Specialty optical fibers handbook:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2007
|
Schriftenreihe: | Optics, optical engineering
|
Schlagworte: | |
Online-Zugang: | Publisher description Inhaltsverzeichnis |
Beschreibung: | XLII, 798 S. Ill., graph. Darst. |
ISBN: | 012369406X 9780123694065 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024623570 | ||
003 | DE-604 | ||
005 | 20101104 | ||
007 | t | ||
008 | 090924s2007 ne ad|| |||| 00||| eng d | ||
020 | |a 012369406X |9 0-12-369406-X | ||
020 | |a 9780123694065 |9 978-0-12-369406-5 | ||
035 | |a (OCoLC)255382337 | ||
035 | |a (DE-599)GBV512970718 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a ne |c XA-NL | ||
049 | |a DE-83 |a DE-355 |a DE-91 |a DE-M347 |a DE-29T | ||
050 | 0 | |a TA1800 | |
082 | 0 | |a 621.3692 | |
084 | |a ZN 6285 |0 (DE-625)157543: |2 rvk | ||
084 | |a FEI 440f |2 stub | ||
084 | |a PHY 394f |2 stub | ||
084 | |a ELT 683f |2 stub | ||
245 | 1 | 0 | |a Specialty optical fibers handbook |c Alexis Mendez ; T. F. Morse |
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2007 | |
300 | |a XLII, 798 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Optics, optical engineering | |
650 | 4 | |a Fiber optics |x Industrial applications |v Handbooks, manuals, etc | |
650 | 4 | |a Optical fibers |x Industrial applications |v Handbooks, manuals, etc | |
650 | 0 | 7 | |a Lichtleitfaser |0 (DE-588)4167589-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lichtleitfaser |0 (DE-588)4167589-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Méndez, Alexis |e Sonstige |4 oth | |
700 | 1 | |a Morse, Ted F. |e Sonstige |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0703/2006038642-d.html |z lizenzfrei |3 Publisher description | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595452&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018595452 |
Datensatz im Suchindex
_version_ | 1804140644946411520 |
---|---|
adam_text | Contents
Dedication
v
Editors
xxiii
List of Contributors
xxv
Preface
xxxvii
1
Specialty Optical Fiber Market Overview
1
Stephen Montgomery
1.1
1.2
Market Overview
1
1.1.1
Production Versus Consumption
1
1.1.2
Rapidly Growing Need to Use Fiber Optic Sensors
2
1.1.3
Weapon System Development
3
1.1.4
100-1000
χ
Improvements in Performance
3
1.1.5
High Cost of Functionality
4
1.1.6
Multiple Features in the Same Specialty Fibers
4
Specialty Optical Fibers: A Few Selected Examples
4
1.2.1
Fluoride Fiber
4
1.2.2
Tellurite Fiber
5
1.2.3
Bismuth-Doped Fiber
5
1.2.4
Polarizing Fiber
6
1.2.5
Photonic Crystal Fiber
—
Holey Fibers
7
1.2.6
Dispersion-Compensating Fiber
8
1.2.7
High-Index Fiber
11
1.2.8
Polarization-Maintaining Fiber
11
1.2.9
Photosensitive Fiber
13
1.2.10
Erbium-Doped Fiber
13
Conclusions
17
1.3
2
Light-Guiding Fundamentals and Fiber Design
19
Robert Lingle, Jr., David W. Peckham, Alan McCurdy,
and Jinkee Kim
2.1
Introduction
19
2.2
Physical Structure of a Telecommunications Optical Fiber
20
vii
viii Contents
2.3
Linear
Lightwave Propagation in an Optical Fiber
20
2.3.1
Electromagnetic Preliminaries
20
2.3.2
Intuition from the Slab Waveguide
22
2.3.3
Optical Fiber: A Cylindrical Waveguide
24
2.3.4
The Linearly Polarized Mode Set LPte
25
2.3.5
Finite Element Analysis for Waveguide Calculations
27
2.4
Working Definitions of Cutoff Wavelength
29
2.4.1
Introduction
29
2.4.2
Theoretical Cutoff Wavelength
29
2.4.3
Effective Cutoff Wavelengths
29
2.5
Impact of Profile Design on Macrobending Losses
32
2.5.1
The Depressed Cladding Fiber Design
32
2.5.2
Phenomenology of Macrobending Loss
34
2.6
Fiber Attenuation Loss
36
2.7
Origins of Chromatic Dispersion
38
2.7.1
Introduction
38
2.7.2
Material Dispersion
38
2.7.3
Waveguide Dispersion
42
2.8
Polarization Mode Dispersion
45
2.8.1
Overview
45
2.8.2
Background
46
2.8.3
Modeling and Simulation
48
2.8.4
Control of PMD in Fiber Manufacturing
49
2.8.5
Measurement of PMD
51
2.8.6
Fiber-to-Cable-to-Field PMD Mapping
53
2.9
Microbending Loss
55
2.9.1
Microbending
55
2.10
Fiber Nonlinearities
60
2.10.1
Overview
60
2.10.2
Background
61
References
65
Overview of Materials and Fabrication Technologies
69
John B. MacChesney, Ryan
Bise,
and
Alexis Méndez
3.1
Double-Crucible Technique
69
3.2
Vapor-Deposition Techniques
70
3.3
Outside Vapor Deposition
71
3.4
Vertical Axial Deposition
73
3.5
Direct Nanoparticle Deposition
75
Contents ix
3.6
Modified
Chemical
Vapor Deposition
77
3.6.1
Chemical Equilibria: Dopant Incorporation
78
3.6.2
Purification from Hydroxyl Contamination
80
3.6.3
Thermophoresis
80
3.7
Plasma Chemical Vapor Deposition
82
3.8
Sol-Gel Processes
83
3.8.1
Alkoxide Sol-Gel Processing
83
3.8.2
Colloidal Sol-Gel Processing
84
3.9
Sol-Gel
Microstructure
Fiber Fabrication
86
3.10
Fiber Drawing
88
Acknowledgments
91
References
91
4
Optical Fiber Coatings
95
Steven R.
Schmid
and Anthony
F. Toussaint
4.1
Introduction
95
4.2
Early History of Coatings for Optical Fiber
96
4.3
Evolution of Optical Fibers and Protective Coatings
97
4.3.1
Coating Contributions to Microbending
Minimization
97
4.3.2
Glass Fiber Fracture Mechanics and Coating
Contributions to Fiber Strength Retention
99
4.3.3
Durability of Fiber Optic Coatings
100
4.4
Cabling of Optical Fibers
102
4.5
Specialty Coatings
103
4.6
Basics of Optical Fiber Chemistry
103
4.6.1
Oligomers
103
4.6.2
Monomers
105
4.6.3 Photoinitiators 105
4.6.4
Adhesion Promoters
105
4.6.5
Other Additives
106
4.7
Application of Coatings on the Draw Tower
108
4.7.1
Coating Cure Speed Measurement Techniques
110
4.7.2
Cured Properties of Coatings on Fiber
113
4.7.3
Test Methods for UV-Curable Liquids
and UV-Cured Films
115
4.7.4
Coating Adhesion
117
4.8
Summary
117
Acknowledgments
118
References
118
Contents
Single-Mode Fibers for Communications
123
Robert Lingle, Jr., David W. Peckham,
Kai
H.
Chang,
and Alan McCurdy
5.1
Introduction
123
5.2
System Impairments Influencing Fiber Design
124
5.2.1
Limitations from Optical Signal-to-Noise Ratio
124
5.2.2
Limitations from Intersymbol Interference
125
5.2.3
Limitations from Nonlinearity
126
5.2.4
Limitations from Amplifier Technology
127
5.2.5
Can Fiber Design Be Used to Optimize
a Transmission System?
127
5.3
Overview of ITU Standards Fiber Categories
129
5.4
Optical Fibers for Reduced Attenuation
132
5.4.1
Pure Silica Core Fiber
133
5.4.2
Zero Water Peak Fiber
133
5.5
Optical Fiber Design Principles for Wideband
and High Bit Rate Transmission
141
5.5.1
Precise Dispersion Compensation
142
5.5.2
Dispersion Compensation Fiber Technology
142
5.5.3
Full-Band Dispersion Compensation
143
5.5.4
Requirement for Low Residual Dispersion
144
5.5.5
Factors Affecting Nonlinearity
145
5.5.6
Impairments Affecting Raman Amplification
147
5.5.7
Systems Implications of Tx Fiber PMD
147
5.5.8
Summary of Design Principles
148
5.6
Design of Nonzero Dispersion Fibers
148
5.6.1
Fiber Transmission Parameter Tradeoffs
149
5.6.2
Realizability, Manufacturability, and Scalability
150
5.6.3
Low-Dispersion NZDFs
152
5.6.4
Medium-Dispersion NZDFs
155
5.7
A New Paradigm in Transmission Line Design
158
References
159
Specialty Single-Mode Fibers
165
Lars-Erik
Nilsson,
Asa
Claesson,
Walter
Margulis,
and Pierre- Yves Fonjallaz
6.1
Introduction
165
6.2
Macrohole
Fiber
166
6.2.1
Microfluidic Devices
168
Contents xi
6.3
Fibers with Internal Electrodes
169
6.3.1
Electrodes
170
6.3.2
Applications
173
6.4
Multicore Fibers and Components
175
6.4.1
Coupled Cores
176
6.4.2
Uncoupled Cores
180
6.4.3
Manufacturing Multicore Fibers
182
6.5
Fibers for High-
Température-Résistant
Gratings
185
6.6
Summary
188
References
188
7
Rare Earth-Doped Fibers
195
David J.
DiGiovanni,
Roman Shubochkin, T. F. Morse,
and Borut Lenardic
7.1
Introduction
195
7.2
Motivation
196
7.3
Host Glasses for Rare Earth Ions
198
7.4
Fabrication of Rare Earth-Doped Fibers
200
7.4.1
Overview of Optical Fiber Fabrication
200
7.4.2
Incorporation of Rare Earth Elements
202
7.4.3
Summary of Rare Earth-Doped
Fabrication Techniques
210
7.5
Erbium-Doped Fiber
210
7.5.1
Principles of
Oper
ation
211
7.5.2
Fiber Design Issues
213
7.5.3
Fiber Composition Issues
216
7.5.4
Short Wavelength Amplifiers
219
7.6
The Co-Doped Er/Yb System
222
7.7
Double-Clad Fiber
223
7.7.1
Limitations of Fiber Lasers
226
7.7.2
Methods to Improve Performance
227
7.8
Conclusion
237
References
237
8
Polarization Maintaining Fibers
243
Chris Emslie
8.1
What is a Polarization Maintaining Fiber?
243
8.2
Why Use PM Fibers?—Applications
244
8.2.
ł Interferometry
244
8.2.2
The Fiber Optic Gyroscope
245
Contents
8.2.3
Coherent
Communications 245
8.2.4
Integrated Optics
246
8.2.5
Laser
Doppler
Anemometry
and Velocimetry
247
8.2.6
EDFA Pump Combiners, Reflection-Suppression
Schemes, Current Sensing, and Optical Coherence
Tomography
249
8.3
How Do PM Fibers Work?
249
8.4
PM Fiber Types: Stress and Form
Biréfringent
250
8.4.1
Stress-Birefringent Fibers: Bowtie, PANDA,
and Elliptical Jacket
250
8.4.2
Elliptical Core, Form-Birefringent Fiber
253
8.4.3
Microstructure
( Holey ) Fibers
254
8.4.4
Polarizing Fiber
254
8.5
PM Fiber Fabrication Methods
256
8.5.1
Bowtie Fibers
256
8.5.2
PANDA Fiber
258
8.5.3
Elliptical Jacket Fiber
258
8.5.4
Elliptical Core, Form-Birefringent Fiber
260
8.5.5
Microstracture ( Holey ) Fibers
261
8.6
Key Performance Parameters
262
8.6.1
Attenuation (a)
262
8.6.2
Numerical Aperture (NA)
263
8.6.3
Is There a Connection Between Polarization
Maintenance and Attenuation?
264
8.6.4
Cutoff Wavelength
(Лс)
264
8.6.5
Mode-Field Diameter (MFD)
265
8.6.6
Beat Length (Lp)
267
8.6.7
Extinction Ratio
(ER) 269
8.6.8
H-Parameter
270
8.6.9
Effect of Test Conditions and Environment
on Polarization Maintaining Performance
270
8.7
Mechanical and Lifetime Properties
273
8.7.1
Strength Paradox I: Fragile Preforms Make
Exceptionally Strong Fibers
273
8.7.2
Strength Paradox II: Thin Fibers Can Be Stronger
Than Thicker Ones
275
References
. 276
Contents xiii
9
Photosensitive Fibers
279
André
Croteau and Anne Claire Jacob Poulin
9.1
Introduction
279
9.2
Design and Fabrication
281
9.3
Standard Numerical Aperture Fibers
282
9.3.1
Standard Single-Mode Fibers
283
9.3.2
Boron-Doped
Germano-Silicate
Fibers
283
9.3.3
Antimony-Doped Fibers
286
9.3.4
Tin-Doped Fibers
287
9.4
High Numerical Aperture
287
9.4.1
Heavily Ge-Doped Silica Optical Fibers
288
9.4.2
Tin-Doped
Germano-Silicate
Fibers
289
9.4.3
Indium-Doped
Germano-Silicate
Fibers
290
9.5
Cladding Mode Suppression
291
9.6
Rare Earth-Doped Photosensitive Fibers
293
9.6.1
Germano-Alumino-Silicate Glass Host Core
294
9.6.2
Confined Core
297
9.6.3
Photosensitive-Clad
300
9.6.4
Confined Core and Photosensitive Clad
300
9.6.5
Antimony-Doped Ahmiino-Silicate
301
9.7
Polarization Maintaining
302
9.8
Other Photosensitive Fiber Types
303
9.8.1
Polymer Optical Fibers
304
9.8.2
Fluoride Glass
308
9.8.3
Heavily P-Doped Silica Fibers
308
9.9
Conclusions
309
Acknowledgments
310
References
310
10
Hollow-Core Fibers
315
Steven A. Jacobs,
Burak
Temelkuran,
Ori
Weisberg, Mihai
Ibanescu, Steven
G.
Johnson, and
Marin
Soljačić
10.1
Introduction
315
10.1.1
Wave-Guiding by Total Internal Reflection
316
10.1.2
Wave-Guiding by Reflection Off a Conducting
Boundary
317
10.1.3
Wave-Guiding by Photonic Band-Gaps
318
xiv Contents
10.2 Light Transmission in Hollow-Core Fiber 320
10.2.1
Hollow Metal Waveguides
323
10.2.2
Wave-Guiding in Bragg and OmniGuide Fibers
324
10.2.3
Loss Mechanisms in OmniGuide Fibers
327
10.2.4
Wave-Guiding in 2D Photonic-Crystal Fiber
341
10.3
Applications of Hollow-Core Fibers
347
10.3.1
Hollow-Core Fibers for Medical Applications
347
10.3.2
Potential Telecom Applications
349
10.3.3
Hollow-Core Fibers as Gas Cells
350
10.3.4
Applications of Hollow-Core Fibers for
Remote Sensing
351
10.3.5
Industrial Applications
351
10.4
Hollow-Core Fiber Manufacturing
352
10.4.1
OmniGuide Fiber Manufacturing
352
10.4.2
Techniques Used in the Manufacture
of Other Hollow-Core Fibers
355
10.5
Conclusions
357
References
357
11
Silica Nanofibers and Subwavelength-Diameter Fibers
361
Limiti
Tong
and Eric
Mazur
11.1
Nanofiber at a Glance
361
11.2
Introduction
361
11.3
Modeling of Single-Mode Wave-Guiding
Properties of Silica Nanofibers
362
11.3.1
Basic Model
363
11.3.2
Power Distribution: Fraction of Power
Inside the Core and Effective Diameter
367
11.3.3
Group Velocity and Waveguide Dispersion
372
11.4
Fabrication and Microscopic Characterization of Silica
Nanofibers
374
11.4.1
Two-Step Taper Drawing of Silica Nanofibers
375
11.4.2
Electron Microscope Study of Silica Nanofibers
377
11.5
Properties of Silica Nanofibers
381
11.5.1 Micromanipulation
and Mechanical Properties
381
11.5.2
Wave-Guiding and Optical Loss
385
11.6
Applications and Potential Uses of Silica Nanofibers
388
11.6.1
Microscale
and Nanoscale Photonic Components
389
11.6.2
Nanofiber Optical Sensors
394
11.6.3
Additional Applications
396
References
396
Contents xv
12 Chiral
Fibers
401
Victor
I.
Kopp and Azriel
Z. Genach
12.1
Introduction
401
12.2
Three Types of
Chiral
Gratings
402
12.3
Chiral Short-Period Grating: In-Fiber Analog of CLC
406
12.3.1
Fabrication Challenges
406
12.3.2
Analogy to ID Chiral Planar Structure
406
12.3.3
Comparison of ID Chiral to ID
Isotropie
Layered Structures
407
12.3.4
Microwave Experiments
411
12.3.5
Optical Measurements
414
12.4
Chiral Intermediate-Period Grating
415
12.4.1
Symmetry of CIPG Structures
415
12.4.2
Microwave Experiments
415
12.4.3
Optical Measurements
416
12.4.4
Synchronization of Optical Polarization
Conversion and Scattering
416
12.5
Chiral Long-Period Grating
423
12.5.1
Optical Measurements
423
12.6
Conclusion
426
Acknowledgments
426
References
426
13
Mid-IR and Infrared Fibers
429
James A. Harrington
13.1
Introduction
429
13.2
Halide and Heavy Metal Oxide Glass Fiber Optics
433
13.2.1
Fluoride Glass Fibers
434
13.2.2
Germanate Glass Fibers
436
13.2.3
Chalcogenide Glass Fibers
437
13.3
Crystalline Fibers
440
13.4
Polycrystalline (PC) Fibers
441
13.5
Single-Crystal (SC) Fibers
443
13.6
Hollow-Core Waveguides
445
13.6.1
Hollow Metal and Plastic Waveguides
446
13.6.2
Hollow Glass Waveguides
446
13.7
Summary
450
Refer
enees
450
xvi Contents
14
Hermetic Optical Fibers: Carbon-Coated Fibers
453
Paul J. Lemaire and Eric
A. Lindholm
14.1
Introduction
453
14.2
History
455
14.3
Deposition of Carbon Coatings on Fibers
460
14.4
Fatigue Properties of Carbon-Coated Fibers
462
14.5
Hydrogen Losses in Optical Fibers
466
14.5.1
Hydrogen-Induced Losses in Nonhermetic Fibers
466
14.5.2
Hydrogen Losses in Carbon-Coated
Hermetic Fibers
468
14.5.3
Testing of Hermetic Fibers in Hydrogen
469
14.5.4
Diffusion of Hydrogen in Hermetic Fibers
472
14.5.5
Effects of Glass Composition on Hermetic Fiber
Behavior
477
14.6
Use and Handling of Carbon-Coated Hermetic Fibers
479
14.6.1
Fiber Strength
479
14.6.2
Fiber Handling
479
14.6.3
Fiber Stripping, Cleaving, and Connectorization
480
14.6.4
Fusion Splicing
480
14.6.5
Fiber Color
481
14.7
Specifying Carbon-Coated Fibers
481
14.8
Applications for Carbon-Coated Hermetic Fibers
485
14.8.1
Fibers in Underwater Cables
485
14.8.2
Amplifier Fibers
486
14.8.3
Avionics
486
14.8.4
Geophysical Sensors
486
14.9
Conclusion
487
References
488
15
Metal-Coated Fibers
491
Vladimir
A. Bogaty
rev and Sergei Semjonov
15.1
Introduction
491
15.2
Freezing Technique
493
15.3
Strength and Reliability
500
15.4
Degradation at High Temperature
505
15.5
Optical Properties of Metal-Coated Fibers
506
15.6
Summary
510
References
510
Contents xvii
16
Elliptical Core and D-Shape Fibers
513
Thomas D. Monte, Liming Wang, and Richard Dyott
16.1
Overview
513
16.1.1
Elliptical Core Optical Fiber
513
16.1.2
D-Shape Elliptical Core Fiber and Variations with
Assessable Regions
514
16.2
Manufacturing of Elliptical Core and D-Shape Fibers
515
16.3
Elliptical Core Fibers: Characteristics and Properties
517
16.3.1
Birefringence
519
16.3.2
Polarization Holding
520
16.3.3
Ellipticity and Higher Order Modes
520
16.4
D-Shape Fibers: Characteristics and Properties
521
16.4.1
Accessing the Optical Fields: Fiber Etching
522
16.4.2
Wet Etching of Silicon Dioxide-Based
Cladding and Germanosilicate Core
523
16.4.3
Standard Etching (Etch to Reach
Evanescent Field)
524
16.4.4
Exposing the Core
526
16.4.5
Partial and Full Core Removal
528
16.5
D-Shape Fiber Components
528
16.5.1
Couplers
529
16.5.2
Loop Mirrors
530
16.5.3
Polarizers
530
16.5.4
Butt Coupling to Active Devices
531
16.5.5
Coupling to Integrated Optics
534
16.6
Splicing
535
16.6.1
D-Shape to D-Shape Fiber Splicing
535
16.6.2
D-Shape to Circular Clad Fiber Splicing
535
16.7
In-Fiber Devices
536
16.7.1
Electro-Optic Overlay Intensity Modulators
538
16.7.2
Replaced Cladding Phase Modulators
539
16.7.3
Partial and Full Core-Replaced Devices
541
16.7.4
Fiber Bragg Grating Devices
543
16.7.5
Variable Attenuators
545
16.7.6
Optical Absorption Monitoring
547
16.7.7
Intrinsic Fiber Sensors
548
16.7.8
D-Shape Fiber Opto-Electronic Devices
552
16.8
Rare Earth-Doped Elliptical Core Fiber
553
References
554
xviii
Contents
17
Multimode, Large-Core, and Plastic Clad (PCS) Fibers
563
Bolesh J. Skutnik and Cheryl A. Smith
17.1
Introduction
563
17.2
Large-Core Silica/Silica (All-Silica) Fiber
565
17.3
High NA and Low
NA Silica/Silica
Fibers
568
17.4
Plastic and Hard Polymer Clad Silica Fibers
572
17.4.1
Plastic Clad Silica Fibers
572
17.4.2
Hard Polymer Clad Silica
572
17.5
Silica Fibers with Nano-Porous Cladding/Coating
574
17.6
Unlimited Application Potential
575
References
577
18
Tapered Fibers and Specialty Fiber Microcomponents
579
James P. Clarkin
18.1
Introduction
579
18.2
Tapers
582
18.2.1
Design of a Fiber Taper
583
18.3
Lenses
587
18.4
Diffusers
590
18.5
Side-Fire and Angled Ends
592
18.6
Optical Detection Windows for Microfluidic Flow Cells
593
Acknowledgments
597
References
597
19
Liquid-Core Optical Fibers
599
Juan Hernandez-Cordero
19.1
Introduction
599
19.2
Propagation of Light in Liquid-Core Fibers:
Modal Features, Dispersion, and Polarization Effects
600
19.3
Fabrication and Characterization Methods
602
19.4
Applications
605
19.4.1
Waveguides for Special Spectral
Regions and Optical Chemical Analysis
605
19.4.2
Fiber Sensors
607
19.4.3
Nonlinear Optical Effects
609
19.4.4
Medical Applications
610
19.4.5
Special Waveguide Structures
and Devices with Liquid Cores
612
19.5
Conclusions
613
References
614
Contents
20
21
Polymer
Optical Fibers
617
Olaf Ziemann
20.1
Introduction
617
20.2
POF
Basics
617
20.2.1 Materials
for
POF
618
20.2.2 Light
Propagation Effects in
POF
620
20.2.3
Bandwidth of
POF
622
20.3
Types of
POF
622
20.4
POF
Standards
632
20.5
POF
Transmission Systems
633
20.5.1
SI-PMMAPOF
633
20.5.2
PMMA-GIPOF
634
20.5.3
PF-GI
POF
634
20.6
Applications of
POF
636
20.6.1
POF
in Automobile Networks
636
20.6.2
POF
Sensors
638
20.6.3
POF
in Home Networks
640
20.7
POF
Fabrication Methods
641
20.7.1
SI
POF:
Preform and Extrusion Method
642
20.7.2
Production of Graded-Index Profiles
644
20.7.3
Interfacial Gel
Polymerization Technique
644
20.7.4
GI
POF
Extrusion
647
References
647
Sapphire Optical Fibers
651
/.
Renee Pedrazzani
21.1
The Growth of Sapphire Fiber
652
21.2
Optical and Mechanical Characteristics of Single-Crystal
Sapphire Fiber
656
21.3
Cladding and Coating of Sapphire Fibers
660
21.4
Applications of Sapphire Fibers
663
21.4.1
Optical Fiber Sensors
663
21.4.2
Medical Applications
667
21.5
Appendix: Material Properties of A12O3
668
References
669
22
Optical Fibers for Industrial Laser Applications
671
Adrian Carter, Kanishka Tankala, and
Bryce
Samson
22.1
Fiber Lasers and Amplifiers: An Introduction
671
22.2
Cladding Pumped Fibers
672
xx Contents
22.3
Large-Mode-Area Ytterbium-Doped Fibers: The Power
Revolution
673
22.4
Polarization-Maintaining LMA DCF
679
22.5
Fiber Lasers: State of the Art
686
22.6
Large-Mode-Area Eye-Safe Fibers
688
22.7
Conclusions
695
References
696
23
Optical Fibers for
Biomedical
Applications
699
Moshe
Ben-David and Israel Gannot
23.1
Introduction
699
23.2
Medical Laser Arms
700
23.3
Transendoscopic Surgical Application
703
23.3.1
Clinical Tests
705
23.4
Absorption Spectroscopy
. 708
23.4.1
Introduction
708
23.4.2
Medical Applications of Absorption Spectroscopy
709
23.5
Evanescent Wave Spectroscopy
711
23.5.1
Introduction
711
23.5.2
Experimental Setups
712
23.5.3
Chemical Sensing
714
23.5.4
Biochemical Sensing
715
23.6
Fiber Optic Thermal Sensing
717
23.6.1
Fiber Optic Thermal Sensor
718
23.6.2
Optical Fiber
Radiometry
720
23.7
Thermal Imaging
722
23.7.1
Infrared Imaging and Tomography in Minimally
Invasive Procedures
725
References
727
24
Mechanical Strength and Reliability of Glass Fibers
735
Charles R. Kurkjian and M. John Matthewson
24.1
Introduction
735
24.2
Review of Glass Properties
736
24.2.1
Noncrystallinity, the Glass Transition (Tg), and
Relaxation Processes
736
24.2.2
Brittleness, Hardness, and Cracking
738
24.2.3
Composition Effects
740
Contents
24.3
Mechanical Properties
744
24.3.1
Strength
744
24.3.2
Fatigue
756
24.3.3
Aging
758
24.3.4
Nonsilicate Glasses
760
24.3.5
Photonic Crystal or Holey Fibers
763
24.4
Coatings
765
24.4.1
General Comments and Polymer Coatings
765
24.4.2
Metal Coatings
765
24.4.3
Inorganic Coatings
765
24.5
Handling and Post-Draw Processing
767
24.5.1
Fiber Stripping
767
24.5.2
Fiber Cleaving
768
24.5.3
Splicing
770
24.5.4
Polishing
772
24.5.5
Soldering/Pigtails
772
24.5.6
Recovery of Handling Damage: Etching
773
24.6
Fractography
774
24.7
Proof-Testing and Reliability
775
24.7.1
Minimum Strength Design
776
24.7.2
Failure Probability Design
776
Acknowledgments
778
References
778
Index
783
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV024623570 |
callnumber-first | T - Technology |
callnumber-label | TA1800 |
callnumber-raw | TA1800 |
callnumber-search | TA1800 |
callnumber-sort | TA 41800 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | ZN 6285 |
classification_tum | FEI 440f PHY 394f ELT 683f |
ctrlnum | (OCoLC)255382337 (DE-599)GBV512970718 |
dewey-full | 621.3692 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3692 |
dewey-search | 621.3692 |
dewey-sort | 3621.3692 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik Feinwerktechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01778nam a2200457 c 4500</leader><controlfield tag="001">BV024623570</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101104 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2007 ne ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">012369406X</subfield><subfield code="9">0-12-369406-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123694065</subfield><subfield code="9">978-0-12-369406-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255382337</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV512970718</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">XA-NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1800</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3692</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6285</subfield><subfield code="0">(DE-625)157543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">FEI 440f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 394f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 683f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Specialty optical fibers handbook</subfield><subfield code="c">Alexis Mendez ; T. F. Morse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLII, 798 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Optics, optical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber optics</subfield><subfield code="x">Industrial applications</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fibers</subfield><subfield code="x">Industrial applications</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lichtleitfaser</subfield><subfield code="0">(DE-588)4167589-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lichtleitfaser</subfield><subfield code="0">(DE-588)4167589-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Méndez, Alexis</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morse, Ted F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0703/2006038642-d.html</subfield><subfield code="z">lizenzfrei</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595452&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018595452</subfield></datafield></record></collection> |
id | DE-604.BV024623570 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:03:16Z |
institution | BVB |
isbn | 012369406X 9780123694065 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018595452 |
oclc_num | 255382337 |
open_access_boolean | |
owner | DE-83 DE-355 DE-BY-UBR DE-91 DE-BY-TUM DE-M347 DE-29T |
owner_facet | DE-83 DE-355 DE-BY-UBR DE-91 DE-BY-TUM DE-M347 DE-29T |
physical | XLII, 798 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Elsevier |
record_format | marc |
series2 | Optics, optical engineering |
spelling | Specialty optical fibers handbook Alexis Mendez ; T. F. Morse Amsterdam [u.a.] Elsevier 2007 XLII, 798 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Optics, optical engineering Fiber optics Industrial applications Handbooks, manuals, etc Optical fibers Industrial applications Handbooks, manuals, etc Lichtleitfaser (DE-588)4167589-7 gnd rswk-swf Lichtleitfaser (DE-588)4167589-7 s DE-604 Méndez, Alexis Sonstige oth Morse, Ted F. Sonstige oth http://www.loc.gov/catdir/enhancements/fy0703/2006038642-d.html lizenzfrei Publisher description Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595452&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Specialty optical fibers handbook Fiber optics Industrial applications Handbooks, manuals, etc Optical fibers Industrial applications Handbooks, manuals, etc Lichtleitfaser (DE-588)4167589-7 gnd |
subject_GND | (DE-588)4167589-7 |
title | Specialty optical fibers handbook |
title_auth | Specialty optical fibers handbook |
title_exact_search | Specialty optical fibers handbook |
title_full | Specialty optical fibers handbook Alexis Mendez ; T. F. Morse |
title_fullStr | Specialty optical fibers handbook Alexis Mendez ; T. F. Morse |
title_full_unstemmed | Specialty optical fibers handbook Alexis Mendez ; T. F. Morse |
title_short | Specialty optical fibers handbook |
title_sort | specialty optical fibers handbook |
topic | Fiber optics Industrial applications Handbooks, manuals, etc Optical fibers Industrial applications Handbooks, manuals, etc Lichtleitfaser (DE-588)4167589-7 gnd |
topic_facet | Fiber optics Industrial applications Handbooks, manuals, etc Optical fibers Industrial applications Handbooks, manuals, etc Lichtleitfaser |
url | http://www.loc.gov/catdir/enhancements/fy0703/2006038642-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018595452&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mendezalexis specialtyopticalfibershandbook AT morsetedf specialtyopticalfibershandbook |