN USING THE BILINEAR TRANSFORM, 1070 E.5.3 THE IIR
INTEGRATOR, 1071
F LIST OF SYMBOLS 1072
INDEX 1074
XVIII CONTENTS
|
any_adam_object | 1 |
author | Sklar, Bernard |
author_facet | Sklar, Bernard |
author_role | aut |
author_sort | Sklar, Bernard |
author_variant | b s bs |
building | Verbundindex |
bvnumber | BV024628621 |
classification_rvk | ZN 6040 |
ctrlnum | (OCoLC)552213658 (DE-599)GBV593339142 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 2. ed., 16. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01496nam a2200385 c 4500</leader><controlfield tag="001">BV024628621</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090910 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0130847887</subfield><subfield code="9">0-13-084788-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780130847881</subfield><subfield code="9">978-0-13-084788-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)552213658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV593339142</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6040</subfield><subfield code="0">(DE-625)157496:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sklar, Bernard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Digital communications</subfield><subfield code="b">fundamentals and applications</subfield><subfield code="c">Bernard Sklar</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., 16. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River, NJ</subfield><subfield code="b">Prentice-Hall</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 1079 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitale Nachrichtentechnik</subfield><subfield code="0">(DE-588)4224275-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Digitale Nachrichtentechnik</subfield><subfield code="0">(DE-588)4224275-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018600276&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018600276</subfield></datafield></record></collection> |
id | DE-604.BV024628621 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:03:22Z |
institution | BVB |
isbn | 0130847887 9780130847881 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018600276 |
oclc_num | 552213658 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | XXIV, 1079 S. Ill., graph. Darst. 1 CD-ROM (12 cm) |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Prentice-Hall |
record_format | marc |
spelling | Sklar, Bernard Verfasser aut Digital communications fundamentals and applications Bernard Sklar 2. ed., 16. print. Upper Saddle River, NJ Prentice-Hall 2008 XXIV, 1079 S. Ill., graph. Darst. 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Digitale Signalverarbeitung (DE-588)4113314-6 gnd rswk-swf Digitale Nachrichtentechnik (DE-588)4224275-7 gnd rswk-swf Digitale Nachrichtentechnik (DE-588)4224275-7 s Digitale Signalverarbeitung (DE-588)4113314-6 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018600276&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sklar, Bernard Digital communications fundamentals and applications Digitale Signalverarbeitung (DE-588)4113314-6 gnd Digitale Nachrichtentechnik (DE-588)4224275-7 gnd |
subject_GND | (DE-588)4113314-6 (DE-588)4224275-7 |
title | Digital communications fundamentals and applications |
title_auth | Digital communications fundamentals and applications |
title_exact_search | Digital communications fundamentals and applications |
title_full | Digital communications fundamentals and applications Bernard Sklar |
title_fullStr | Digital communications fundamentals and applications Bernard Sklar |
title_full_unstemmed | Digital communications fundamentals and applications Bernard Sklar |
title_short | Digital communications |
title_sort | digital communications fundamentals and applications |
title_sub | fundamentals and applications |
topic | Digitale Signalverarbeitung (DE-588)4113314-6 gnd Digitale Nachrichtentechnik (DE-588)4224275-7 gnd |
topic_facet | Digitale Signalverarbeitung Digitale Nachrichtentechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018600276&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sklarbernard digitalcommunicationsfundamentalsandapplications |